

Structure and Motion Design of a Mock Circulatory Test Rig

Yuhui Shi *, Theodosios Korakianitis \$, Zhongjian Li &, and Yubing Shi #

* Northwest Institute of Mechanical and Electrical Engineering, Shaanxi Province, China

\$ Parks College of Engineering, Aviation and Technology, Saint Louis University,

& College of Automation, Northwestern Polytechnical University, China

Faculty of Arts, Science and Technology, University of Northampton, Northampton,

Corresponding author:

Faculty of Arts, Science and Technology, University of Northampton,

University Drive, Northampton, NN1 5PH, UK

Email: yubing.shi@northampton.ac.uk

The total number of words in the main text:4541

USA

0 7

UK

Yubing	The number of words in the abstract: 15	8
Shi		

The number of figures: 7

The number of tables: 2

Page 2 of 25

Structure and Motion Design of a Mock Circulatory Test Rig

8		
9		Abstract
10		
11		
12		Mock circulatory test rig (MCTR) is the essential and indispensable facility in
13		the cardiovascular in vitro studies. The system configuration and the motion 14
15		profile of the MCTR design directly influence the validity, precision, and
16		accuracy of the experimental data collected. Previous studies gave the 17
	51	
	52	
	53	
	54	
	55	
	56	
	57	
	58 59	
	60	URL: http://mc.manuscriptcentral.com/tmet Email: John.Woodcock@CardiffandVale.wales.nhs.uk ²

Journal of Medical Engineering & Technology

18	schematic but never describes the structure and motion design details of the
19	MCTRs used, which makes comparison of the experimental data reported by 20
21	different research groups plausible but not fully convincing. This paper
22	presents the detailed structure and motion design of a sophisticated MCTR 23
24	system, and examines the important issues such as the determination of the
25 26	ventricular motion waveform, modelling of the physiological impedance, etc.
27	in the MCTR designing. The study demonstrates the overall design procedures
28 29	from the system conception, cardiac model devising, motion planning, to the
30	motor and accessories selection. This can be used as a reference to aid
31 32	researchers in the design and construction of their own in-house MCTRs for
33	cardiovascular studies.
34	
35 37	Keywords: mock circulatory test rig; cardiovascular dynamics; in vitro test, 36 structure design; motion design
38 39	
40 41	Introduction
42	Clinical investigations play an important role in the cardiovascular physiology 43
44 45	research. However, due to various limitations (e.g., the complex geometries of the
46	
47	cardiovascular organs, the difficulty in isolating the influence from each of the
48	
49 50	individual physiological factors, and the size of the sensors etc.), not all physiological and pathological phenomena can be observed directly with clinical studies on the human
	body (1). Thus it is necessary to construct artificial systems to simulate the functioning of the
	human circulatory system, so that in vitro experiments can be
Page 3 c	of 25 1

2	36
3	37
4	38
5	39
6	40
7	41
8	42
9	43
10	44
11	45
12	46
13	47
14	48
15	49
16	50
17	carried out on the artificial systems instead. Such an artificial system is often
18	
19	implemented as a mechanical-electrical-hydraulic assembly and is tuned to produce
20	
21	different blood flow conditions corresponding to the healthy and diseased status in
22	
23	the human body (2). The mechanical-electrical-hydraulic system is usually called a
24	maaly simulatany test min (MCTD). Dest designs of MCTDs simulate steady or
25	mock circulatory test rig (MCTR). Past designs of MCTRS simulate steady or
26	pulsatile flow depending on the goals of the experiments. Using these MCTRs
27	pulsative now, depending on the goals of the experiments. Using these we riks,
28	researchers gained more insight into not only the blood flow physics (i.e., changes
29	researchers gamed more morght met not only the brood now physics (i.e., enanges
30	of overall flow field structure as well as the variations of velocity, pressure, shear
31	
32	stresses, and the different forces acting on the native organs) (2–12), but also
33	
34	detailed information for the design and performance analysis of prosthetic devices
35	· · ·

URL: h tp://mc.manustriptcontral.com/met_Erval.cohn/locdcock@corci.fai.dVzie.vales.i.hs. c4

such as	al and indispensable facility in the in vitro study of the cardiovascular physiology.
artificial	The system configuration and the motion profile of the MCTR design determine to
heart	what degree the simulated cardiac flow mimics the physiological reality, and thus
valves,	directly influence the validity, precision, and accuracy of the experimental data
stents, and	collected in the in vitro studies (1,2).
ventricular assist	Given the importance of the MCTR design, it is surprising that no structure and
devices	motion design details of the MCTRs have ever been reported in the open literature so far, and those published cardiovascular in vitro studies usually described only the
(1,2,12–	schematic of the MCTR followed by a brief list of the components used in the
38). The	system. Lacking of such technical details, comparing the experimental data reported
MCTR	by different research groups becomes plausible but not fully convincing. Besides,
has	researchers who plan to build their in-house MCTRs but have less design experience
become a	would find themselves helpless after a fruitless literature survey. To fill the gap, this
fundament	paper presents the detailed structure and motion design of a sophisticated MCTR

Page 4 of 25

system, which can be used as a reference by cardiovascular researchers in their planning to build in-house MCTRs. Also it is hoped that this paper would initiate further in-depth discussions among researchers about the improvement of the MCTR designs, which as a result contributes to the continuous advances and refinement of

