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Asset Allocation with Multiple Analysts’ Views: A Robust Approach  

 

Abstract 

Retail investors often make decisions based on professional analysts’ investment recommendations. 

Although these recommendations contain up-to-date financial information, they are usually expressed 

in sophisticated but vague forms. In addition, the quality differs from analyst to analyst and 

recommendations may even be mutually conflicting. This paper addresses these issues by extending the 

Black-Litterman (BL) method, and developing a multi-analyst portfolio selection method, balanced 

against any over-optimistic forecasts. Our methods accommodate analysts’ ambiguous investment 

recommendations and the heterogeneity of data from disparate sources. We prove the validity of our 

model, using an empirical analysis of around 1000 daily financial newsletters collected from two top-

10 Taiwanese brokerage firms over a two-year period. We conclude that analysts’ views contribute to 

the investment allocation process and enhance the portfolio performance. We confirm that the degree 

of investors’ confidence in these views influences the portfolio outcome, thus extending the idea of the 

BL model and improving the practicality of robust optimisation. 

Keywords: analysts’ recommendation; Black-Litterman model; fuzzy logic; portfolio selection; robust 

optimisation.  

JEL classification: G11
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1. Introduction 

Traditional portfolio selection theory (Markowitz, 1952) maximises anticipated returns based on a 

given level of risk. Input parameters (anticipated return vector and corresponding (co-)variances 

(Markowitz, 1952)) are computed using only market returns data, meaning that important financial 

information updates e.g. firm-specific earnings announcements, cannot be used to support portfolio 

selection. To improve this, the BL method (Black and Litterman, 1991; Black and Litterman, 1992) 

consists of both the market model and the view model. The BL’s market model specifies a normal 

distribution for the stock return vector with a prior distribution of the expected asset returns elicited from 

the equilibrium returns (Meucci, 2010; Schöttle et al., 2010). The BL’s view model includes a fund 

manager’s current views on financial assets. The BL method has been extended to investigate a wide 

range of asset allocation problems. For example, Bertsimas et al. (2012) consider inverse optimisation 

for the BL method. Fernandes et al. (2012) combine the re-sampling method with the BL method. 

O’Toole (2017) investigates an alternative derivation of the BL model that offers an efficient approach 

to target active risk, while van der Schans and Steehouwer (2017) propose a time-dependent BL approach. 

 

The asset allocation methods are commonly used, but their inputs e.g. return in the mean-variance 

model and fund manager’s view in the BL method, are subject to uncertainty and ambiguity (Kaya, 2017; 

O’Toole, 2017; de Jong, 2018). To reduce their impact, the input parameters must be as accurate as 

possible. This paper discusses retail investors’ portfolio selection with multiple professional analysts’ 

recommendations, in three aspects. First, although financial analysts’ investment recommendations 

contain up-to-date information, they are usually vague. We will use the fuzzy set theory to quantify 

ambiguous forecasts and apply them to build the view model. Secondly, we extend the model from a 

single fund manager’s view to one that deals with multiple analysts’ views. These views could be 

contradictory, which we address by following the multi-expert approach of Lutgens and Schotman (2010) 

and undertaking a worst-case scenario analysis. This approach counters over-optimistic opinions and 
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alleviates the associated risk in financial investment. Finally, we take a robust counterpart approach with 

uncertainty sets of different confidence levels to tackle the sampling error problem and associated 

heterogeneity of data originating from disparate sources i.e. historical market data and analysts’ 

investment forecasts. This gives an alternative way to the Bayesian approach adopted in the BL method. 

 

Our first research strand in this paper is the fuzzy set theory developed by Zadeh (1965). This 

provides a solution to the problems of uncertainties, imprecision, and contradictions found in human 

verbal expressions, and enables us to interpret ambiguous forecasts by using fuzzy variables. We adopt 

the possibilistic approach of Carlsson et al. (2002), which uses trapezoidal fuzzy variables for asset 

returns and selects portfolios with the highest utility score. Other approaches (Bartkowiak and 

Rutkowska, 2017) use fuzzy random variables defined in Puri and Ralescu (1986) to process experts’ 

linguistic views. 

 

Our second strand of research is the robust counterpart approach. Recent studies reveal that 

parameter estimates based on historical market data are subject to sampling errors (Chopra and Ziemba, 

1993; Schöttle and Werner, 2009; Fernandes et al., 2012; de Jong, 2018). The robust counterpart approach 

is a useful alternative because it includes a wide range of possible input parameter values without 

complicated adjustment to the original optimisation framework (Ben-Tal and Nemirovski, 1998; Gregory 

et al., 2011). Robust counterpart optimisation has also long been recognised to be closely related to the 

Bayesian approach (Fabozzi et al., 2007, 2010), which forms the main motivation of this paper.  

 

To build a final view model is always challenging, because there are so many sources of potentially 

conflicting information. In the multi-criteria decision-making literature, a widely used practice for 

combining multiple experts’ opinions is the weighted sum model (WSM) (see e.g. Triantaphyllou, 2000). 

The well-known Delphi technique for gathering and processing options from multiple experts, 
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summarises the views using the mean or median (Hsu and Sandford, 2007). The BL model, as a Bayesian 

method, follows the standard approach to determine the weights of the WSM when pooling multiple 

experts’ views; it assumes that the variances for individual experts’ views are available (see, e.g. 

Bartkowiak and Rutkowska, 2017), and uses their reciprocals as the corresponding weights. However, 

without relevant knowledge, it is still a difficult task for retail investors to find these variance parameters. 

We follow the approach of Lutgens and Schotman (2010) to determine the weights in the WSM; their 

approach avoids the bias of potentially over-optimistic analysts by investigating a worst-case scenario 

analysis. In summary, we extend the BL method through realistic inclusion and evaluation of multiple 

financial analysts’ recommendations in a portfolio selection problem.  

 

We assess the effectiveness of the developed method through a large-scale case study on the 

Taiwanese stock market with 148 capitalized stocks, representing nearly 90% of the market over a two-

year period. Nearly 1000 daily financial newsletters were collected from two top-10 Taiwanese financial 

brokerage firms, to help extract stock forecast recommendations. This is the first practical application of 

the robust portfolio selection model that uses professional analysts’ 1  data to evaluate the value of 

financial recommendations in portfolio selection.  

 

In Section 2, we develop a multi-analyst method to incorporate multiple information sources into the 

portfolio decision-making process. We adopt multiple uncertainty sets to enhance the framework and 

construct our robust counterpart approach. Section 3 provides an empirical case study to analyse the 

Taiwanese stock market. Section 4 summarises the findings and concludes this paper. Propositions and 

proofs are in the Appendix.  

                                              

1 Others in the literatures did not appear to have significantly used analysts’ data. For example, Huang et al. (2010) consider four experts, 

each using one sub-sample of the market data to form their prior of the portfolio returns. Bartkowiak and Rutkowska (2017) create a couple of 

linguistic views (see Table 1 in their paper), but with no clear/direct references to data of real -life professional analysts’ recommendations. 
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2. Portfolio selection with multiple analysts’ recommendations 

This section summarises the mean-variance model and the BL method and builds on this to develop 

a new approach. 

2.1.    The mean-variance model and Black-Litterman method 

Consider an investor constructing a portfolio with 𝑛  risky assets over a single-period horizon. 

Markowitz (1952) formulates the portfolio selection problem as maximising the anticipated return of the 

portfolio, subject to a given risk characterised by its variance.  The anticipated portfolio return in 

Markowitz (1952) has been interpreted as the expected return (see, e.g., Fabozzi et al., 2010), and the 

portfolio selection problem is usually formulated to maximise the portfolio return based on variance as 

a risk measure, i.e. optimising the following mean-variance utility function: 

 (𝑃𝑀𝑉)                    𝑅 = 𝜇
𝑇𝑥−

𝜆

2
𝑥𝑇𝛴𝑥            (1) 

where 𝑥 = [𝑥1,… , 𝑥𝑛]
𝑇 ∈ ℝ𝑛 is the vector of the portfolio weights, and 𝜆 the risk aversion coefficient. 

