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Abstract

The high velocity, variety and volume of data generation by today’s systems have necessitated Big Data
(BD) analytic techniques. This has penetrated a wide range of industries; BD as a notion has various types
and characteristics, and therefore a variety of analytic techniques would be required. The traditional analysis
methods are typically unable to analyse spatial-temporal BD. Interpolation is required to approximate the
values between the already exiting data points, yet since there exist both location and time dimensions, only
a multivariate interpolation would be appropriate. Nevertheless, existing software are unable to perform
such complex interpolations. To overcome this challenge, this paper presents a layer by layer interpolation
approach for spatial-temporal BD. Developing this layered structure provides the opportunity for working
with much smaller linear system of equations. Consequently, this structure increases the accuracy and stabil-
ity of numerical structure of the considered BD interpolation. To construct this layer by layer interpolation,
we have used the good properties of Radial Basis Functions (RBFs). The proposed new approach is applied
to numerical examples in spatial-temporal big data and the obtained results confirm the high accuracy and
low computational cost. Finally, our approach is applied to explore one of the air pollution indices, i.e.
daily PM2.5 concentration, based on different stations in the contiguous United States, and it is evaluated
by leave-one-out cross validation.
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1. Introduction

The amount of data in today’s systems, businesses and society in general is rapidly increasing, and
therefore the ability in analysing large datasets (also known as BD) and being able to make informed decisions
have become a key basis for competitions, underpinning new waves of productivity growth, innovation
and consumer surplus [1]. BD requires a collection of analysis techniques to turn raw data into relevant
information. Many of such are advanced mathematical, statistical and computational methods. BD are
generated in a wide range of industries,disciplines and applications including but not limited to business
transactions, weather data, sensor signals, search engine queries, multimedia materials and social network
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activities. Within the analysts’ community, it is widely accepted that BD can be conceptualized by the three
dimensions [2]: Volume, Velocity and Variety. Volume refers to the vast amounts of data being generated and
recorded, while velocity refers to the pace of data streaming, that is, the speed at which data are generated,
recorded and communicated. Also, variety refers to the heterogeneity of data sources and formats. Veracity
is a fourth V that exists in other sources [3]. Despite the fact that big data and large datasets are different
concepts, to most people big data implies an enormous volume of numbers, images, videos or texts. Some
recent developments and comprehensive studies in big data analysis can be seen in [4, 5, 6]. Spatial-temporal
big data refers to the type of BD that has Spatial (location) and temporal (Time) dimensions; instances
include data collected from different meteorology stations in different time zones. Although the spatial-
temporal big data is widely studied e.g. see [7, 8, 9, 10], one of the key discussions in big data analytics
has always been about spatial-temporal interpolation and its complexity [11]. One solution to overcome the
complexity of spatial-temporal interpolation is utilise a routine multivariate interpolation. In order to remove
dimentionality, radial basis functions (RBFs) are often used, nevertheless there are still two major challenges:
1) Although there are advantages in RBFs i.e. no need for a mesh or triangulation, simple implementation,
dimension independence, and no staircasing or polygonization for boundaries, typical interpolation methods
can not be applied on BD. Moreover, such calculations are impossible for spatial-temporal big data in the
usual way and common application software generate error messages. 2) Mainly linear system of equations
derived by RBF’s approximation with a high order of convergence [12, 13], are ill-conditioned and unstable
[14], and usually include a full interpolant matrix; in other words, this will make the situation even more
complex. Solving the system of equations derived by RBFs will have a very high computational cost. Besides,
this can lead to an intense instability within the considered challenge itself, as the condition number of the
equations system, which is the ill-conditioning criterion, will be very large.

To overcome these concerns and by creating a layered structure for spatial-temporal big data, the inter-
polation would become practically possible. Such a structure enables the analysis of a much smaller linear
system of equations in the presence of big data. In other words, our approach increases the accuracy and
stability of numerical structure of the considered spatial-temporal big data interpolation. Developing a layer
by layer interpolation for big data requires the existing information to be in a layered format, and this is
common in spatial-temporal data. Hence, the data of the first layer is fixed for the second layer and the
data from the first and second layers are fixed for the third layer and so on. Numerical results demonstrate
the capabilities and the improved stability and efficiency of the layer-by-layer interpolation approach for
the big dataset. The primary contribution of this paper is to present an efficient and flexible algorithm
for solving multilayer BD interpolation using a layer by layer interpolation method, and subsequently for
spatial-temporal big data. We apply the useful properties of RBFs, such as high order of convergence
and ease of implementation, for the layer by layer big data interpolation. More specifically, the method
is implemented using Gaussian RBF. This efficient algorithm results in a much smaller and well-condition
interpolation matrix.

The remaining sections of the paper are organized as follows: the notion of big data interpolation of
an unknown multivariate function is discussed in Section 2. In Section 3, we demonstrate the use of RBFs
for function approximation and we further discuss the circumstances in which they are used for multi-layer
interpolation of big data problems. Moreover, the methods of layer-by-layer interpolation approach for big
data set using RBFs is discussed in Section 3; this is followed by demonstrating its application for spatial-
temporal big data problem. The results of numerical experiments for spatial-temporal BD are presented in
Section 4. In Section 5, our approach is applied to explore one of the air pollution indices, i.e. daily PM2.5

concentration, based on data derived from different stations in the contiguous United States. Please note
that the numerical results are obtained using MATLAB/Python programming.