10 11

8

12	the MCTR technology to support the ever-increasing requirements about the
13	
14	reliability and the accuracy in the cardiovascular in vitro studies.
15	
16	
17	System Design
18	
19	
20	The aim of the current MCTR design is to provide an embodiment of a fundamental
21	
22	electric-mechanical platform that simulates the hydro-dynamic characteristics of the 23
24	human circulatory system, to facilitate the in vitro measurement of blood flow
25	
26	features and testing of response dynamics in cardiovascular prosthetic organs.
27	
28	Besides, the MCTR design should be able to simulate the circulatory response in a
29	
30	
31	range of healthy and diseased conditions: from the healthy rest condition to the
32	
33	exercise condition, and even the heart failure condition. For such purposes, the
34 25	operating perspectors for the MCTP are first chosen as shown in Table 1, by referring 26
22 27	to the ranges of the physiological variables reported in the literature (30, 41)
38	to the ranges of the physiological variables reported in the interature (57–41).
20	(Table 1 comes here)
39 40	(Table T comes here)
41	
42	
43	2.1 System configuration
44	

45 46 47	The MCTR design comprises two circulation loops: the systemic loop and the
48	pulmonary loop. In each loop, two throttle valves and a compliance unit are used to
49 50	simulate the corresponding physiological impedance, and a tank separated from the
	rest of the system by a one-way check value is used to provide the correct mass of
	Test of the system by a one way check varve is used to provide the correct mass of
	fluid in circulation (adjusted during system commissioning). Three pressure
	transducers and two flow transducers are installed in each loop, to measure the
Page 5 of 25	26
	27
	28
1	29
2	30
3	31
4	32
5	33
6	34
/	35
8	36
9	37
10	38
11	39
12	40
13	41
14	42
15	43
10	44
17	45
10	46
20	47
20	48
22	49
23	50
	pressure in the atrium, the ventricle and the main artery, and the flow rates in the
25	artery and the vein. Fig. 1 shows the system configuration of the MCTR design.

design. The heart design consists mainly of five parts, as illustrated in Fig. 2. (Fi gur Except the difference in shape in the left and right ventricles, the whole heart model e 1 co is almost symmetrical along the centre plane. As shown in Fig. 2, parts A, B and E me s represent the ventricles and the atriums. The ventricle part is separated into Part A her e) and B in order to minimize the difficulty in manufacturing the ventricle chambers. Parts D_{KG} and D_V are two silicon rubber membranes that represent the atrium-2.2 Structure ventricle septum and the ventricle wall, and they are separated by Part C to Design of the heart eliminate the potential motion interference between them. Besides these main parts, model some accessories such as heart valves, sealing components and motion mechanism (Fi gur etc. are used to help mimicking the proper function of the model. Under the action e 2 co of the external motion control system, blood analogue is circulated in the heart me S model to simulate the functioning of the heart. The arrows in the figure show the her e) flow direction of the blood analogue.

The heartIn the figure, LA is the abbreviation of left atrium, LV for left ventricle, RA formodel isright atrium, RV for right ventricle, mi for mitral valve, ao for aortic valve, ti forthe centraltricuspid valve and po for pulmonary aorta.

In Parts A and B, the left and right ventricle chambers covered under the ventricle sac

60

part in in

the MCTR

URL: http://mc.manuscriptcentral.com/tmet Email: John.Woodcock@CardiffandVale.wales.nhs.uk8

Dv are filled with water. Water is filled and drained through flow channels near the

 connected through honey combs that are tiled towards the ventricle bottom direction order to eliminate the possible water jet effect acted on the ventricle sac D_v ventricle water is filling in the chambers to simulate the systolic phase. Fig. 3 shows the MRI measured geometry of the left and right ventricles at the instances of peak-systole and end-diastole in a heart cycle, and Fig. 4 shows the 	re
 in order to eliminate the possible water jet effect acted on the ventricle sac D_v ventricle water is filling in the chambers to simulate the systolic phase. Fig. 3 shows the MRI measured geometry of the left and right ventricles at the instances of peak-systole and end-diastole in a heart cycle, and Fig. 4 shows the 	ection,
 8 9 water is filling in the chambers to simulate the systolic phase. 10 11 12 Fig. 3 shows the MRI measured geometry of the left and right ventricles at the 13 14 15 instances of peak-systole and end-diastole in a heart cycle, and Fig. 4 shows the 	when
Fig. 3 shows the MRI measured geometry of the left and right ventricles at the instances of peak-systole and end-diastole in a heart cycle, and Fig. 4 shows the	
15 instances of peak-systole and end-diastole in a heart cycle, and Fig. 4 shows the	
16	:
 corresponding ventricular volume change in the left ventricle, which have been 18 	
 reported in a previous study (42). The MCTR design aims to give realistic description 20 of the cardiac motion and functioning, but does not need to duplicate every 	
anatomical details. The irregular shape of the right ventricular is very difficult to 24	
 fabricate mechanically, thus it is represented using the same geometry as that fo 	r the
 left ventricular, but working in the pressure range compatible with the pulmona 	ry
30 circulation. In the MCTR design, the ventricle sac D_v in the unstressed condition 31	n
 exhibits the ventricle shape in the peak-systole in the rest condition, and the internal 33 wall of Part A and B are cut into the ventricle shapes in the end-diastole in the 	
36 extreme exercise condition. When the amount of the water in the space between the 37	
56 57 58 59	