 𝑟 = [𝑟1 ,… , 𝑟𝑛 ]
𝑇  is the vector of the asset returns with mean vector 𝜇 = [𝜇1 ,… , 𝜇𝑛]

𝑇  and the 

covariance matrix 𝛴 = [𝜎𝑖𝑗] ∈ ℝ
𝑛 ×ℝ𝑛 . The optimal portfolio 𝑥∗ can be obtained by maximising the 

mean-variance utility in equation (1): 

𝑥∗ =
1

𝜆
𝛴−1𝜇.              (2) 

The parameters in the vector 𝜇  and the covariance matrix 𝛴  can be estimated with historical 

market data in a number of ways. For example, the maximum likelihood estimates can be used (see, e.g., 

Becker et al., 2015). Throughout the paper, they are denoted as 

  𝜇̂ = [𝜇̂1,… , 𝜇̂𝑛]
𝑇      and       𝛴̂ = [𝜎̂𝑖𝑗]𝑛×𝑛.       (3) 

Black and Litterman (1991, 1992) propose a method to construct a portfolio consisting of the market 

and the view models, where a fund manager can base upon, with views on updated financial information, 
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to construct an investment portfolio. Specifically, the market model in the BL method assumes that the 

return vector follows a normal distribution:  

  𝑟~𝑁(𝜇, 𝛴).              (4) 

As a Bayesian approach, a prior distribution of the vector 𝜇 in (1) is specified in the BL method by 

invoking an equilibrium argument, 𝜇~𝑁(𝜋, 𝜌𝛴) , where 𝜋  represents the best guess for 𝜇  and 𝜌𝛴 

characterises the uncertainty of this guess (Meucci, 2010; Schöttle et al., 2010).  

In addition, the view model in the BL method is specified by a fund manager to reflect his/her views 

on the future returns of the assets as follows: 

𝑃𝜇~𝑁(𝑣,Ω),              (5) 

where the hyper-parameter vector 𝑣 = [𝑣1 ,… , 𝑣𝑛 ]
𝑇  and covariance matrix Ω = [𝜏𝑖𝑗]   quantify the 

average returns and the corresponding uncertainties of the views respectively. The 𝑚 × 𝑛 matrix 𝑃 is 

termed a stock-pick matrix, describing the stocks which the fund manager provides his/her views. 𝑚 

represents the number of views.  

If the manager has a view about each of the 𝑚 assets indexed by 𝑖1 ,… , 𝑖𝑚, then the matrix 𝑃 =

[𝑝𝑖𝑗] is an 𝑚 × 𝑛 matrix of 0 and 1, where the elements in the 𝑖th (𝑖 = 1,… ,𝑚) row are all equal to 0 

except for the entry in column 𝑖𝑗 that takes the value of one, i.e. 

  𝑝𝑖𝑗 = {
1      𝑖𝑓 𝑗 = 𝑖𝑗
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

The view model (5) can then be written as 𝜇𝑗~𝑁(𝑣𝑗 ,𝜏𝑗𝑗) for 𝑗 = 𝑖1,… , 𝑖𝑚.  Consider an example 

where in total there are 4 stocks with 

𝑃 = [
0 1
0 0

0 0
0 1

]. 

Here, equation (5) indicates that the fund manager has views about the second stock and the fourth stock 

respectively, as the second entry of the first row and the fourth entry of the second row in the pick matrix 

𝑃 are ones, and all the other entries are zeros.  

Based on the prior distribution (4) and the view model (5), the posterior distribution of the return can 

be derived using the Bayes’ rule. The obtained posterior mean vector and covariance matrix from the BL 
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method can be used to replace the input parameters in the mean-variance utility (1), and to find the 

portfolio by maximising the mean-variance utility in problem (1) with the posterior means and 

covariance matrix (O’Toole, 2017). 

2.2.    Multi-analyst portfolio selection with fuzzy logic  

The BL method does not specify any method of eliciting a fund manager’s views in a quantitative 

manner. In addition, it assumes that all views come from a single individual, e.g. the fund manager, which 

may not apply to retail investors who may consult multiple financial analysts. This section extends the 

BL method by: (a) investigating how the view of a professional analyst presented in a vague and 

ambiguous format can be quantified in the form of equation (5); and (b) considering the rival and 

potentially conflicting information problem when pooling the views from multiple financial analysts for 

portfolio selection. 

2.2.1    Quantifying analysts’ views with fuzzy logic  

We consider a problem where an investor consults 𝑍  professional analysts for investment 

forecasts/recommendations. Let ℤ denote the set of the financial analysts and 𝑆𝑧 denote the set of 

stocks for which an analyst 𝑧 ∈ ℤ has made recommendations. We assume that there are 𝑚𝑧 (𝑚𝑧 < 𝑛) 

stocks picked by analyst 𝑧. In this sub-section, we focus on just one analyst 𝑧 ∈ ℤ. 

Real-life analysts present their investment recommendations differently and there is no standard style 

and format. The fuzzy set theory deals with this by adopting a standardized format so that these 

recommendations can be quantified and efficiently included in the portfolio computation. We adopt the 

fuzzy set theory approach and follow Carlsson et al. (2001), Gupta et al. (2008) and Bartkowiak and 

Rutkowska (2017), when dealing with linguistic views/recommendations. More specifically, we consider 

analysts’ investment forecasts as qualitative data and assume the expected return 𝜇𝑖 of each stock 𝑖 

(for 𝑖 ∈ 𝑆𝑧) elicited from analyst 𝑧 ∈ ℤ is a trapezoidal fuzzy variable characterized by a quadruplet 

(𝜇𝑧𝑖
𝑚− , 𝜇zi

𝑚+ , 𝜎zi
−,𝜎𝑧𝑖

+) with the following membership function: 
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𝑀𝑧(𝜇𝑖)=

{
 
 

 
 1                        𝜇𝑖 ∈ [𝜇𝑧𝑖

𝑚− ,𝜇
𝑧𝑖
𝑚+ ]     

1−
𝜇
𝑧𝑖
𝑚−−𝜇𝑖

𝜎𝑧𝑖
−      𝜇𝑖 ∈ [𝜇𝑧𝑖

𝑚− − 𝜎𝑧𝑖
−, 𝜇𝑧𝑖

𝑚−]

1−
𝜇𝑖−𝜇zi

𝑚+

𝜎zi
+      𝜇𝑖 ∈ [𝜇𝑧𝑖

𝑚+ ,𝜇𝑧𝑖
𝑚+ +𝜎𝑧𝑖

+]

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (6) 

where [𝜇𝑧𝑖
𝑚− , 𝜇𝑧𝑖

𝑚+ ] denotes the return tolerance interval, and 𝜎𝑧𝑖
− and 𝜎𝑧𝑖

+ represent the left width and 

right width of the membership function, respectively. The membership function (6) is suitable for 

financial investment forecasts/recommendations in our empirical analysis. Figure. 1 illustrates the above 

membership function.  

[Insert Figure 1 here] 

 

To extract the investment information from a fuzzy-set membership function, this paper follows the 

method of crisp possibilistic interpretation in Carlsson and Fuller (2001), and considers the crisp 

possibilistic mean and variance of each asset 𝑖 ∈ 𝑆𝑧: 

  𝜇𝑧𝑖≔ 𝐸(𝜇𝑖)=
𝜇𝑧𝑖
𝑚−+𝜇𝑧𝑖

𝑚+

2
+
𝜎𝑧𝑖
+−𝜎𝑧𝑖

−

6
              (7) 

  𝜎𝑧𝑖
2 ≔𝑉𝑎𝑟(𝜇𝑖) = [

𝜇𝑧𝑖
𝑚+−𝜇𝑧𝑖

𝑚−

2
+
𝜎𝑧𝑖
−+𝜎𝑧𝑖

+

6
]
2

+ 
(𝜎𝑧𝑖

−+𝜎𝑧𝑖
+)

2

72
 .           (8) 

Hence, the view model (5) can approximately be written as: 

  𝜇 𝑖~𝑁(𝜇̃𝑧𝑖 ,𝜎𝑧𝑖
2 )      for 𝑖 ∈ 𝑆𝑧.          (9) 

To pool the view model (9) with the market model (4), a widely used method is the Bayesian 

approach (as in the BL method) or the Stein’s "shrinkage" estimator (see, e.g., Becker et al., 2015): 

  𝜇̌𝑧𝑖(𝑠𝑧𝑖)= (1 − 𝑠𝑧𝑖)𝜇̂𝑖+ 𝑠𝑧𝑖𝜇𝑧𝑖, 

where 𝑠𝑧𝑖  (0≤ 𝑠𝑧𝑖 ≤ 1) are the corresponding weights. 