2. Multilayer Interpolation in the Big Data Problems

In this section, we initially define the multilayer big data interpolation challenge and we then consider
interpolation in spatial-temporal big data as a special case. In the classic form of interpolation, assume
that we have a big data set, {Xi}Ni=1 ⊂ Rd, and dependent data values, {fi}Ni=1 ⊂ R. For the desired basis
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functions (aka blending function) {φi}Ni=1, we would like to find an interpolant function of the following
form:

f̃(X) =

N∑
i=1

λiφi(X),

such that f̃(Xi) = fi is true, for every point in our data set. However, such an interpolation which is also
known as classic interpolation is impossible for big data, and due the complexity involved many commonly
used application software generate error messages. In practice, the considered big data set {Xi}Ni=1 may
have a layered structure. For instance, in a two layer structure, we have the following form:

{Xi}Ni=1 =
{(
X

(1)
i1
, X

(2)
i2

)}
i1 = 1, 2, . . . , N1,
i2 = 1, 2, . . . , N2,

where N = N1 ×N2. Therefore, we can derive the following information:(
X

(1)
i1
, X

(2)
i2
, fi1i2

)
;

i1 = 1, 2, . . . , N1.
i2 = 1, 2, . . . , N2.

The data in the first layer are
{
X

(1)
i1

}N1

i1=1
, which belong to Rd1 and the second layer information consist of{

X
(2)
i2

}N2

i2=1
, belong to Rd2 . We would like to find an interpolant function,

f̃(X) =

N1∑
i1=1

N2∑
i2=1

λi1,i2φi1,i2(X),

such that f̃(Xi) = f̃(X
(1)
i1
, X

(2)
i2

) = fi1i2 , for i1 = 1, 2, . . . , N1 and i2 = 1, 2, . . . , N2, and also i = 1, 2, . . . , N1×
N2. In the general form of multilayer big data interpolation in M-layers f is a function of independent
variables X(1) to X(M), is in the direction of each independent variable, and the scattered big data is
selected with appropriate distribution. In fact, we attempt to model and fit the quantity f as a function of
the independent variables X(1) to X(M). Therefore, we will have the following information:

(
X

(1)
i1
, X

(2)
i2
, . . . , X

(M)
iM

, fi1i2...iM

)
;

i1 = 1, 2, . . . , N1

i2 = 1, 2, . . . , N2

...
iM = 1, 2, . . . , NM

(1)

which
{
X

(1)
i1

}N1

i1=1
∈ Rd1 ,

{
X

(2)
i2

}N2

i2=1
∈ Rd2 , . . . ,

{
X

(M)
iM

}NM

iM=1
∈ RdM . We would like to find the interpolant

function

f̃(X) =

N1∑
i1=1

N2∑
i2=1

. . .

NM∑
iM=1

λi1,i2,...,iMφi1,i2,...,iM (X),

such that
f̃(Xi) = f̃(X

(1)
i1
, . . . , X

(M)
iM

) = fi1...iM , (2)

for i1 = 1, 2, . . . , N1, i2 = 1, 2, . . . , N2, by continuing this process until iM = 1, 2, . . . , NM , and also i =
1, 2, . . . , N1 × N2 × . . . × NM . The big data on the first layer have been fixed with respect to the data on

the second layer, which means that for any element in X
(2)
i2

, such as X
(2)
K where K ∈ {1, 2, . . . , N2} and for

i1 = 1, 2, . . . , N1, we have the following information:(
X

(1)
i1
, X

(2)
K , fi1K

)
, i1 = 1, 2, . . . , N1.
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In other layers, the same approach could be repeated. For instance, the big data on the first and the second

layers have been fixed with respect to the third layer. Therefore, for any element in X
(3)
i3

, such as X
(3)
S

where S ∈ {1, 2, . . . , N3} and for each X
(1)
i1

, i1 = 1, 2, . . . , N1, and for each X
(2)
i2

, i2 = 1, 2, . . . , N2, we have
the following information:(

X
(1)
i1
, X

(2)
i2
, X

(3)
S , fi1i2S

)
, i1 = 1, 2, . . . , N1, i2 = 1, 2, . . . , N2.

As discussed, one of the aims in this paper is to construct layer by layer interpolation for big data based on
RBFs, and to apply the useful properties of the RBFs. Further information on RBFs are provided in the
Appendix A.

In the following paragraphs, we have tried to apply the useful properties introduced in the RBFs, es-
pecially Gaussian RBF, for multilayer interpolation in the presence of big data. For this purpose, assume
that f is a function of independent variables X(1) to X(M), is in the direction of each independent variable,
and scattered data are selected with appropriate distribution. Sampling of f in these situations has been
recorded, and we have tried to model and fit the quantity f as a function of the independent variables
X(1) to X(M) as M layers. In other words, we have big data like the one in Equation (1), and we intend
to construct the interpolant function f based on the given big data using RBFs. Considering what was
discussed earlier, interpolation based on RBFs for given data in (1) can be constructed as follow:

f̃(X(1), . . . , X(M)) =

N1∑
i1=1

. . .