38 39 40	ventricle sac and the internal wall of Part A and B is changed using the ventricular
40	motion control motor and piston, blood analogue flows in and out of the space LV and
42 43	RV to compensate the volume change induced by the water flow, thus mimicking the
44 45	ventricular volume changes as shown in Fig. 4. The LA and RA chambers are
40 47 48	represented with cylindrical shaped spaces whose volumes approximately equal the
49 50	MRI measured left and right atrial volumes.
51 52	(Figures 3 and 4 come here)
53	Part D_{KG} and Part E combined to represent the blood flow in the left and right atriums,
55 Page 7 of 25	18
	19 20
1	21
2	22
3	23
4	24
5	25
6	26
7	27
8	28
9	29
10	30
11	31
12	32
13	33
14	34
15	35
16	36
17	37
51	
52	
53	
54	
55	
56	
57	
58 59	

1	
2	
4	
5	
6	
7	
38	D_{KG} , and they are functioned as the mitral valve and the tricuspid valve in the heart.
39	
40	The two values and the septum are attached to and driven by the motion control
41	mechanism which moves in the vertical direction, thus to simulate the hulging of the
42	incentation which moves in the vertical direction, thus to simulate the burging of the
44	septum in the heart in the diastolic phase. Two vertical channels in Part E represent
45 46	the roots of the aorta and the pulmonary artery. Two more heart valves are installed
47 48	near the inlet to the aorta and the pulmonary artery to simulate the aortic valve and
49	the nulmonery value
50	the pumonary varve.
the aorta	
and the	2.3 Motion design for the system
pulmonary	(Figures 5 and 6 come here)
artery.	Proper functioning of the heart model depends largely on the careful motion
Two heart	planning and synchronisation of the motion control system in the septum driving
valves are	mechanism and the ventricle driving mechanism. Fig. 4 above shows the typical left
equipped	ventricular volume change in a heart cycle measured with MRI, which is used as the
on the	blueprint in the motion profile design of the ventricular driving mechanism in the
silicon	MCTR design. To reduce the impact and vibrations in the driving motor and the
septum	
51	
52	
53	
54	
55	
50 57	
5	
8	
5	
9	

Page 8 of 25

point values in the volume change curve; and are the time corresponding to the transition points in the waveform segments, and is the heart period. As can be observed in Fig. 5, the harmonic waveforms shown is based on a set of example

values for V and T, and they can be easily adapted to other suitable values to describe

the patient-specific and disease-specific conditions which the researcher expect to

simulate.

For both the left and the right ventricles, a piston actuated by a linear motor is used to

33		=	+	cos	
		_			
34		2	2		
35		+	_		
36		2	+	2	cos
				≤<	
37		Equa	tion (2)		
38					
39					
40	In the equation, , , and are the maximum, the minimum,	and the	e saddle		
41					
42	point values in the stroke profile curve; , and are the same as that	in equ	ation		
43					
44	(1). Considering the dimensions of the left and right ventricles measure	d in the	e MRI,		
45					
46	in the current MCTR design the diameter of the piston head is chosen as 50mm. To 4	7			
48 49	generate the stroke volume of about 70ml/beat at the rest condition, the	piston	should		
50 have	a stroke of:				

	While to produce the stroke volume of about 110ml/beat (160ml/beat) in the extreme
Page 9 of 25	8
	9
	10
1	11
2	12
3	13
4	14
5	15
6	16
7	17
51	
52	
53	
54	
55	
56	
57	
58	
59	

Journal of Medical Engineering & Technology

and the	exercise condition have the same shape as illustrated above but elevated stroke,
maximum	velocity and acceleration values but reduced heart period value, due to the increased
acceleratio	cardiac contractility and heart rate in the exercise condition. For the extreme
n is	exercise condition of $180012/+34/$ for the heart rate and $160+5012/$ for
3.2+//.	the stroke volume (39), using the piston stroke of $0.1 +$ calculated above, the
The	maximum velocity of the piston is about $2.41 + //$, and the maximum acceleration is
motion	132+//. While to simulate the heart failure condition, the piston stroke needs to be
profile for	reduced and the heart rate increased. The detailed motion profiles for the stroke,
the	velocity and acceleration can be calculated in the same way as

Page 10 of 25

above.

(Figure 7 comes here)

8 9	The atrial-ventricular septum moves in a heart cycle due to the contraction of the heart
10	muscle, which is in phase with the ventricular motion but with a reduced magnitude, 11
12 13 14	thus the septum actuating mechanism has the same motion trajectory as the piston for
15	the ventricle. After checking the MRI measured data, stroke for the septum driving
16	
17	mechanism is set as 25++, which produces a maximum velocity is 0.496+// and a
18	
51	
52	
53	
54	
55	
56	
57	
5	
8	
5	
56 57 5 8 5 9	

Journal of Medical Engineering & Technology margin over the upper limit of 160++67 for the hypertension condition (43)), and

the pressure force is estimated as:

Page 11 of 25

1 2			
3 4 5	$F P A_p = $	=13.6 10×	$^{3} \times 9.8 \times 0.2 \times 0.25 \pi \times 0.05^{2} = 52.34$ (N)
6 7	The inertial force exists in the piston and	d the circulating fluid	in the heart chambers
8 9	and the flow channel between the aortic	valve and the complia	ince element, with the
10 12 13	piston plays the major part due to the greater density of compared with the density of the blood a	of the steel piston mate analogue. Assuming th	erial 11 ne piston has a diameter
14	of $50++$ and a thickness of $10++$, while the piston is	rod has a diameter of 2	10++ 15
16 17	and a length of the		
18 19 20	O		
21 22	and the iner		
23 24			
25	Assume the		rce to be
26 27		\bigcirc	
28 29	applied on t	16	
30 31		4	
51			
52 53		L	
54			
55 56			
57			
F O			

1 2 3 4 5 6 7 32 33	Use a safety factor of 2~3, and round the force to a nominal value in the product
34	catalogue, the force output from the piston is selected as 200<. The right ventricle 35
³⁶ 37 38	has a smaller pressure level thus the force requirement is also smaller. The atrial
39 40	septum driving piston not only works under lower pressure but also experiences
41 42	smaller acceleration. Since 200< is not a big value, it is convenient to use the same
43 spec	ifications for all the four ventricle and atrium driving pistons. The specifications 44
45 46	for the linear motors to drive the ventricle/atrium pistons are then summarised and
47	listed in Table 2.
48 49	
50	(Table 2 comes here)

2.5 System accessory

Besides the main parts of the heart model, the piston and the driving motor, some

Page 12 of 25

Journal of Medical Engineering & Technology accessories are needed to form the complete MCTR system as detailed in the

following.

8 9	2.5.1 Valve and compliance units, to simulate the physiological impedance
10	
11 12	Sharp et. al. (2) analysed the characteristics of the physiological impedance in the
13 14	artery network, and suggested that the three-element Windkessel model is the simplest
15 16	model that could describe both the low frequency and high frequency features of the
17 18	physiological impedance, while the two-element Windkessel model as used in
19 20 21	majority of the previous MCTR designs was unable to reveal the high frequency
22 24 25	features. Thus the three-element Windkessel model is used in both the systemic and 23 the pulmonary loops in the current MCTR design. For this purpose, two throttle
26	valves are used to function as the characteristic resistance and the peripheral 27
28 29	resistance, and a compliance unit to simulate the elastic effect of the artery. Generally,
30 31 32	the overall resistance value produced by the two resistances equals to the ratio of the
33 34	mean pressure to the mean flow rate in the loop, and the characteristic resistance is
35 37 38	about one tenth of the peripheral resistance. Besides, the human aorta has a diameter 36 of about 25++, thus to have better geometrical resemblance and to avoid the
39	unnecessary pressure loss and flow disturbance, the internal diameter of the throttle 40
41	25++. The compliance unit is made of an elastic rubber sac 42 valves is chosen to be
43 44 51 52 53 54 55	emerged in a container filled with compressed air, so that different values of air
56 57 58 59 60	URI : http://mc.manuscriptcentral.com/tmet_Email: John Woodcock@CardiffandVale wales nhs.uk ²¹

1 2 3 4 5 6 7 45	
46 47	pressure result in different values of the compliance. During system commissioning,
48	the air pressure in the compliance and the openings of the valves are continuously 49
50	adjusted, until the pressure and flow responses in the system match that in the
Page 13	physiological conditions as reported in the literature.
1 2	2.5.2 Water tank to provide the process any flow records t
3	2.5.2 water tank, to provide the necessary flow reserve 4
5 6 7	A normal adult of 75kg body weight has about 5 of blood in the circulation system
8 9	(40,41). In the MCTR design, two water tanks, each has an overall volume of 4 and
10 11	contains 3 of blood analogue, are used to represent the blood storage capacity in the
12 syst	emic and the pulmonary veins. The overall volume of the blood analogue exceeds 13
14	that of 5 in the human body but this does not influence the system response. The 15
16 17	water tanks can be placed on the same horizontal level with the other system parts, to
18 19 20	simplify the system settlement; or they can be placed on shelves so that they are on a
21 22	higher altitude to produce the right level of the preload (about $10++67$ in the
51 52 53 54 55 56 57 58 59	

	Journal of Medical Engineering & Technology
23 24 25 26	normal condition) to the left and right atriums.
20	2.5.3 Silicon rubber tube, to connect different parts in the system
28 29 30	Silicon rubber tube provides a flexible but water-tight connection of the components
31	in the MCTR design. To be compatible with the geometry of the artery, the silicon 32
33	rubber tube also has an internal diameter of 25++.
34 35	
36 37 38	2.5.4 Blood analogue
39 40	To match the density of $1060:7 + 7^9$ and the viscosity of $3.2?@$ in the real human
41 42	blood (40,41), a mixture of glycerine and water is used as the working fluid. If the
43 44 46 47	MCTR is to be used for applications involving sophisticated optical observations of 45 the velocity distributions, such as in the Particle Image Velocimetry measurement of
48	the flow field, the test section often needs to be manufactured using transparent 49
50	materials (e.g., Perspex), which has a different refractive index to the blood analogue
	and may cause optical distortion in the images captured. In such situations, chemicals such as sodium
	iodide (<2A) can be added to the blood analogue so that the refractive

Page 14 of 25

index of the fluid matches the index for the transparent wall material in the observation windows, to eliminate the potential of optical distortion. However, this