This paper assumes that the analysts make forecasts for the assets only if they disagree with their 

historical performances, i.e. the corresponding estimates obtained from the historical data are regarded 

to be out-of-date; they are replaced with the analysts’ recommendations. Hence, we choose 
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  𝑠𝑧𝑖 = {
0       𝑖 ∉ 𝑆𝑧
1       𝑖 ∈ 𝑆𝑧

 . 

For the assets without analysts’ recommendations, the historical asset performances are adopted to obtain 

parameter estimates. Hence, we define the return vector 𝜇̌𝑧 = [𝜇̌𝑧1 , 𝜇̌𝑧2,… , 𝜇̌𝑧𝑛]
𝑇 for each analyst 𝑧 ∈

ℤ as follows: 

𝜇̌𝑧𝑖 = {
𝜇̂ 𝑖         𝑖 ∉ 𝑆𝑧
𝜇𝑧𝑖      𝑖 ∈ 𝑆𝑧

             (10) 

where  𝜇̂ 𝑖 and 𝜇𝑧𝑖  are given by (3) and (7) respectively. Likewise, we define 

 𝜎̌𝑧𝑖  
2 = {

𝜎̂𝑖𝑖     𝑖 ∉ 𝑆𝑧
𝜎𝑧𝑖
2     𝑖 ∈ 𝑆𝑧

             (11) 

where 𝜎̂𝑖𝑖 and 𝜎𝑧𝑖
2   are given by (3) and (8) respectively.  

Professional analysts rarely provide information about the relationships between assets; hence, it is 

difficult to elicit the entire covariance structure of the asset returns using the financial analysts’ forecasts. 

We incorporate a hybrid approach to addressing this issue: the correlation coefficients 𝜌𝑖𝑗 (𝑖, 𝑗 = 1,… , 𝑛) 

are estimated using historical market data, and the covariance matrix Σ̌𝑧  is constructed with the 

correlation coefficients 𝜌𝑖𝑗 and the individual variances in (11): 

Σ̌𝑧: = [𝜌𝑖𝑗 𝜎̌𝑧𝑖 𝜎̌𝑧𝑗]𝑛×𝑛 .                (12) 

After the view model (9) is elicited using the fuzzy logic, we re-formulate the objective function in 

equation (1). We follow Watada (1997) and Gupta et al. (2008) to express the ambiguous aspiration level 

of the utility 𝑅𝑧 = 𝜇̌𝑧
𝑇
𝑥−

𝜆

2
𝑥𝑇Σ̌𝑧𝑥 by incorporating a nonlinear logistic membership function: 

𝑀𝑅̃𝑧
(𝑥) =

1

1+exp(−𝜃𝑧 (𝑅̃𝑧−𝑅𝑇𝑎𝑟𝑔𝑒𝑡))
  ,           (13) 

where 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 is the benchmark set by the investor as the aspiration level for the portfolio. Parameter 

𝜃𝑧 (0 < 𝜃𝑧 < ∞) denotes the credibility level about analyst 𝑧 ∈ ℤ. The value of credibility 𝜃𝑧 can be 

chosen empirically by the investor based on prior knowledge to reflect his/her preference. Fig. 2 

illustrates the membership function for different credibility levels of 𝜃𝑧.  

 

[Insert Figure 2 here] 
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2.2.2. Elicitation of the input parameters from analysts’ investment recommendations 

This section discusses how investment recommendations are presented by analysts in the daily 

financial newsletters in our study. The daily financial newsletters consist of analysts’ views regarding 

selected stocks from the market. Overall, the ways that the analysts express their views differ from time 

to time and from stock to stock, resulting in different presentation formats. This may be attributable to 

their confidence levels in the accuracy of their forecasts or simply a matter of preferable styles of 

presentation. Here we consider three popular formats used in the analysts’ financial newsletters.  

Case (I): Recommendations expressed as resistance and support  

Some investment recommendations are presented in the form of a given price resistance and price 

support, as shown in Table 1. This format doesn’t explicitly indicate an investment recommendation, e.g. 

buy and sell, and is opened to investors for interpretations.  

To convert such recommendations into a fuzzy variable, we compute the support and resistance using 

the stock’s closing price (CP), as well as the price support (PS) and price resistance (PR) provided by 

the analyst (𝑃𝑅 ≥ 𝑃𝑆), i.e. 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 
𝑃𝑆−𝐶𝑃

𝐶𝑃
 and 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 

𝑃𝑅−𝐶𝑃

𝐶𝑃
. We use the average of the 

support and resistance to obtain the lower limit of the tolerance interval , i.e. 𝑚− =
𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒+𝑠𝑢𝑝𝑝𝑜𝑟𝑡

2
 , 

with the left deviation equal to 𝜎− = 𝑚− − 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =
𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒−𝑠𝑢𝑝𝑝𝑜𝑟𝑡

2
 .  Therefore, the fuzzy 

variable of this recommendation type is characterized by a quadruplet form: 

 (𝑚−,𝑚+, 𝜎−, 𝜎+) = (
𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒+𝑠𝑢𝑝𝑝𝑜𝑟𝑡

2
, 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒,

𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒−𝑠𝑢𝑝𝑝𝑜𝑟𝑡

2
, 0). 

For example, Table 1 suggests a stock forecast implying a potential buying action on XXXX 

Technology with 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =  
89−93.3

93.3
= −4.61%  and 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 

100−93.3

93.3
= 7.18% . Hence, 

𝑚− =
−4.61%+7.18%

2
= 1.285%   and 𝜎− = 1.285%− (−4.61%) = 5.895% .  Therefore, the fuzzy 
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interpretation of the recommendation for XXXX Technology is of a quadruplet form 

(1.285%,7.18%,5.895%,0%). 

 [Insert Table 1 here] 

Case (II):   Recommendations expressed as target price and potential rate  

The second type of presentation gives detailed analysis for a stock with a clear investment action. 

Apart from the closing price (CP) of the stock, this form of forecast also provides a target price (TP) and 

a potential rate (𝑃𝑅). Define 𝑇𝑅 = (𝑇𝑃 −𝐶𝑃)/𝐶𝑃. The stock forecast for the stock can be expressed 

in the following quadruplet form (𝑚−,𝑚+, 𝜎−, 𝜎+), depending on whether it is a “buy”, “neutral”, or 

“sell” recommendation.  

Specifically, for “buy” recommendations, we have 𝑃𝑅 ≥ 𝑇𝑅 ≥ 0 and the corresponding quadruplet 

form is taken as 𝜇𝐵𝑢𝑦
𝑇𝑟𝑎 = (𝑚−,𝑚+, 𝜎−, 𝜎+) = (𝑇𝑅,𝑃𝑅,𝑇𝑅, 0) . Similarly, under the condition 𝑃𝑅 ≥

𝑇𝑅 ≥ 0 , “neutral” recommendations are interpreted as 𝜇𝑁𝑒𝑢𝑡𝑟𝑎𝑙
𝑇𝑟𝑎 = (𝑚−,𝑚+,𝜎− ,𝜎+) =

(𝑇𝑅, 𝑇𝑅, 𝑇𝑅, 𝑃𝑅 −𝑇𝑅)  which is equivalent to a triangular membership function. Finally, for “sell” 

recommendations, we have 0 ≥ 𝑇𝑅 ≥ 𝑃𝑅 , and the corresponding quadruplet form is chosen to be 

𝜇𝑆𝑒𝑙𝑙
𝑇𝑟𝑎 = (𝑚−,𝑚+,𝜎−, 𝜎+) = (𝑃𝑅,𝑇𝑅, 0,0− 𝑇𝑅). 

For example, Table 2 shows a sample of stock forecasts with a “neutral” rating, where the fuzzy 

interpretation is a quadruplet (1.71%,1.71%,1.71%,0.29%). 

 

[Insert Table 2 here] 

Case (III): Recommendations expressed as price boundaries  

The third type of presentation provides four price boundaries (𝑃𝐵)   for the stock, i.e. 𝑃𝐵1 <

𝑃𝐵2 < 𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒 < 𝑃𝐵3 < 𝑃𝐵4 . These can be converted into four return vertices, i.e. 𝑅𝑉𝑛 =
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𝑃𝐵𝑛−𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒

𝐶𝑙𝑜𝑠𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒
  with 𝑛 = 1,2,3,4  and 𝑅𝑉1 < 𝑅𝑉2 < 𝑅𝑉3 < 𝑅𝑉4 , in which the corresponding 

trapezoidal fuzzy variable is  (𝑚−,𝑚+, 𝜎−, 𝜎+) = (𝑅𝑉2 , 𝑅𝑉3 , 𝑅𝑉2 −𝑅𝑉1 , 𝑅𝑉4 − 𝑅𝑉3).  