NM∑
iM=1

λi1,...,iMφi1,...,iM (X(1), . . . , X(M)), (3)

which φi1,i2,...,iM (X(1), X(2), . . . , X(M)) is the interested RBF with center (Xi1
(1), Xi2

(2) . . . , XiM
(M)), i.e.

φi1,i2,...,iM (X(1), . . . , X(M)) = ϕ(||(X(1), . . . , X(M))− (Xi1
(1), . . . , XiM

(M))||2).

The interpolant (3) in accordance with the interpolation conditions (2) leads to a linear system of equations
by N1 × N2 × . . . × NM equations and N1 × N2 × . . . × NM unknown values. For the reasons discussed
in previous sections, solving this linear system of equations which is derived from RBFs is impossible for
big data. The reason is that the linear system of equations is ill-conditioned and unstable, and includes a
full and complex interpolation matrix. Furthermore, to solve such system of equations derived by RBFs
for big data, we will face a very high computational cost and consequently application software are not
capable of computing it without issuing any error messages. Moreover, this can lead to an intense instability
within the big data problem under examination. In other words, the condition number of the system of
equations, which is an indicator for ill-condition measurement, will be very large. For instance, if we solve
the system of equations (2) by the lower-upper (LU) decomposition, the computational cost is proportional
to N3

1 × N3
2 × . . . × N3

M , i.e. O(N3
1 × N3

2 × . . . × N3
M ). Similarly, in case of N1, N2, . . .NM , we will

encounter a very large amount of computational resource requirements, and the condition number of the
system of equations, which is a benchmark for ill-conditioned situation, will be very large. Computing such
an operation is practically impossible for big data.

Layer by layer interpolation structure provides the ability for handling a much smaller system of linear
equations in big data. It also increases the accuracy and stability of the numerical structure.

As an application of the multilayer interpolation in the spatial-temporal big data, daily PM2.5 concen-
tration can be referred to as a function of location and time variables. As a case study, this air pollution
index has been a very controversial issue e.g. see [15] and [16]. In fact, information from meteorology
stations which have been collected at different times can be considered as a big dataset for multilayer
spatial-temporal interpolation. The information can be presented as (Xi1 , ti2 , PMi1i2) for i1 = 1, 2, . . . , N1,
and i2 = 1, 2, . . . , N2 where PMi1i2 is the daily PM2.5 concentration in location Xi1 , and time ti2 , as the
first and the second layer, respectively. A distribution of meteorological stations {Xi}Ni=1, is the first layer,
and contains information on R3(/R2). Besides, it includes distribution of different times {ti2}

N2
i2=1 in R as

the second layer, i.e. (ti2 ∈ R, Xi1 ∈ R3). We can now model the daily PM2.5 concentration quantity as a
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function of location and time. For this purpose, we consider the interpolant function as:

f̃(X, t) =

N1∑
i1=1

N2∑
i2=1

λi1i2φi1,i2(X, t),

where φi1i2(X, t) is the interested RBF with center (Xi1 , ti2), and is:

φi1,i2(X, t) = ϕ(||(X, t)− (Xi1 , ti2)||2).

Also note that

||(X, t)− (Xi1 , ti2)||2 =

√
(x− xi1)

2
+ (y − yi1)

2
+ (z − zi1)

2
+ (t− ti2)

2
,

where X = (x, y, z), and Xi = (xi, yi, zi) for i1 = 1, 2, . . . , N1. Based on the interpolation conditions, we
have

f̃(Xi1 , ti2) = PMi1i2
i1=1,2, ... ,N1.
i2=1,2, ...,N2.

This leads to the linear system of equations by N1 ×N2 equations and N1 ×N2 unknown values. Using LU
decomposition to solve such system of equations, the computational cost is proportional to N3

1 × N3
2 , i.e.

O(N3
1 ×N3

2 ). For instance, if we have information of 1000 of times, in the second layer, and 1000 stations, in
the first layer, we would be required to solve a system of 1000000 equations, and the required computational
cost is O((106)3); this equals to O(1018). Due to such resource intensiveness, it would be computationally
infeasible, as discussed earlier.

In the next section, we provide a layer by layer structure and an efficient algorithm for big data inter-
polation which utilizes the available suitable capabilities of RBFs. In fact, with a significant decrease in
the size of the system of linear equations for big data, we are able to obtain results with high accuracy and
consistent stability using less computational cost.

3. Layer by layer interpolation approach in the Big data problems

As discussed in the previous section, if the dependent quantity in the interpolation problem of big data is
a function of independent variables and in the direction of each of them, we have a distribution of scattered
data, and therefore we can approach it as a multilayer interpolation problem in a big dataset. Although, the
RBFs are the best tool for interpolation of high-dimensional scattered data, interpolation by RBFs requires
solving a very large system of linear equations with full interpolant matrix with a large condition number.
Computing such calculations for big data is practically impossible. To tackle these challenges, we present
an efficient and flexible algorithm to solve multilayer interpolation problem in big data using a layer by
layer structure. We also apply the useful properties of RBFs in the layer by layer approach. The method
is fitted to scattered multilayer big data by Gaussian RBF considering its high order of convergence. This
efficient algorithm results in a much smaller and well-conditioned interpolation matrix in the big dataset,
which despite the high order of convergence obtained by RBFs, performing calculations would be practically
viable. The general structure of this approach is explained in the following paragraphs.