1	
2	
3	
4	
5	
6	
7	
	will change the density and the viscosity of the final working fluid and a compromise
8	
9	among the different aspects of the fluid properties needs to be considered.
10	
11	
12	
13	2.5.5 Pressure and flow transducers
14	
15	
16	Three pressure transducers and two flow-rate transducers are installed in each loop, to
17	
18	measure the pressure in the atrium, the ventricle and the main artery, and the flow
19	
20	rates in the artery and the vein. The operating range of the pressure transducers is
20	rates in the artery and the veni. The operating range of the pressure transducers is
22	chosen as $-20 \sim 300 + +67$, in case there may be temporary pressure overload in the
23	
24	system. Electromagnetic type or ultrasound type flow transducers are good candidates
25	
26	for the measurement of the pulsatile flow in the systematic artery and the pulmonary 27
20	for the measurement of the pulsatile now in the systemate areny and the pullionary 27
28	/ and it may
29	artery positions. Considering that the
	normal cardiac output is 5 +34
30	
21	raise to about 28 ± 34 / in the maximum exercise condition (39), the operating range
22	Taise to about 20 + 3+7 in the maximum excretise condition (37), the operating range
32	
33	of the flow transducer can be set as $-10 \sim 30 + 34/$. Flows in the simulated
34	
35	systematic and pulmonary vein positions are much steady, so the rotameters can be
51	
52	
53	
54	
55	
56	

57 58 59

Journal of Medical Engineering & Technology

used in these locations to save the expense.

2.5.6 Computer monitoring and control system

A computer monitoring and control system is needed to record the pressure and flow

response in the MCTR, as well as to command the linear motors to generate the necessary designed motions in the ventricle/atrium actuating pistons. A normal PC enhanced with the hardware (suitable A/D & D/A board) and the software (accompanying data acquisition and motion control program) support is OK for the purpose. Besides, the pressure and flow signals from the transducers are weak signals, and need to be conditioned and amplified before being picked up by the data

Page 15 of 25

1	
2	
3	acquisition system, thus the signal conditioning and amplifying circuits accompanying
4	
5	the transducers need to be purchased. The motion command signals sent by the 6
7	computer to the linear motors often need to be amplified with a separate amplifier as
8	
9	well. With the computer monitoring and control system, signals from the pressure and
10	
11	
12	flow transducers and from the motor driving channels can be displayed real-time on
13	
14	the computer screen or saved as data files for further post-processing.
51	
52	
53	
54	
55	
56	
57 58	
59	

1	
2 3	
4 5	
6	
7 15	
15 16	
17	2.5.7 Other application specific components
18	
19 20	The MCTD sectors and the first sector backs for the institute state sector.
20 21	The MCTR system provides the fundamental platform for the in vitro study, while for
22	specific applications it often needs to be adapted or expanded to include other 23
24	measurement components. For example, to observe the flow field in a new artificial
25 26 1	
- hear	rt design or in a patient-specific vessel segment geometry, the artificial heart or the 27
28	vessel segment can be fabricated using transparent materials and then embedded in
29 30	
31	the MCTR. Specific flow field measurement equipment, such as Laser Doppler
32	ForPeerReviewOniv
33	Anemometry, Particle Image Velocimetry, CCD camera etc. can then be attached to
34 35	the MCTR for flow measurement.
36	
37 38	
39	Discussion
40	
41 42	MCTR is widely used in the in vitro study of the cardiovascular physiology. Plenty of
43	MCTRs have been built in the past. Although the general configurations of these 44
45	MCTRs were introduced in the literature, the structure and motion design details have
51	
52 53	
54	
55 56	
57	
58 59	

47	
48 49	seldom been explained. This paper presents a MCTR design with sophisticated
50	structures and describes the technical details that were missing in the literature, thus
	provides a reference to researchers who are planning to build their own MCTRs. Compared with the

previous MCTR designs, the current design adopts improved

	cardiac and vascular system models, thus can provide more in-depth knowledge about
	the cardiac dynamics and vascular hemodynamics to the researchers. The proposed
8	MCTR design when fully implemented can be used as a platform to aid the clinical
9 10	study of the native cardiovascular system in healthy and diseased conditions and the
11 12	performance evaluation of prosthetic cardiovascular devices.
13 14	The menesod MCTD design is featured on the real size modelling of the size voltage
15 16	The proposed INCTR design is focused on the real-size modelling of the circulatory
17 18	system. It is possible that in some situations scaled-up modelling is need to facilitate
19 20	the observation of the flow field details in some confined regions of the
21 22	cardiovascular flow. In such cases the dimensional analysis can be applied to change
23	the geometrical dimensions of the cardiac/vascular model and the motion parameters 24
25 26	(velocity, frequency etc.), and to maintain the non-dimensional numbers (e.g.,
27 28 29	Reynolds' number, Womersley number) so that the dynamic similarity between the
30 31	MCTR model system and the original physiological system is guaranteed. Once the
32 34 35	revised geometrical dimensions and the notion parameters are decided, the same 33 procedures as presented in this paper can be applied to determine the design
36 37	parameters for the actuating pistons and the driving linear motors, thus to finalise the
56 57 58 59	
60	URL: http://mc.manuscriptcentral.com/tmet Email: John.Woodcock@CardiffandVale.wales.nhs.uk ²⁸

MCTR design.