Table 3 gives an example with the fuzzy expressions as (−2.04%,3.50%,4.08%,2.48%)  for 

XXXX Construction and (−1.92%,1.28%,8.33%,2.31%) for XXXX International. 

 [Insert Table 3 here] 

This section discusses the various formats of analysts’ recommendations in our newsletters and 

interpret them using the fuzzy approach. Obviously, analysts’ forecasts are not without biases and often 

could be affected by being over-confident or over-optimistic. The portfolio optimisation approach in the 

following section addresses this issue by using a max-min approach to deal with the rival information 

sources from different analysts. With this approach, the over-optimistic view will be tackled and 

eliminated in the stock selection decision making process when constructing investment portfolios. In 

practice, to reduce any potential systematic biases, retail investors would frequently validate the forecast 

accuracy by comparing the stock recommendation with its performance afterward.  

 

 

2.2.3    Portfolio optimisation with multiple analysts’ views 

In this section, we investigate portfolio selection with multiple analysts’ recommendations. We 

address this by synthesising the different sources of information. In the WSM model (Triantaphyllou, 

2000) and the Bayesian approach, the views from multiple experts are synthesised through a weighted 

average. In this paper, the synthesised views are calculated by averaging the individual mean vectors and 

covariance matrices:  

𝜇̅ = ∑ 𝜔̅𝑧𝜇̌𝑧 
𝑍
𝑧=1       and      𝛴̅ = ∑ 𝜔̅𝑧𝛴̌𝑧

𝑍
𝑧=1         (14) 

where 𝜇̌  and 𝛴𝑧  are given in equations (10) and (12).  𝜔̅𝑧 ≥ 0  (for all 𝑧 ∈ ℤ ) are weights to be 

determined for the WSM model. The weights satisfy the normalization condition ∑ 𝜔̅𝑧
𝑍
𝑧=1 = 1.  
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To determine the weights in (14), we follow Lutgens and Schotman (2010) and incorporate a max-

min approach to deal with the rival information sources from different analysts. Technically, this 

approach solves the portfolio selection problem in two stages: (a) find the worst-case scenario across the 

analysts’ recommendations, 𝑧 ∈ ℤ; and (b) obtain the optimal portfolio by maximising the objective 

function with respect to the asset weight vector. This approach protects against the scenario that some 

analysts’ recommendations are over-optimistic, and hence helps to alleviate biases underlying the 

analysts’ recommendations.  

Based on the objective function (13), we formulate the portfolio selection problem with multiple 

analysts’ forecasts using the following max-min problem: 

(𝐹𝑀𝑉)           𝑚𝑎𝑥 𝑥∈ℝ𝑛
𝑚𝑖𝑛
𝑧∈ℤ

      
1

1+𝑒𝑥𝑝(−𝜃𝑧 (𝜇̌𝑧
𝑇
𝑥−

𝜆

2
𝑥𝑇𝛴̌𝑧𝑥−𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

  .      (15) 

Proposition 1 in the Appendix shows the solution to problem (15) is given by 𝑥∗ =
1

𝜆
 𝛴∗−1𝜇∗ with 

𝛴∗ = ∑ 𝜔𝑧𝛴̌𝑧
𝑍
𝑧=1  and 𝜇∗ = ∑ 𝜔𝑧𝜇̌𝑧 

𝑍
𝑧=1 , where 𝜔𝑧 are weights determined by the Lagrange multipliers 

of (15). Hence, the optimal portfolio of (15) depends on the weighted average of individual mean vectors 

and covariance matrices of the individual analysts.  

We observe that the asset allocation, 𝑥∗ =
1

𝜆
 𝛴∗−1𝜇∗, has a mathematical form similar to O’Toole 

(2017); the latter is based on the mean-variance optimisation (1) with mean and (co)variance parameters 

elicited from the BL model. However, we point out that 𝛴∗ = ∑ 𝜔𝑧𝛴𝑧
𝑍
𝑧=1  and 𝜇∗ = ∑ 𝜔𝑧𝜇̌𝑧 

𝑍
𝑧=1  in this 

paper are obtained by synthesising multiple analysts’ recommendations, rather than a single fund 

manager’s view in O’Toole (2017). In addition, we note that Bartkowiak and Rutkowska (2017) use a 

different fuzzy logic approach to elicit experts’ views for the BL modelling. To pool various views from 

experts, they use a Bayesian approach; however, it is not clear in their method how to assign weights to 

these experts’ views. In contrast, this paper addresses the issue by determining the weights 𝜔𝑧 using the 

max-min approach (15).  
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2.3.    Data heterogeneity: a robust counterpart approach  

An important issue of the developed multi-analyst method is the heterogeneity of data from disparate 

sources, equations (10)-(12). This method uses both the historical market data and multiple analysts’ 

forecasts. The former has sampling errors when market data is used to estimate the expected returns. The 

latter may suffer from quality differences in the forecasts/recommendations from analyst to analyst.  

This section uses the robust-counterpart approach to handle the data heterogeneity problem. This 

approach is widely used to deal with sampling errors in portfolio management (see, e.g. , Ben-Tal and 

Nemirovski, 1998; Fabozzi et al., 2007). Here we only focus on the expected returns as the fluctuations 

in the covariance matrix do not significantly influence the optimal solution (Chopra and Ziemba, 1993; 

Schöttle and Werner, 2009; Ziemba; 2009).  

With respect to sampling errors, it is likely that the true values of the expected returns lie within the 

neighbourhood of the current point estimate, termed uncertainty set. Let 𝑈𝑧(𝜇̌𝑧) denote an uncertainty 

set of the return vector for analyst 𝑧 ∈ ℤ , and 𝜇𝑧 ∈ 𝑈𝑧(𝜇̌𝑧)  as any return parameter vector in this 

uncertainty set. The uncertainty set 𝑈𝑧(𝜇̌𝑧) is usually chosen as a confidence ellipsoid: 

𝑈𝑧
𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑(𝜇̌𝑧):= { 𝜇𝑧 ∈ ℝ

𝑛  |(𝜇𝑧− 𝜇̌𝑧)
𝑇𝛴̌𝑧

−1
(𝜇𝑧 − 𝜇̌𝑧) ≤ 𝛿0

2} 

= {𝜇𝑧 ∈ ℝ
𝑛|𝜇𝑧 = 𝜇̌𝑧+𝛿0𝛴̌𝑧

1

2𝜓 ,‖𝜓‖ ≤ 1  }        (16) 

where 𝜇̌𝑧 and 𝛴̌𝑧 for analyst 𝑧 ∈ ℤ are given by (10)-(12). The size of the neighbourhood 𝛿0, also 

termed robustness level for the uncertainty set, reflects the quality of the estimate 𝜇̌𝑧 as perceived by 

investors.   

Since the true expected return vector can be anywhere in the uncertainty set 𝑈𝑧, we adopt the robust 

counterpart approach to handle the uncertainty set value2. We follow Ben-Tal and Nemirovski (1998) 

and formulate the robust counterpart approach within the multi-analyst method for portfolio selection 

                                              

2 The robust-counterpart approach has attracted a large volume of studies in the recent two decades. See Fabozzi 
et al. (2007) and Fabozzi et al. (2010) for reference. 
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𝑚𝑎𝑥
𝑥∈ℝ𝑛

  𝑚𝑖𝑛
𝑧∈ℤ

𝑚𝑖𝑛
𝜇𝑧∈𝑈𝑧

 
1

1+𝑒𝑥𝑝(−𝜃𝑧 (𝜇𝑧𝑇𝑥−
𝜆

2
𝑥𝑇𝛴̌𝑧𝑥−𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

  .       (17) 

From a computational perspective, problem (17) can be simplified: Proposition 2 in the Appendix shows that 

problem (17) can be transformed to a simpler max-min problem below: 

(𝑅𝐹𝑀𝑉
𝐽𝑜𝑖𝑛𝑡)      𝑚𝑎𝑥

𝑥∈ℝ𝑛
  𝑚𝑖𝑛
𝑧∈ℤ

 
1

1+𝑒𝑥𝑝(−𝜃𝑧(𝜇̌𝑧𝑇𝑥−
𝜆

2
𝑥𝑇𝛴̌𝑧𝑥−𝑅𝑇𝑎𝑟𝑔𝑒𝑡−𝛿0‖𝛴̌𝑧

1
2𝑥‖))

 

     (18) 

with 𝜇̌𝑧−𝛿0
𝛴̌𝑧𝑥

‖𝛴̌𝑧
1 2⁄ 𝑥‖

 denoting the worst-case scenario of the expected returns.  