Suppose that we have a big dataset of interpolation in M layers, such as those presented in (1). From

X1
(M) to XNM

(M), we consider NM alternative interpolation subproblems for big dataset as

(Xi1
(1), Xi2

(2) . . . , XiM−1

(M−1), X
(M)
1 , fi1,i2,...,iM−1,1),

(Xi1
(1), Xi2

(2) . . . , XiM−1

(M−1), X
(M)
2 , fi1,i2,...,iM−1,2),

...

(Xi1
(1), Xi2

(2) . . . , XiM−1

(M−1), X
(M)
NM

, fi1,i2,...,iM−1,NM
),
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for i1 = 1, 2, . . . , N1, i2 = 1, 2, . . . , N2, and by continuing this process until iM−1 = 1, 2, . . . , NM−1. For NM
interpolation subproblems above,For NM we consider the following interpolants, respectively:

f̃
X

(M)
1

(X(1), . . . , X(M−1)) =
N1∑
i1=1

. . .
NM−1∑
iM−1=1

λi1,...,iM−1
φi1,...,iM−1

(X(1), . . . , X(M−1), X
(M)
1 ),

f̃
X

(M)
2

(X(1), . . . , X(M−1)) =
N1∑
i1=1

. . .
NM−1∑
iM−1=1

λi1,...,iM−1
φi1,...,iM−1

(X(1), . . . , X(M−1), X
(M)
2 ),

...

f̃
X

(M)
NM

(X(1), . . . , X(M−1)) =
N1∑
i1=1

. . .
NM−1∑
iM−1=1

λi1,...,iM−1
φi1,...,iM−1

(X(1), . . . , X(M−1), X
(M)
NM

).

In this case, we shall solve NM alternative interpolation subproblems for our considered big dataset. Each
one leads to a linear system of equations by N1 ×N2 × . . . ×NM−1 equations and N1 ×N2 × . . . ×NM−1
unknown values. On the other hand, the computational cost to solve each one of such system of equations
by LU decomposition is proportional to N3

1 × N3
2 × . . . × N3

M−1, i.e. O(N3
1 × N3

2 × . . . × N3
M−1). This

is not practically feasible due to its high computational cost. Within our approach, instead of solving the
linear system of equations by N1 × N2 × . . . × NM equations and N1 × N2 × . . . × NM unknown values,
we solve NM linear systems of equations by N1 ×N2 × . . . ×NM−1 equations and N1 ×N2 × . . . ×NM−1
unknown values. Ultimately, this alternative structure requires the computational cost to be proportional
to NM ×O(N3

1 ×N3
2 × . . .×N3

M−1). Since in all of the NM interpolation subproblems for the considered big

dataset, we deal with the same set of data positions i.e. (Xi1
(1), Xi2

(2) . . . , XiM−1

(M−1)), for i1 = 1, 2, . . . , N1,
. . . , iM−1 = 1, 2, . . . , NM−1, and due to the radial property of RBFs (that is the interpolation matrix only
related to the distance between the interpolation points), we would have the same interpolation matrix
in each of the NM interpolation subproblems. Therefore, instead of solving the system of equations NM
times with the LU decomposition method, we obtain the LU decomposition of the interpolation matrix
only once; and this will be similarly used in all systems. In fact, the computational cost is proportional to
O(N3

1 × N3
2 × . . . × N3

M−1), as opposed to being NM × O(N3
1 × N3

2 × . . . × N3
M−1); This will practically

enable the computation. As already discussed, instead of solving a very large linear system of equations
which is not viable for big data, we will deal with a number of smaller systems. Moreover, based on the
useful properties of RBFs, we apply the LU decomposition for one small interpolation matrix. Nevertheless,
the resulting interpolants are not global, and we have access to a corresponding interpolant to each data
item in the last layer. In order to express the obtained interpolants in global form (similar to what exists in
the classic interpolation by RBFs), solving the following interpolation problem at the end of the process is
required:

(Xi
(M), f̃

X
(M)
i

(X(1), X(2), . . . , X(M−1))), i = 1, 2, . . . , NM ,

in which corresponding interpolant is constructed as:

f̃(X(1), X(2), . . . , X(M)) =

NM∑
j=1

λjφj(X
(M)),

and φj(X
(M)) is defined as:

φj(X
(M)) = ϕ(||X(M) −Xj

(M))||2).

These lead to the solution of the following linear system of equations:

NM∑
j=1

λjφj(Xi
(M)) = f̃Xi

(M)(X(1), X(2), . . . , X(M−1)), i = 1, . . . , NM .