41	
42 The study presents a sample MCTR design, elaborates on the different aspect	s of the
43	
44 structure and motion design considerations, and demonstrates the procedures	for
45	
46 determining the geometrical parameters and the motion profiles. Researchers	can use
47	
48 this as the reference and adapt the design by revising the geometrical and kind	ematic
	1
50 parameters, removing and incorporating system components, to suit different	research
52 needs. For example, if the motion of the atrial-ventricular septum is not needed then 53	
54 the related parts can be moved, and this helps to further simplify the system d	esign
55	
Page 17 of 25	
1	
2	
3 and reduce the expense; if there is no requirement to model the exercise cond	ition
4	
5 then the stroke, velocity, and acceleration requirements of the driving mechanism can 6	
7 all be lowered so that cheaper motors can be used; if the pulmonary loop is no	ot
8	
⁹ relevant then only half of the current MCTR design can suffice the research n	eeds.
10	
11	
A deficiency of the current study is that the designed MCTR has not been phy	sically
13	
14	
built, thus no pressure and flow response can be demonstrated for comparisor	ı with
16	
17 the typical response curves reported in the physiological textbooks for validat	ion
18	
¹⁹ purpose. This will be conducted in the next stage of the study once the necessary 20	
21 resources are secured.	
51	
52	
53	
54	
55	
56	
5/ 58	
59	
60 IR .: ht m; /n.c.r ha lus trivitce ttral.c pm 'tilhe' Empilition n.v /opc bock()C arc iffend Vale.wa	les.nhs.uk ²⁹

1 2 3 4 5 6 7 23	
24 25 26	Conclusion
27 This	paper presents the detailed structure and motion design of a sophisticated MCTR 28
29	system, and examines the important issues such as the determination of the ventricular
30 31	
32 33	motion waveform, modelling of the physiological impedance, etc. in the MCTR
34 35	designing. The study demonstrates the overall design procedures from the system
36 37	conception, cardiac model devising, motion planning, to the motor and accessories
38 40 41 42	selection. This can be used as a reference to aid researchers in the design and 39 construction of their own in-house MCTRs for cardiovascular studies.
43 44 45	Conflicts of interest
46 47 48 49	None declared.
49 50	References
	 Leefe SE, Gentle CR. A review of the in vitro evaluation of conduit-mounted cardiac valve prostheses. Med Eng Phys. 1995 Oct;17(7):497–506.
	 Sharp MK, Dharmalingham RK. Development of a hydraulic model of the human systemic circulation. ASAIO J. 1999 Dec;45(6):535–40.
51 52 53 54 55 56 57 58 59	

	3.	Boes S, Ochsner G, Amacher R, Petrou A, Meboldt M, Daners MS. Control of the Fluid Viscosity in a Mock Circulation. Artif Organs. 2018 Jan;42(1):68–77.
8 9 10	4.	Heise M, Krüger U, Rückert R, Pfitzman R, Neuhaus P, Settmacher U. Correlation of Intimal Hyperplasia Development and Shear Stress Distribution at the Distal End-side-anastomosis, in vitro Study Using Particle Image Velocimetry. Eur J Vasc Endovasc Surg. 2003 Oct 1;26(4):357–66.
11 Autor	5. Kaufmann egulation by Flow-D	TAS, Wong KC, Schmitz-Rode T, Steinseifer U. Mimicking of 12 Cerebral Dependent Cerebrovascular Resistance: A
13 14		Feasibility Study. Artif Organs. 2012 Apr 1;36(4):E97–101.
15 16	6.	May-Newman K, Vu V, Herold B. Modeling the Link between Left Ventricular
17 18 19		Flow and Thromboembolic Risk Using Lagrangian Coherent Structures. Fluids. 2016 Nov 22;1(4):38.
20 Relial Monit	7. McKenzie pility of thermodiluti Comput. 2018 Apr	SC, Dunster K, Chan W, Brown MR, Platts DG, Javorsky G, et al. 21 ion derived cardiac output with different operator 22 characteristics. J Clin 1;32(2):227–34.
23 24 during Eng C 27	8. Misgeld B g extracorporeal circ Comput. 2005 Oct 1;	JE, Werner J, Hexamer M. Robust and self-tuning blood flow control 25 ulation in the presence of system parameter 26 uncertainties. Med Biol 43(5):589–98.
28 29 30 31 32 33 34 35 36		 9. Ninomiya S, Tokaji M, Tokumine A, Kurosaki T. Virtual patient simulator for the perfusion resource management drill. J Extra Corpor Technol. 2009 Dec;41(4):206–12. 10. Piatti F, Palumbo MC, Consolo F, Pluchinotta F, Greiser A, Sturla F, et al. Experimental quantification of the fluid dynamics in blood-processing devices through 4D-flow imaging: A pilot study on a real oxygenator/heat-exchanger module. J Biomech. 2018 Feb 8;68:14–23.
 37 51 52 53 54 55 56 57 58 59 	11.	Seong J, Jeong W, Smith N, Towner RA. Hemodynamic effects of long-term