 

We next address the issue of disparate data quality between the historical market data and the analysts’ 

forecasts by using different sizes of the uncertainty sets for different information sources. Without loss 

of generality, we suppose analyst 𝑧 ∈ ℤ comments on the final 𝑚𝑧 (𝑚𝑧 < 𝑛) assets. Let the decision 

vector 𝑥 ∈ ℝ𝑛 be partitioned accordingly with 𝑥 = [𝑥𝐻
𝑇 ,𝑥𝐴

𝑇]𝑇, where 𝑥𝐻 ∈ ℝ
𝑛−𝑚𝑧  (or 𝑥𝐴 ∈ ℝ

𝑚𝑧) 

denotes the vector of the weights associated with the assets whose average returns are estimated using 

the historical market data (or using the analyst’s forecasts). In addition, let 

  𝜇̌𝑧 = (
𝜇̌𝐻𝑧
𝜇̌𝐴𝑧

)    and     Σ̌𝑧 = (
Σ̌𝐻𝐻𝑧 Σ̌𝐻𝐴𝑧
Σ̌𝐴𝐻𝑧 Σ̌𝐴𝐴𝑧

)     

where 𝜇̌𝐻𝑧 and 𝜇̌𝐴𝑧 represent the expected returns from the historical market data (3) and from the 

analyst 𝑧’s forecasts (10). Similar partitions are defined for the covariance matrix Σ̌𝑧. 

To deal with the data heterogeneity issue, we assume the investor chooses two different confidence 

levels, 𝛿𝐻𝑧 and 𝛿𝐴𝑧, for each analyst 𝑧 ∈ ℤ and forms two uncertainty sets 

𝑈𝐻𝑧
𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑(𝜇̌𝐻𝑧) = { 𝜇 ∈ ℝ𝑛−𝑚𝑧  |(𝜇 − 𝜇̌𝐻𝑧)

𝑇
Σ̌𝐻𝐻𝑧

−1
(𝜇− 𝜇̌𝐻𝑧) ≤ 𝛿𝐻𝑧

2 } 

= {𝜇 ∈ ℝ𝑛−𝑚𝑧 |𝜇 = 𝜇̌𝐻𝑧 +𝛿𝐻𝑧 Σ̌𝐻𝐻𝑧

1

2 𝜓𝐻𝑧  ,‖𝜓𝐻𝑧‖≤ 1  }     (19) 

𝑈𝐴𝑧
𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑(𝜇̌𝐴𝑧) = { 𝜇 ∈ ℝ

𝑚𝑧  |(𝜇 − 𝜇̌𝐴𝑧)
𝑇
Σ̌𝐴𝐴𝑧

−1
(𝜇 − 𝜇̌𝐴𝑧) ≤ 𝛿𝐴𝑧

2 } 

= {𝜇 ∈ ℝ𝑚𝑧 |𝜇 = 𝜇̌𝐴𝑧+ 𝛿𝐴𝑧Σ̌𝐴𝐴𝑧

1

2 𝜓𝐴𝑧 ,‖𝜓𝐴𝑧‖≤ 1  }        (20) 
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where 𝑈𝐻𝑧
𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑

 is the confidence ellipsoid for the historical market data centred at the expected returns 

𝜇̌𝐻𝑧, and 𝑈𝐴𝑧
𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑

 is the confidence ellipsoid for the analysts’ dataset centred at 𝜇̌𝐴𝑧.  

The sizes of the two uncertainty sets, 𝛿𝐻𝑧 ≥ 0 and 𝛿𝐴𝑧 ≥ 0, reflect the differences in the reliability 

of the different data types. Usually, analysts’ forecasts contain up-to-date investment information, e.g., 

earnings announcements news. Therefore, 𝛿𝐴𝑧 should be chosen to be smaller than 𝛿𝐻𝑧 . The investor 

may also choose different 𝛿𝐴𝑧 for different analysts 𝑧 ∈ ℤ to reflect the quality of their inputs.  

Consequently, we formulate a robust multi-analyst approach that solves: 

max
𝑥∈ℝ𝑛

  min
𝑧∈ℤ

min
𝜇𝐻𝑧,  𝜇𝐴𝑧

1

1 + 𝑒𝑥𝑝(−𝜃𝑧 (𝜇𝑧
𝑇𝑥−

𝜆
2
𝑥𝑇Σ̌𝑧𝑥 −𝑅

𝑇𝑎𝑟𝑔𝑒𝑡))

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     (𝜇𝐻𝑧− 𝜇̌𝐻𝑧)
𝑇
Σ̌𝐻𝐻𝑧

−1
(𝜇𝐻𝑧− 𝜇̌𝐻𝑧) ≤ 𝛿𝐻𝑧

2     (21) 

                         (𝜇𝐴𝑧− 𝜇̌𝐴𝑧)
𝑇
Σ̌𝐴𝐴𝑧

−1
( 𝜇𝐴𝑧− 𝜇̌𝐴𝑧) ≤ 𝛿𝐴𝑧

2   

 An important special case is when the investor chooses 𝛿𝐴𝑧 = 0 for all 𝑧 ∈ ℤ. This is the scenario 

where the investor fully takes all advice from the financial analysts into consideration. The robust multi-

analyst approach (21) reduces to 

(𝑅𝐹𝑀𝑉
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒)    max

𝑥∈ℝ𝑛
  min
𝑧∈ℤ

min
𝜇𝐻𝑧

  
1

1+𝑒𝑥𝑝(−𝜃𝑧 (𝜇𝑧𝑇𝑥−
𝜆

2
𝑥𝑇Σ̌𝑧𝑥−𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜             (𝜇𝐻𝑧− 𝜇̌𝐻𝑧)
𝑇
Σ̌𝐻𝐻𝑧
−1 (𝜇𝐻𝑧− 𝜇̌𝐻𝑧) ≤ 𝛿𝐻𝑧

2    (22) 

    𝜇𝐴𝑧 = 𝜇̌𝐴𝑧      

Similar to problem (17), the robust multi-analyst approach (22) can be simplified and transformed to a 

simpler max-min problem below: 

(𝑅𝐹𝑀𝑉
𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒)         𝑚𝑎𝑥

𝑥∈ℝ𝑛
  𝑚𝑖𝑛
𝑧∈ℤ

1

1+𝑒𝑥𝑝(−𝜃𝑧(𝜇̌𝑧𝑇𝑥−
𝜆

2
𝑥𝑇 Σ̌𝑧𝑥−𝑅𝑇𝑎𝑟𝑔𝑒𝑡−𝛿𝐻𝑧‖Σ̌𝐻𝐻𝑧

1

2 𝑥𝐻‖))

    

with (
𝜇̌𝐻𝑧− 𝛿𝐻𝑧

Σ̌𝐻𝐻𝑧𝑥𝐻

‖Σ̌𝐻𝐻𝑧

1
2 𝑥𝐻‖

𝜇̌𝐴𝑧

) denoting the worst-case scenario of the expected returns and 𝜇̌𝑧 = (
𝜇̌𝐻𝑧
𝜇̌𝐴𝑧

). 
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In summary, solving problem (21) or (22) produces the selected portfolio. As shown above, this asset 

allocation method can address the ambiguity issue associated with analysts’ recommendations by fuzzy 

logic. It uses the worst-case scenario analysis to deal with some over-optimistic forecasts of the analysts. 

In addition, by setting different confidence levels, it can appropriately handle the data heterogeneity 

problem such as the sampling errors of historical market data.  

3.   Empirical application  

This section empirically assesses the performances of the developed multi-analyst method and its 

associated robust counterpart approach and evaluates the effects of professional analysts’ 

recommendations on the investors’ portfolio allocation decision outcomes.  

3.1.   Taiwanese stock market and analysts’ investment recommendations 

This empirical study focuses on the stocks of the top 148 listed companies representing about 90% 

of the total Taiwanese stock market capitalization value3.We use historical market data and financial 

analysts’ forecasts/recommendations for portfolio selection from April 2012 to April 2014 with 492 

trading days. The Taiwanese stock market data is from DataStream Inc., whilst the financial analysts’ 

data is collected from two top-10 Taiwanese securities brokerage firms.  After pre-screening, the 

remaining comprises of 984 daily investment newsletters with 1,893 stock forecasts/recommendations. 