Solving it by LU decomposition results in a computational cost proportional to O(N3
M ). Hence, the final

computational cost equals to O(N3
1 × N3

2 × . . . × N3
M−1) + O(N3

M ). Finally, due to dominance of the first
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term that is obvious for big data, the computational cost equals to O(N3
1 × N3

2 × . . . × N3
M−1), while the

computational cost of the resulted classic interpolation by RBFs is proportional to O(N3
1 ×N3

2 × . . .×N3
M ),

and therefore computation will be practically impossible in the big data context.
Continuity of the reduction process is also possible in other layers, i.e. if we require the computational

cost to be proportional to O(N3
1 ×N3

2 × . . .×N3
M−2), it is sufficient to use the above-mentioned process in

the last layer and the layer prior to it. In the following, we will discuss this in more details.
At this stage, assume that we have the M layers of big data as defined in (1), for (XM−1

1 , XM
1 ) to

(XM−1
NM−1

, XM
NM−1

); moreover, we consider NM ×NM−1 alternative interpolation subproblems as:

(Xi1
(1), Xi2

(2) . . . , XiM−2

(M−1), X
(M−1)
1 , X

(M)
1 , fi1,i2,...,iM−2,1,1)

...

(Xi1
(1), Xi2

(2) . . . , XiM−2

(M−1), X
(M−1)
NM−1

, X
(M)
NM

, fi1,i2,...,iM−2,NM−1
,NM

),

(4)

for i1 = 1, 2, . . . , N1, . . . , iM−2 = 1, 2, . . . , NM−2. We also consider the NM ×NM−1 interpolation subprob-
lems in (4), and the following interpolants, respectively:

f̃
X

(M−1)
1 ,X

(M)
1

(X(1), . . . , X(M−2)) =
N1∑
i1=1

. . .
NM−2∑
iM−2=1

λi1,...,iM−2
φi1,...,iM−2

(X(1), . . . , X(M−2), X
(M−1)
1 , X

(M)
1 ),

...

f̃
X

(M−1)
NM−1

,X
(M)
NM

(X(1), . . . , X(M−2)) =
N1∑
i1=1

. . .
NM−2∑
iM−2=1

λi1,...,iM−2
φi1,...,iM−2

(X(1), . . . , X(M−2), X
(M−1)
NM−1

, X
(M)
NM

).

We are then required to solve NM−1×NM interpolation subproblems for our big dataset. Each one leads to
a linear system of equations by N1×N2× . . .×NM−2 equations and N1×N2× . . .×NM−2 unknown values.
Using the LU decomposition to solve such system of equations, the computational cost is proportional to
N3

1 × N3
2 × . . . × N3

M−2, i.e. O(N3
1 × N3

2 × . . . × N3
M−2). In fact, instead of solving the linear system of

equations consist of N1 ×N2 × . . .×NM equations and N1 ×N2 × . . .×NM unknown values, we would be
required to solve NM−1 ×NM linear systems of equations system of N1 ×N2 × . . .×NM−2 equations and
N1×N2× . . .×NM−2 unknown values. This is also required for the computational costs to be proportional
to NM−1 × NM × O(N1 × N2 × . . . × NM−2). Since in all NM−1 × NM interpolation problems in (4),

we deal with the same set of data positions i.e. (Xi1
(1), Xi2

(2) . . . , XiM−2

(M−2)), for i1 = 1, 2, . . . , N1, . . . ,
iM−2 = 1, 2, . . . , NM−2, and due to the radial property of RBFs (that the distance between the interpolation
points affects constructing the interpolation matrix), we will only deal with just one analogue matrix in each
of the NM−1 ×NM interpolation problems. Therefore, instead of solving the equations NM−1 ×NM times
with the LU decomposition method, we obtain the LU decomposition of interpolation matrix only once
and use it in all systems. The computational cost instead of NM−1 ×NM × O(N3

1 ×N3
2 × . . . ×N3

M−1) is
proportional to O(N3

1 ×N3
2 × . . .×N3

M−2). This results in significant reductions in the computational cost
which is very high for the big dataset. In general, instead of solving a very large linear system of equations,
we deal with a number of smaller linear system of equations. Furthermore, based on the above-mentioned
properties of RBFs and the fixed positions of the interpolation points, we require the LU decomposition of
only one small interpolation matrix rather than a very large original interpolation matrix. The resulting

interpolants are in the layer form, and for each of the data items from (X
(M−1)
1 , X

(M)
1 ) to (X

(M−1)
NM−1

, X
(M)
NM

),
we access the relevant interpolation. If we wish to express the obtained interpolation seamlessly, it would
be sufficient to solve the following interpolation problem:

(X
(M−1)
i , X

(M)
j , f̃

X
(M−1)
i ,X

(M)
j

(X(1), X(2), . . . , X(M−2)),

for i = 1, 2, . . . , NM−1 and j = 1, 2, . . . , NM .
Moreover, the corresponded interpolation is constructed as:

f̃(X(1), X(2), . . . , X(M)) =

NM−1∑
i=1

NM∑
j=1

cijφij(X
(M−1), X(M)),
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where φij(X
(M−1), X(M)) is defined as:

φij(X
(M−1), X(M)) = ϕ(||(X(M−1) −X(M))− (Xi

(M−1) −Xj
(M))||2),

and the interpolation problem assists with solving the following linear equations:

NM−1∑
s=1

NM∑
k=1

cskφsk(Xi
(M−1), Xj

(M)) = f̃
X

(M−1)
i

,X
(M)
j

(X(1), X(2), . . . , X(M−2)),

for i = 1, 2, . . . , NM−1 and j = 1, 2, . . . , NM . Furthermore the computational cost is proportional to
O(N3

M−1N
3
M ). That is, the final computational cost equals to

O(N3
1 ×N3

2 × . . .×N3
M−2) +O(N3

M−1N
3
M ). (5)

Finally, with regards to the dominance, the computational cost equals to O(N3
1 ×N3

2 × . . .×N3
M−2), while

the computational cost of the resulted classic method is proportional to O(N3
1 ×N3

2 × . . .×N3
M ). The above

structure can be continued and can be extended to further one or two layers. In the presence of big data,
this structure will increase the efficiency of the method, as the first sentence in (5) is dominant to the second
sentence in (5). For a better understanding of this topic, we have provided the following example.

Suppose that the number of layers in the interpolation problem is 4 (M = 4), and the number of data
items in each layer is 100000 (N1 = . . . = N4 = 100000). Then, the computational cost of the above
structure (by considering the last two layers) is proportional to O((105)3 × (105)3), i.e. O(1030). While
in the classical structure of the RBF interpolation the computational cost is proportional to O((105)3 ×
(105)3 × (105)3 × (105)3), i.e. O(1060). This represents a significant advantage of the proposed algorithm
compared to classical ones.

In the next section, using numerical examples, we demonstrate that the algorithm presented in this
article can be used for big data, especially spatial-temporal BD.

4. Numerical results in spatial-temporal big data

The results presented in the tables have been obtained in MATLAB/Python on a laptop with a 1.6 GHz
Intel Core i7 processor. In order to elaborate on the advantages of the layer by layer interpolation method,
numerical results are presented for a big data interpolation problem in two layers which fits well to the
spatial-temporal big dataset. Assume that our considered dataset is:

(Xi, tj , fij)
i=1,2, ... ,N ,
j=1,2, ...,M, (6)

such that Xi ∈ R2 or Xi ∈ R3 i.e. the dataset {Xi}Ni=1 is reported in two or three dimensions, respectively.
In fact, we intend to implement the layer by layer interpolation method under the influence of important
advantages of Gaussian RBFs. Given the presence of the shape parameter in the Gaussian RBF that is
used in the presented numerical results, its calculation should be taken into account, since the accuracy and
stability of the numerical results is strongly influenced by choosing a different shape parameter. The optimal
shape parameter obtained using the trial and error method can be the most optimal choice [17]. Reporting
small CPU time can well present the high capabilities of the new method in terms of computational cost for
our considered spatial-temporal big dataset. Moreover, the calculated condition number (Cond) indicates
that the new method is very effective in reducing the system of equations that is ill-conditioned. The target
of our numerical analysis is thus a two-fold: on one hand, analyzing the efficiency expressed in terms of CPU
times; and on the other hand, verifying its accuracy and stability in terms of root mean square (RMS) errors
and condition numbers. To illustrate the claims presented above, consider the following numerical examples.

Example 1. We consider layer by layer big data interpolation in two layers, spatial-temporal big data,
as defined in (6) such that Xi ∈ R2. Layer by layer interpolation with different number of data points in
the second layer, M = 1000, 10000, 100000, for the following test function:

f(x, y, t) = t2x2 + y2 − 2xyt, 0 ≤ x, y, t ≤ 1,

8



such that the generated available data using uniform points distribution in each layer are selected. Numer-
ical results for N = 64, 81, 100 points which is the number of points in the first layer are implemented. For
instance, for M = 100000 and N = 100, we have 107 data points which in fact demonstrates a big data
set. Our results, in terms of root mean square (RMS) error, computational time in minutes (Time) and
condition number (Cond) are presented in Table 1. These results demonstrate the high capabilities of the
layer by layer approach while the classic method is no longer able to perform such calculations by which
the system generates the ”Out of memory ” message when applied in MATLAB/Python programs. This
demonstrates the inability and insufficiency of classic methods for calculating spatial-temporal big data sets.

Layer by Layer

M N c RMS Time Cond

64 0.1 3.08× 10−3 0.16 2.28× 107

1000 81 0.2 3.11× 10−5 0.27 2.61× 1015

100 0.5 1.70× 10−6 0.39 1.24× 1019

64 0.1 2.16× 10−1 0.31 4× 104

10000 81 0.01 2.37× 10−4 0.57 2.3× 1011

100 0.01 7.80× 10−5 0.66 2.79× 1017

64 0.1 2.01× 10−1 0.71 4× 102

100000 81 0.01 2.89× 10−4 0.93 2.30× 1011

100 0.1 5.6× 10−6 1.24 4.10× 1017

Table 1: Layer by layer interpolation for spatial-temporal big data, for different M and uniform points distribution
(N ) based on the root mean square error (RMSE), CPU time (in minutes) and condition number (Cond) when
Xi ∈ R2.