1	
2	
3	
4	
5	
6	
7	
38	
39	morphological changes in the human carotid sinus. J Biomech. 2015 Apr
40	13;48(6):956–62.
41	
42 12. Valverde I. Th	ree-dimensional Printed Cardiac Models: Applications in the Field 43 of
Medical Education. Cardio	vascular Surgery, and Structural Heart 44 Interventions, Rev Espanola Cardiol
Engl Ed 2017 Apr: $70(4)$:2	82_91
Lingi Lu. 2017 Api,70(4).2	02-71.
45	12 Devision C. Devil sources DDW for floor stadies used antificial based on loss Fran
46	13. Brucker C. Dual-camera DPTV for now studies past artificial heart valves. Exp
4/	Fluids. 1997 Apr 1;22(0):490–300.
40	14 Crosby IR DeCook KI Tran PI Smith RG Larson DF Khalney 71 et al
49 50	Physiological characterization of the SynCardia total artificial heart in a mock circulation
50	system ASAIO I Am Soc Artif Intern Organs 1992 2015 Jun 61(3):274-81
	system. ASATO J Am Soc Artir mem Organs 1772 . 2015 Jun, $01(5)$.274–01.
15.	Crosby JR, DeCook KJ, Tran PL, Betterton E, Smith RG, Larson DF, et al. A
	Physical Heart Failure Simulation System Utilizing the Total Artificial Heart and
	Modified Donovan Mock Circulation. Artif Organs. 2017 Jul;41(7):E52-65.
Page 19 of 25	
1	
2	
3 16 Donovan FM	Design of a hydraulic analog of the circulatory system for 4 evaluating artificial hearts
Biomater Med Devices Art	tif Organs 1975.3(4):439_
5	49.
6	
7 17. Feng Z. Umez	u M. Fujimoto T. Tsukahara T. Nurishi M. Kawaguchi D. In vitro 8 hvdrodvnamic
characteristics among three	bileaflet valves in the mitral position.
9	Artif Organs, 2000 May:24(5):346–54.
10	
11	18 Feng 7 Nakamura T Fujimoto T Umezu M In vitro investigation of opening
12	behavior and hydrodynamics of biloaflet values in the mitral position. Artif
12	Organs, 2002 Jan; 26(1):22, 0
51	Organs. 2002 Jan, $20(1).52-9$.
52	
53	
54	
55	
56	
57	
58	
55	

	Journal of Medical Engineering & Technology	
14		
15	19. Förster F, Kaufmann R, Reul H, Rau G. A small pulsatile blood pump for	
16		
17	ventricular support during end-stage heart failure. Artif Organs. 2000	
18 19	May;24(5):373–6.	
20	20. Geier A, Kunert A, Albrecht G, Liebold A, Hoenicka M. Influence of	
21 23	Cannulation Site on Carotid Perfusion During Extracorporeal Membrane 22 Compliant Human Aortic Model. Ann Biomed Eng. 2017 Oct:45(10):2281–97.	Oxygenation in a
24		
25 2 of a pedia	1. Giridharan GA, Koenig SC, Kennington J, Sobieski MA, Chen J, Frankel SH, et 26 atric viscous impeller pump for Fontan	al. Performance evaluation
27 28	cavopulmonary assist. J Thorac Cardiovasc Surg. 2013 Jan 1;145(1):249-	57.
29 22 Cannula 1 1;39(2):1 32	 Gregory SD, Schummy E, Pearcy M, Pauls JP, Tansley G, Fraser JF, et al. A 30 Compl for Decreased Afterload Sensitivity of 31 Rotary Right Ventricular Assist Devices. Arti 02–9. 	iant, Banded Outflow f Organs. 2015 Feb
33 2. Regulatio	3. Horvath D, Byram N, Karimov JH, Kuban B, Sunagawa G, Golding LAR, et al. ³⁴ on and In Vivo Performance of the Cleveland Clinic	Mechanism of Self-
35	Continuous-Flow Total Artificial Heart. Artif Organs. 2017 May;41(5):41	1–7.
36	ForPeerReviewOnly	
37	24. König CS, Clark C. Flow mixing and fluid residence times in a model of a	L
38		
39 40	ventricular assist device. Med Eng Phys. 2001 Mar;23(2):99–110.	
41 2	5. Lim E, Dokos S, Salamonsen RF, Rosenfeldt FL, Ayre PJ, Lovell NH. Effect of 42	Parameter Variations on
the Hemo 44	odynamic Response Under Rotary Blood Pump 43 Assistance. Artif Organs. 2012 May 1	;36(5):E125–37.
45	26. Mansouri M, Gregory SD, Salamonsen RF, Lovell NH, Stevens MC, Paul	s JP, et
46	al. Preload-based Starling-like control of rotary blood pumps: An in-vitro 47 2017 Feb 17:12(2):e0172393.	evaluation. PLOS ONE.
48 49 2	7. Morsi YS, Sakhaeimanesh A, Clayton BR. Hydrodynamic evaluation of three 50 artifici	al aortic valve chambers.
Artii Org	ans. 2000 Jan;24(1):57–05.	
51 52 53 54 55 56 57		
58 59		

28.	28. Ng BC, Kleinheyer M, Smith PA, Timms D, Cohn WE, Lim E. Pulsatile		
operation of a continuous-flow right ventricular assist device (RVAD) to in			
vascular pulsatility. PLOS ONE. 2018 Apr 20;13(4):e0195975.			