Figure 3 shows the first ("analyst 1") and the second ("analyst 2") securities brokerage firms, making 

1,585 and 308 stock forecasts/recommendations, respectively, during the period.  

[Insert Figure 3 here] 

[Insert Figure 4 here] 

To evaluate the performances of various investment strategies, the portfolios are constructed for 

every trading day with 𝐷 days as the holding period. Consider, for example, the scenario where we use 

                                              

3 The market sample is based on the FTSE TWSE Taiwan 50 Index (TAISE50) and FTSE TWSE Taiwan Mid-Cap 100 Index (TAIM100). 

Two newly listed stocks are removed from the analysis due to insufficient historical data. 
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the multi-analyst method 𝐹𝑀𝑉  on day 𝑡. The following steps are taken: (a) estimation of the input 

parameters in (3) based on historical market data for the past 520  trading day up to day 𝑡 ; (b) 

calculation of the expected return vectors and covariance matrices in (7) and (8) and build the view 

models based on the analysts’ investment forecasts on day 𝑡; (c) construction of the portfolio by solving 

problem (15). This portfolio is then held for 𝐷 days and profits/losses are calculated at the end of the 

𝐷-day holding period, i.e. on day 𝑡 + 𝐷. This is repeated for each trading day 𝑡 during the study period. 

In the following analysis, 𝐷 is taken as 5 days. Fig. 4 illustrates a schematic view of the process.  

3.2.   Performances of different investment strategies 

We investigate the performances of the proposed multi-analyst method 𝐹𝑀𝑉   and the robust 

approach 𝑅𝐹𝑀𝑉
𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒

. For simplicity, we assume that there is no risk-free asset and short selling is 

prohibited for all the investment strategies considered in this section.  

For comparison purposes, we also consider the following investment strategies on each trading day: 

(a) the portfolios constructed using the classical mean-variance portfolio selection method (1), denoted 

as 𝑃𝑀𝑉 ;  (b) the portfolios constructed by the robust counterpart approach denoted as 𝑅𝑀𝑉;  (c) the 

equally-weighted (1/𝑁) asset allocation (DeMiguel et al., 2009). Note that the expected return of the 

equally-weighted (1/𝑁) portfolio is also used as the investment benchmark 𝑅𝑇𝑎𝑟𝑔𝑒𝑡 for 𝐹𝑀𝑉  and 

𝑅𝐹𝑀𝑉
𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒

 methods. 

On each trading day 𝑡 , we use the above investment strategies to construct the portfolios and 

evaluate their performances using the ex-ante expected risk-adjusted returns, which is based on the 

expected portfolio returns calculated on the same day. After each 𝐷-day holding period, we carry out an 

out-of-sample test on day 𝑡 +𝐷  by calculating the ex-post realised returns of the portfolios. 

The two Taiwanese securities brokerage firms from which newsletters were collected have market 

shares’ ratio of approximately 3:1, which we then use as an indicator of their credibility. Hence, the 

investor chooses 𝜃𝑧 for each individual analyst 𝑧 to be proportional to the corresponding market share: 

𝜃1 = 0.7635  for analyst 1 and 𝜃2 = 0.2365  for analyst 2. Two types of investor are considered, 
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investor A and investor B; each has different opinions regarding the parameter estimates from the 

historical market data implying different desired robustness levels for the ellipsoidal uncertainty sets. 

Investor A has a strong belief that historical stock performances are good signs of future performances 

and assigns a tighter uncertainty set for the return estimates with 𝛿 = 𝛿𝐻𝑧 = 0.23 for 𝑧 = 1,2, with the 

true values of the stock returns to fall in the confidence ellipsoids with a 95% probability. In contrast, 

investor B is more hesitant to employ the historical market data to estimate the parameters and assigns 

𝛿 = 𝛿𝐻𝑧 = 1 for 𝑧 = 1,2 for a loose ellipsoidal uncertainty set 𝑈𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑, where the true values of the 

stock returns are expected to be in the ellipsoidal uncertainty set 𝑈𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 with a 50% probability 

(Fabozzi et al., 2007).  

We form the portfolios based on different risk aversion levels with the various investment strategies 

and report the average expected portfolio performances in Table 4. Table 4 shows the benefits of using 

the multi-analyst approach 𝐹𝑀𝑉  and the robust multi-analyst approach for investors A and B (denoted 

by 𝑅𝐹𝑀𝑉−𝐴
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒

 and 𝑅𝐹𝑀𝑉−𝐵
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒

 respectively): they achieve higher expected risk-adjusted returns than the 

conventional investment strategies 𝑃𝑀𝑉 , and the robust counterpart approach for investors A and B, i.e., 

𝑅𝑀𝑉− 𝐴 and 𝑅𝑀𝑉− 𝐵 . The equally-weighted allocation has the lowest expected risk-adjusted returns.  

[Insert Table 4 here] 

Table 5 reports the realised returns calculated at the end of each 5-day holding period. From Table 5, 

we note that all the strategies outperform the equally-weighted portfolio 1/𝑁. This is not surprising: the 

equally-weighted portfolio is the best choice only if all assets have the same correlation coefficient as 

well as identical means and variances.  

Table 5 also shows that the portfolio allocation decision that includes analysts’ recommendation, i.e. 

𝐹𝑀𝑉  , 𝑅𝐹𝑀𝑉−𝐴
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒

 and 𝑅𝐹𝑀𝑉−𝐵
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒

, leads to a better out-of-sample performance than those that do not 

rely on analysts’ recommendations, i.e., the approaches of 𝑃𝑀𝑉 , 𝑅𝑀𝑉−𝐴 and 𝑅𝑀𝑉−𝐵.  
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In addition, the performances also depend on whether further robustness is considered when 

allocating assets; investor A has a higher return than investor B. The underlying assumptions of investors 

A and B give rise to differences in modelling the uncertainty sets.  Here investor A is assumed to have 

a stronger belief of the stock performance, hence leading to a tighter uncertainty set to incorporate within 

the portfolio allocation model. This difference in the belief of the historical market returns/performance 

results in different portfolio outcomes as showed by the out-of-sample, where investor A outperforms 

investor B. This is expected: a feature of robust optimisation is that it often leads to an overly 

conservative outcome (Gregory, et al, 2011).  

 [Insert Table 5 here] 

Figure 5 shows the realised cumulative returns of these investment strategies based on risk aversion 

coefficient 𝜆 = 0.5  at different time periods. We can see from Figure 5 that 𝐹𝑀𝑉   constantly 

outperforms all the other investment strategies, whereas the equally-weighted allocation has the worst 

performance throughout the period. 𝑃𝑀𝑉  performs reasonably well, particularly in the second half of 

the time period. In addition, the robust multi-analyst portfolios 𝑅𝐹𝑀𝑉
𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒

 outperform the conventional 

robust portfolios 𝑅𝑀𝑉 for both investors A and B, with investor A having a higher return than that of 

investor B. These observations are consistent with the findings in Table 5. 

[Insert Figure 5 here] 

4. Conclusions and discussion 

The BL method is long regarded as a useful and practical approach to incorporating fund manager’s 

views about the future market into investment portfolio construction. These views could also come from 

a third party’s recommendations, such as a financial analyst consulted by retail investors. Investors may 

also source additional analysts’ recommendations for validation purposes. This leads to a multiple 

information source problem.  
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Inspired by the BL method, we have developed a new portfolio selection model that incorporates the 

views of multiple analysts and adjusts for the credibility as perceived by the retail investor. We contribute 

to the literature by: (a) embedding the fuzzy set theory into the portfolio selection, thus addressing the 

ambiguity issue associated with analysts’ forecasts for building the view models; (b) applying the worst-

case scenario analysis to the decision-making problem, to manage several rival information sources and 

overcome over-optimistic analysts’ forecasts; and (c) employing uncertainty sets in the robust counterpart 

approach to deal with the heterogeneity of data from disparate sources.  

We note that the original BL method proposed by Black and Litterman (1991, 1992) is a Bayesian 

approach (Meucci, 2010; Schöttle et al., 2010). Relating to the Bayesian statistics literature, an early 

work in West and Crosse (1992) concerns investment predictions by multiple analysts, an area of 

increasing interest in the literature (Aastveit et al, 2018; McAlinn and West, 2018). These studies 

consider time series analysis with dynamic linear models and investigate Bayesian predictive synthesis 

for combining multiple agents’ opinions to improve forecasts. These approaches are quite different from 

the single-period analytical approach presented in this paper, but as a future research area, could be 

applied by using retail investors data combining with multiple agents’ opinions. 