Example 2. In this example, we similarly consider the layer by layer big data interpolation in two layers,
spatial-temporal big dat (when Xi ∈ R3. Layer by layer interpolation for different number of points in the
first) and second layer for spatial-temporal big data is followed. Only in this example, the test function has
been changed to the Sinc function. This function is defined as:

f(x, y, z, t) = sinc(x)sinc(y)sinc(z)sinc(t), 0 ≤ x, y, z ≤ 1, 0 ≤ t ≤ 1,

such that

sinc(x) =

{
1 x = 0,
sin(πx)
πx x 6= 0.

Note that the generated available data using uniform points distribution in each layer are selected for
N = 125, 216, 343, 512 points in the first layer and M = “1000′′, “10000′′, “100000′′ in the second layer as
presented in Table 2. As presented in Table 2, the output demonstrate similar results as previously stated
in Example 1. Moreover, we can also consider another different points distribution such as Chebyshev and
Halton points. As these distributions will not have much effects on the numerical results, the layer by layer
big data interpolation will also work well with these functions. In fact, the same results are taken into
account with another points distribution.

5. Application

In this section, the proposed layer by layer interpolation method is applied to determine the daily PM2.5

concentrations as a spatial-temporal big data based on different stations. The data are obtained from U.S.
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Layer by Layer

M N c RMS Time Cond

125 2 3.05× 10−4 0.18 6.2× 106

1000 216 0.5 1.63× 10−5 0.33 3.01× 1018

343 0.6 4.6× 10−7 0.56 6.3× 1019

512 0.85 1.1× 10−8 0.91 9.98× 1019

125 1.5 2.3× 10−4 0.37 7.7× 107

10000 216 0.45 1.2× 10−5 0.58 3.4× 1017

343 0.5 1.6× 10−6 0.96 8.4× 1018

512 0.65 2.5× 10−7 1.22 9.1× 1019

125 1.5 3.01× 10−3 0.57 1.08× 104

100000 216 1.5 1.72× 10−4 1.38 7.79× 107

343 0.5 1.21× 10−5 1.78 3.01× 1018

512 0.65 1.12× 10−7 2.11 1.12× 1019

Table 2: Layer by layer interpolation, for different M, Sinc test function and uniform points distribution (N ) based
on root mean square error (RMSE), CPU time (in minutes) and condition number (Cond) when Xi ∈ R3.

Environmental Protection Agency (EPA). Particulate Matter (PM) is the term used to describe condensed
phase (solid or liquid) particles suspended in the atmosphere. A growing body of research have focused
towards the smaller particles, in particular PM less than 2.5 µm in diameter, as this has been a metric more
closely associated with adverse health effects [11]. PM2.5 is the mass concentration of airborne particles
with an aerodynamic diameter of less than 2.5 µm, expressed in µg/m3, where the volume of air is its
volume at ambient conditions. The size of 2.5 µm was chosen because of its significance for the penetration
of human lungs. This paper focuses on layer by layer interpolation approach for daily PM2.5 concentrations
as a spatial-temporal big data.

To assess the amount of air pollution over the course of a year in the contiguous United States, daily
PM2.5 concentration data is used as the experiment of this paper. Our dataset stores daily PM2.5 measure-
ments that were obtained from U.S. Environmental Protection Agency (EPA). It contains 146,125 PM2.5

concentration measurements collected at 955 monitoring sites on 365 (i.e., M=365) days in 2012. This
dataset has the following attributes: day, x, y, and PM2.5 concentration measurement, where x and y
(Xi ∈ R2 = (xi, yi)) are the longitude and latitude coordinates of the monitoring sites. The locations of the
monitoring sites are illustrated as red dots in Figure 1.

It is noteworthy that we have computed a real world problem and unlike the examples given in the
previous section, we have no test function. Therefore, we use leave-one-out cross validation [11] to evaluate
the layer by layer interpolation for our spatial-temporal big data. In fact, by performing layer by layer
interpolation method on this big data set and putting some points as the evaluation points, we calculated
RMS error for the layer by layer method as 1.82×10−2, while the traditional methods failed computationally.
The computational time required for the layer by layer interpolation method was 2.17 minutes. Furthermore,
the shape parameter c was selected here 0.1.

10



Figure 1: 955 monitoring sites with PM2.5 concentration measurements [11].

6. Conclusion

In this paper, we addressed the computational burden of the multivariate interpolation problem using
the standard RBFs for the spatial-temporal big data. However, the standard RBFs is very demanding for
the multivariate interpolation of the usual datasets and can be implemented in the common software, but
the computational cost of using this model for the big data is considerably high, and one would receive a
’low memory’ message whilst attempting to implement it using the common software. In this paper, we
proposed a layer-by-layer interpolation approach for spatial-temporal big data which is computationally
more efficient and the data is effectively handled in a multi-layered process. As discussed above, by creating
a layer structure, the computational cost was reduced, and the condition number was decreased. In other
words, if the number of layers required for the interpolation problem is M , and the number of data points
in the ith layer is Ni, the computational cost of the interpolation problem using the proposed method (i.e.,
layer-by-layer structure) is proportional to O(N3

M−1×N3
M ), while the computational cost of addressing this

problem using the classical structure of RBF is proportional to O(N3
1 × N3

2 × . . . × N3
M−1 × N3

M ). This
represents a significant advantage of the proposed algorithm compared to classical one.