Page 20 of 25

	 Ng BC, Smith PA, Nestler F, Timms D, Cohn WE, Lim E. Application of Adaptive Starling-Like Controller to Total Artificial Heart Using Dual Rotary Blood Pumps. Ann Biomed Eng. 2017 Mar 1;45(3):567–79.
	 30. Nishida M, Asztalos B, Yamane T, Masuzawa T, Tsukiya T, Endo S, et al. Flow visualization study to improve hemocompatibility of a centrifugal blood pump.
9	Artif Organs. 1999 Aug;23(8):697–703.
10	
11	31. Noor MR, Ho CH, Parker KH, Simon AR, Banner NR, Bowles CT.
12	Investigation of the Characteristics of HeartWare HVAD and Thoratec 13 HeartMate II
	Under Steady and Pulsatile Flow Conditions. Artif Organs. 2016
14	
15	Jun 1;40(6):549–60.
16	
17	32. Pauls JP, Stevens MC, Bartnikowski N, Fraser JF, Gregory SD, Tansley G. In
18	Vitro Comparison of Active and Passive Physiological Control Systems for
19	Biventricular Assist Devices, Ann Biomed Eng [Internet], 2016 [cited 2018 May
20	21]; Available from: https://link.springer.com/article/10.1007%2Fs10439-015-
21	1425-1
22	
23 of Ph Ann 2 26	33. Pauls JP, Stevens MC, Bartnikowski N, Fraser JF, Gregory SD, Tansley G. 24 Evaluation aysiological Control Systems for Rotary Left Ventricular Assist 25 Devices: an in vitro Study. Biomed Eng. 2016 Aug 1;44(8):2377–87.
- 4	
51 52	
52 53	
54	
55	
56	
57	

	Journal of Medical Engineering & Technology
27 Commo	34. Petrou A, Lee J, Dual S, Ochsner G, Meboldt M, Daners MS. Standardized 28
Compa 20	Vitro Study Artif Organs 2018 Mar 1:42(3):E29_42
30	$\sqrt{100}$ Study. Attr Organs. 2010 War 1,42(5).125–42.
31 32	35. Schumer E, Höffler K, Kuehn C, Slaughter M, Haverich A, Wiegmann B. In- vitro evaluation of limitations and possibilities for the future use of
33	intracorporeal gas exchangers placed in the upper lobe position. J Artif Organs.
34 35	2018 Mar 1;21(1):68–75.
36 38	36. Sénage T, Février D, Michel M, Pichot E, Duveau D, Tsui S, et al. A mock 37 circulatory system to assess the performance of continuous-flow left ventricular 39 assist devices
(LVAI	Os): does axial flow unload better than centrifugal LVAD? 40 ASAIO J Am Soc Artif Intern
Organs	1992. 2014 Apr;60(2):140–7.
41	27 Stanhans AF Stevens MC Gragory SD Klainhavar M Salamonsan PF In Vitro 42
Evalua Organs 45	tion of an Immediate Response Starling-Like Controller for Dual Rotary 44 Blood Pumps. Artif . 2017 Oct;41(10):911–22.
46 Valve (48	 38. Wu EL, Nestler F, Kleinheyer M, Stevens MC, Pauls JP, Fraser JF, et al. 47 Pulmonary Dpening With Two Rotary Left Ventricular Assist Devices for Biventricular Support. Artif Organs. 2018 Jan 1;42(1):31–40.
49 50	 Burton DA, Stokes K, Hall GM. Physiological effects of exercise. Contin Educ Anaesth Crit Care Pain. 2004 Dec 1;4(6):185–8.
	 Guyton AC, Hall JE. Textbook of Medical Physiology. 11 edition. Philadelphia, Pa: Saunders; 2005. 1152 p.
Page 21	of 25
1	
2	
3 4	41. Levick RJ. An Introduction to Cardiovascular Physiology 5E. 5 edition. London: CRC Press; 2009. 432 p.
5	
6	42. Korakianitis T, Shi Y. A concentrated parameter model for the human 7 cardiovascular system including
heart va	alve dynamics and atrioventricular interaction. Med Eng Phys. 2006 Sep;28(7):613–28.
9	
10 11	43. Kotchen IA. Developing Hypertension Guidelines: An Evolving Process. Am J Hypertens. 2014 Jun 1;27(6):765–72.
51 52	
53	
54	
56	
57	
58 59	
~~	

ForPeerReviewOnly

Page 22 of 25

Table 1. Operating parameters for the MCTR design		
Heart rate (bpm)	30~180	
Ventricular pressure (mmHg)	0~200	
Atrial pressure (mmHg)	0~50	
Arterial pressure (mmHg)	30~200	
Cardiac output (L/min)	2~18	

Table 2. Specifications of the linear motors

Force output (N)	put (N) Stroke (m)	Maximum velocity(m/s)	Maximum acceleration (m/s ²)
200	0.1	3	150

rPeerReviewOnly

Page 23 of 25

Journal of Medical Engineering & Technology

URL: http://mc.manuscriptcentral.com/tmet Email: John.Woodcock@CardiffandVale.wales.nhs.uk⁴¹

Page 24 of 25

(a) End systolic phase

(b) End diastolic phase

Fig. 4 Volume change of the left ventricle in a heart cycle measured with MRI

Fig. 5 Smoothed and approximated left ventricular volume changing

Page 25 of 25

Journal of Medical Engineering & Technology