Our empirical study uses nearly 1000 daily newsletters from two top-10 Taiwanese brokerage firms, 

to evaluate the proposed multi-analyst approach. Comparing our results with existing methods based 

only on historical market data, the developed methods have better performances, hence supporting the 

use of analysts’ recommendations in the portfolio construction. 

Our study also provides an improvement on the outcomes of robust optimisation by including 

multiple analysts’ views in the portfolio allocation. It is known that robust optimisation often leads to an 

overly conservative outcome (see, e.g. Gregory et al, 2011), but with multiple analysts’ views, the 

uncertainty from the sampling errors is reduced; this in turn improves the performance of robust 

optimisation.  
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In this paper, the possibility of herding behaviour among multiple analysts is not addressed. Trueman 

(1994) describes this as a case where analysts release forecasts similar to those previously announced by 

other analysts, even when this is not justified by their information. Recent studies show that releasing 

optimistic information in times of high market sentiment reduces herding practices, whereas herding 

increases in difficult situations when analysts have to release negative information (Blasco et al., 2018). 

The herding effect could be addressed in future research by constructing a dynamic model for the joint 

prior distribution of the analysts’ views that will account for the potential correlations among different 

analysts.  

 

This paper supports the role of retail investors in portfolio construction using analysts’ 

recommendations. Recently, similar topics on asset selection of retail investors have attracted increasing 

attention. For example, Kelley and Tetlock (2013) show that collectively retail investors can predict 

monthly returns, and hence are not entirely ‘noise’ traders, as assumed in the finance literature. Using 

online recommendations, retail investors can source information more efficiently than in the past, thus 

reinforcing their ability to select investment portfolios. This paper has demonstrated that using analysts’ 

recommendations can enhance the realistic return of the investment.  
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Appendix. Propositions and proofs  

Proposition 1.  Consider a single-period portfolio selection problem with 𝑛  risky assets and 𝑍 

analysts, each providing the investment forecasts characterised by equations (10)-(12). Then for an 

investor who chooses his/her portfolio by solving problem (15), the optimal portfolio 𝑥∗ is given by  

 𝑥∗ =
1

𝜆
 𝛴∗−1𝜇∗  

with 

 𝛴∗ = ∑ 𝜔𝑧𝛴̌𝑧
𝑍
𝑧=1     and    𝜇∗ = ∑ 𝜔𝑧𝜇̌𝑧 

𝑍
𝑧=1 ,  
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where 𝜔𝑧 = 𝜃𝑧𝜙𝑧/∑ 𝜃𝑧𝜙𝑧
𝑍
𝑧=1 , and 𝜙 = [𝜙1,… , 𝜙𝑍]

𝑇 ∈ ℝ𝑍  is the vector of the Lagrange multipliers. 

Proof: The portfolio allocation problem (𝑭𝑴𝑽) is equivalent to 

         

max 
𝑥∈ℝ𝑛,   𝜁∈ℝ

   𝜁                                    

subject to    𝜁 ≤
1

1+exp(−𝜃𝑧 (𝜇̌𝑧
𝑇
𝑥−

𝜆

2
𝑥𝑇Σ̌𝑧𝑥−𝑅𝑇𝑎𝑟𝑔𝑒𝑡))

     for all 𝑧 ∈ ℤ.

            

       (A1) 

Let 𝜂 = log(𝜁/(1− 𝜁)). It follows immediately that solving problem (A1) is equivalent to 

max 
𝑥∈ℝ𝑛 ,   𝜁∈ℝ

      𝜂

subject to       𝜂 ≤ 𝜃𝑧 (𝜇̌𝑧
𝑇
𝑥−

𝜆

2
𝑥𝑇Σ̌𝑧𝑥− 𝑅

𝑇𝑎𝑟𝑔𝑒𝑡)         for all 𝑧 ∈ ℤ.
    (A2) 

Now, let 𝑔𝑧(𝑥) = 𝜃𝑧 (𝜇̌𝑧
𝑇
𝑥−

𝜆

2
𝑥𝑇Σ̌𝑧𝑥−𝑅

𝑇𝑎𝑟𝑔𝑒𝑡) for each 𝑧 ∈ ℤ. We form the Lagrangian function 

to problem (A2) as   ℒ( 𝜂, 𝑥, 𝜙 ) = 𝜂 −∑ 𝜙𝑧(𝜂 −𝑔𝑧(𝑥)) ,
𝑍
𝑧=1    where 𝜙 = [𝜙1 ,… , 𝜙𝑍]

𝑇 ∈ ℝ𝑍   is a 

vector of the Lagrange multipliers. We can verify that the partial derivatives of the Lagrangian function 

with respect to variables 𝜂  and 𝑥  are 
𝜕ℒ 

𝜕𝜂
= 1 −∑ 𝜙𝑧 

𝑍
𝑧=1   and   

𝜕ℒ 

𝜕𝑥
= ∑ 𝜙𝑧𝑔𝑧

′(𝑥) 𝑍
𝑧=1  , where 

 𝑔𝑧
′(𝑥) = 𝜃𝑧𝜇̌𝑧−𝜆𝜃𝑧Σ̌𝑧𝑥. Hence, according to the Karush–Kuhn–Tucker conditions, the corresponding 

conditions for the optimal portfolio 𝑥∗ of problem (𝐹𝑀𝑉
∗ ) are 

 1 −∑ 𝜙𝑧 
𝑍
𝑧=1 = 0,      and      ∑ 𝜙𝑧𝑔𝑧

′(𝑥∗) 𝑍
𝑧=1 = 0, 

𝜙𝑧(𝜂 −𝑔𝑧(𝑥
∗)) = 0,    and       𝜙𝑧 ≥ 0. 

It can be verified that the Lagrange multipliers 𝜙 ∈ ℝ𝑍 must satisfy 0 ≤ 𝜙𝑧 ≤ 1 for all 𝑧 ∈ ℤ. In 

addition, we can rearrange equation 𝜙𝑧(𝜂 − 𝑔𝑧(𝑥
∗)) = 0 to obtain ∑ 𝜙𝑧𝜃𝑧𝜇̌𝑧 

𝑍
𝑧=1 = 𝜆∑ 𝜙𝑧𝜃𝑧Σ̌𝑧𝑥

∗𝑍
𝑧=1 . 

Consequently, the optimal portfolio 𝑥∗ of the portfolio selection problem is given by 𝑥∗ =
1

𝜆
 Σ∗−1𝜇∗ 

with Σ∗ = ∑ 𝜃𝑧𝜙𝑧Σ̌𝑧
𝑍
𝑧=1   and 𝜇∗ = ∑ 𝜃𝑧𝜙𝑧𝜇̌𝑧 

𝑍
𝑧=1  . Finally, we normalise the weight 𝜔𝑧  by 𝜔𝑧 =

𝜃𝑧𝜙𝑧/∑ 𝜃𝑧𝜙𝑧 > 0
𝑍
𝑧=1   so that ∑ 𝜔𝑧

𝑍
𝑧=1 = 1 . Clearly, the normalisation does not affect the solution 

𝑥∗ =
1

𝜆
 Σ∗

−1
𝜇∗.  

Proposition 2.  The robust counterpart approach (17) is equivalent to the following max-min problem 
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(𝑅𝐹𝑀𝑉
𝐽𝑜𝑖𝑛𝑡)      𝑚𝑎𝑥

𝑥∈ℝ𝑛
  𝑚𝑖𝑛
𝑧∈ℤ

 
1

1+𝑒𝑥𝑝(−𝜃𝑧(𝜇̌𝑧𝑇𝑥−
𝜆

2
𝑥𝑇𝛴̌𝑧𝑥−𝑅𝑇𝑎𝑟𝑔𝑒𝑡−𝛿0‖𝛴̌𝑧

1
2𝑥‖))

 

      

with 𝜇̌𝑧−𝛿0
𝛴̌𝑧𝑥

‖𝛴̌𝑧
1 2⁄ 𝑥‖

 denoting the worst-case scenario of the expected returns. 