The proposed structure would also result in computing a much smaller linear system of equations which
would make processing the big spatial-temporal data more tractable. Using the layer by layer RBF approach,
based on the last layer and the layer before it, we only need to solve NM−1 × NM interpolation problems
for the big dataset where each one leads to a linear system consists of N1×N2× . . .×NM−2 equations with
N1 ×N2 × . . .×NM−2 unknown values. As a result, the computational cost of solving the linear system of
equations of size N1×N2× . . .×NM with N1×N2× . . .×NM unknown values will be reduced to solving the
linear system of N1 ×N2 × . . .×NM−2 equations with N1 ×N2 × . . .×NM−2 unknown values. It will thus
increase the accuracy and stability of the numerical computation of the interpolation problem of the big
data. Indeed, the proposed method ensures the existence and uniqueness of the solution for the multilayer
interpolation of the big data problem.
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Appendix A: Radial basis Function

In the interpolation of the scattered data using RBFs ([18]) the approximation of a function u(X) at the
centers χ = {X1, . . . , XN}, may be written as a linear combination of N RBFs; usually it takes the following
form:

su,χ(X) =

N∑
j=1

αjφ(X −Xj) +

Q∑
k=1

βkpk(X). (7)
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Here, Q denotes the dimension of the polynomial space πm−1(Rd) , p1, . . . , pQ denote a basis of πm−1(Rd),
X = (x1, x2, . . . , xd), d is the dimension of the problem, α’s and β’s are coefficients to be determined, φ is
the RBF. Some well-known RBFs are listed in Table 3. To cope with additional degrees of freedom, the
interpolation conditions

su,χ(Xj) = u(Xj), 1 ≤ j ≤ N, (8)

are completed by the additional conditions

N∑
j=1

αjpk(Xj) = 0, 1 ≤ k ≤ Q. (9)

Solvability of the system is therefore equivalent to solvability of the system(
Aφ,χ P
PT 0

)(
α
β

)
=

(
u |χ

0

)
, (10)

where Aφ,χ = (φ(Xj − Xk)) ∈ RN×N and P = (pk(Xj)) ∈ RN×Q. This last system is obviously solvable
if the coefficient matrix on the left-hand side is invertible [19]. Equation (7) can be written without the

additional polynomial
∑Q
k=1 βkpk(x). In that case, φ must be unconditionally positive definite to guarantee

the solvability of the resulting system (e.g. Gaussian or inverse multiquadrics). However
∑Q
k=1 βkpk(X) is

required when φ is conditionally positive definite, i.e. when φ has a polynomial growth towards infinity. For
instance, suppose φ is thin plate splines. It must be noted that radial functions that are conditionally positive
definite of order one (such as the multiquadric) can be used without appending the constant term to solve
the scattered data interpolation problem. Moreover, since positive definite or conditionally positive definite
functions are usually globally supported, the interpolation matrix is full and may be very ill-conditioned
for some RBFs. Although to improve the conditioning of the system of collocation equations compactly
supported RBFs (CSRBFs) have been applied, but the CSRBFs are vanish beyond a user defined threshold
distance σ. Therefore, only the entries in the collocation matrix corresponding to collocation nodes lying
closer than σ to a given CSRBF center are nonzero, leading to a sparse matrix. In fact, the interest in
CSRBFs waned as it became evident that, in order to obtain a good accuracy, the overlap distance σ should
cover most nodes in the point set, thus resulting in a populated matrix again [20].

Table 3: Some well-known functions that generate RBFs

Name of function Definition

Multiquadrics (MQ) φ (x) =
√
‖x‖22 + c2

Inverse multiquadrics (IMQ) φ (x) =

(√
‖x‖22 + c2

)−1
Gaussian (GA) φ (x) = exp

(
−c‖x‖22

)
Thin plate splines (TPS) φ (x) =(−1)

k+1‖x‖2k2 log ‖x‖2
Conical splines φ (x) =‖x‖2k+1

2

In the present paper, we have used the Gaussian RBFs in our method. The reason is that the Gaussian
RBF interpolant has been shown to exhibit “super-spectral” convergence. The accuracy and the stability
for the infinitely smooth φ(x) depend on the number of data points and the value of the shape parameter c
[21]. For a fixed c, as the number of data points increase, the RBF interpolation converges to the underlying
(sufficiently smooth) function being interpolated at a spectral rate, i.e. O(e−

const.
h ) where h is a measure of

the “typical” distance between data points [22, 23, 24]. In certain special cases, such as a Gaussian RBF,

the RBF interpolant has been shown to exhibit “super-spectral” convergence, i.e. O(e−
const.

h2 ) [23, 24, 25].
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In either case, the value of const. in the estimates is effected by the value of c. For a fixed number of data
points, Madych [26] has shown that the accuracy of RBF interpolant can often be significantly improved by
decreasing the value of c. However, decreasing c or increasing the number of data points has a severe effect
on the stability of the linear system (10). For a fixed c, the condition number of the matrix in the linear
system grows exponentially as the number of data points is increased. For a fixed number of data points,
as the shape parameter becomes small the condition number of the linear system grows [27].
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