 

Proof: For the uncertainty set of the expected returns based on the forecasts of analyst 𝒛 ∈ ℤ , 

𝑼𝒛
𝑬𝒍𝒍𝒊𝒑𝒔𝒐𝒊𝒅(𝝁̌𝒛) = {𝝁𝒛 ∈ ℝ

𝒏|𝝁𝒛 = 𝝁𝒛 +𝜹𝟎𝜮̌𝒛

𝟏
𝟐𝝍 ,‖𝝍‖ ≤ 𝟏  }, the problem (17) can be rearranged as 

max
𝑥∈ℝ𝑛

  min
𝑧∈ℤ

min
‖𝜓‖≤1

 
1

1 + 𝑒𝑥𝑝(−𝜃𝑧 ((𝜇̌𝑧+𝛿0𝛴̌𝑧

1
2𝜓)

𝑇

𝑥 −
𝜆
2
𝑥𝑇𝛴̌𝑧𝑥 −𝑅

𝑇𝑎𝑟𝑔𝑒𝑡))

 

=   max
𝑥∈ℝ𝑛

  min
𝑧∈ℤ

        
1

1 + 𝑒𝑥𝑝(−𝜃𝑧 (𝜇̌𝑧𝑇𝑥−
𝜆
2𝑥

𝑇𝛴̌𝑧𝑥 −𝑅𝑇𝑎𝑟𝑔𝑒𝑡 +𝛿0 min‖𝜓‖≤1  
𝜓𝑇Σ̂

1
2𝑥))

 

Since 𝜓𝑇Σ̂
1

2𝑥 is minimised at 𝜓∗ = −
𝛴̌𝑧
1 2⁄ 𝑥

‖𝛴̌𝑧
1 2⁄ 𝑥‖

, the above max-min problem becomes to (18).  
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Table 1.   

XXXX TECHNOLOGY   

In December last year, the company reported a 48.46% 

year-by-year increase in monthly revenue to NT$ 94.1 

million. 

Closing Price: 93.3 The company is now reaping the harvest of the touch panel 

products in the mainland China market, and the market 

share has been gradually increased. Therefore, the annual 

revenue is expected to reach another new height this year. 

Price Resistance: 100 

Price Support: 89 

 

This table provides an example of a forecast on a stock, XXXX technology using the resistance and 

support approach to interpret analyst’s recommendation, where the interpretation based on the 

fuzzy variable input is a quadruplet form (1.285%, 7.18%,−5.895%, 0%). This is based on the 

discussion of case (1) in section 2.2.2.  

 

 

 

 

 

 

 

 

 

 

 



 

 

30 

 

 

 

Table 2.   

XXXX BANK Neutral Analyst A 

Closing Price 17.5 
Remain “Neutral” rating for XXXX BANK with a NT$ 17.8 price 

target. We retain the recommended investment strategy for the stock 

as “Neutral” based on the following considerations. First, XXXX 

BANK is one of the largest domestic banks in Taiwan in terms of 

enterprise size, and it has a relatively decent market share in the 

Taiwanese financial service sector. Although…” 

Target Price 17.8 

Potential %  2% 

 

This table provides an example of a forecast on stock, XXXX Bank, using the target price and the 

potential rate approach to interpret analyst’s recommendation, where the fuzzy interpretation is 

(1.71%, 1.71%, 1.71%, 0.29%). This is based on the discussion of case (2) in section 2.2.2.  
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Table 3 

Company 
1st Price 

Boundary 

2nd Price 

Boundary 

Closing 

Price 

3rd Price 

Boundary 

4th Price 

Boundary 

XXXX 

CONSTRUCTION 

32.2 33.6 34.3 35.5 36.35 

The share price is falling due to its disappointing quarterly revenue and the lag effect after the 

ex-dividend date. 

XXXX 

INTERNATIONAL 
7.0 7.65 7.8 7.9 8.08 

With the reported quarterly net losses, it is likely that the share price may drop below the last 

trend line bottom. 

 

This table provides two examples of stock forecasts. Both use the price boundaries approach to interpret 

analyst’s recommendations. The fuzzy interpretations are (−2.04%,3.50%,4.08%,2.48%)  for 

XXXX Construction and (−1.92%,1.28%,8.33%,2.31%) for XXXX International. This approach is 

based on the discussion of case (3) in section 2.2.2.  
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Table 4.   

 With analysts’ recommendations Without analysts’ recommendations  

Risk Aversion 𝐹𝑀𝑉  𝑅𝐹𝑀𝑉−𝐴
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒

 𝑅𝐹𝑀𝑉−𝐵
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒

 𝑃𝑀𝑉  𝑅𝑀𝑉− 𝐴 𝑅𝑀𝑉− 𝐵 1/𝑁 

𝜆 = 0  0.4034 0.4924 0.5665 0.3566 0.4253 0.4126 

0.0631 

𝜆 = 0.5  0.6420 0.6304 0.5476 0.5597 0.5134 0.3303 

𝜆 = 1  0.5597 0.5560 0.4465 0.4781 0.4284 0.2828 

𝜆 = 3  0.9602 0.9426 0.5778 0.3063 0.2816 0.2038 

𝜆 = 5  0.9450 0.9041 0.5566 0.2595 0.2408 0.1773 

 

This table shows the ex-ante expected risk-adjusted returns (Mean/SD) of the portfolios selected using  

different investment strategies, 𝐹𝑀𝑉   , 𝑅𝐹𝑀𝑉−𝐴
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒

 ,  𝑅𝐹𝑀𝑉−𝐵
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒

 , 𝑃𝑀𝑉  , 𝑅𝑀𝑉−𝐴  , 𝑅𝑀𝑉−𝐵   and 1/N. 

They are compared across different risk aversion levels, with and without analysts ’ recommendations, 

except for 1/N. 
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Table 5.   

 With analysts’ recommendations Without analysts’ recommendations  

Risk Aversion 𝐹𝑀𝑉  𝑅𝐹𝑀𝑉−𝐴
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒

 𝑅𝐹𝑀𝑉−𝐵
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒

 𝑃𝑀𝑉  𝑅𝑀𝑉− 𝐴 𝑅𝑀𝑉− 𝐵 1/𝑁 

𝜆 = 0  1.2803 1.2845 0.5742 1.1770 1.2394 0.4825 

0.2382 

𝜆 = 0.5  0.7089 0.6104 0.4520 0.6535 0.5590 0.3893 

𝜆 = 1  0.4961 0.4648 0.3994 0.4623 0.4258 0.3486 

𝜆 = 3  0.3508 0.3506 0.3488 0.3180 0.3138 0.3028 

𝜆 = 5  0.3412 0.3440 0.3419 0.2957 0.2940 0.2891 

 

This table shows the ex-post realised returns of the portfolios selected using  different investment 

strategies, 𝐹𝑀𝑉   , 𝑅𝐹𝑀𝑉−𝐴
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒

 ,  𝑅𝐹𝑀𝑉−𝐵
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒

 , 𝑃𝑀𝑉  , 𝑅𝑀𝑉−𝐴  , 𝑅𝑀𝑉−𝐵  and 1/N. They are compared 

across different risk aversion levels, with and without analysts’ recommendations, except for 1/N. The 

numbers reported in bold shows the highest return in each of the risk aversion level for the all strategy 

types. 
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Figure 1 

This figure graphically presents the membership function based on equation (6). The 

membership function is a model used to represent/interpret the analyst’s investment 

forecasts which is regarded as qualitative in this paper.  
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Figure 2 

 

This figure graphically shows the difference in the various membership functions 

arising from the different credibility levels of the analysts as perceived by the investor. 

The membership functions are based on the target returns as the benchmark of the 

investor and used as the aspiration level for the portfolio.  
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Figure 3 

 

This figure shows the monthly volumes of stock recommendations provided by two 

securities brokerage firms, analysts 1 and 2. They provided a total of 1585 (analyst 1) and 

308 (analyst 2) stock recommendations over the two years study period April 2012 to April 

2014.  
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Figure 4 

 

This figure shows the process of portfolio selection. At each time point t, 520 trading days up to time t 

are used to estimate the input parameters based on equation (3). Then, expected return and variances 

are estimated based on equations (7) and (8) to build the “view” model using the analysts’ forecasts on 

day t. This is followed by the construction of the full portfolio. The portfolio is then held for D (i.e., 5) 

days and profit/loss are calculated at the end of D day. This is repeated by moving one-day ahead each 

time from t keeping estimation periods of 520 days each time.    
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Figure 5 

 

 

 

This figure shows the realised cumulative returns of portfolios based on various investment strategies, 

i.e.,  𝐹𝑀𝑉  , 𝑅𝐹𝑀𝑉−𝐴
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒

,  𝑅𝐹𝑀𝑉−𝐵
𝑆𝑒𝑝𝑒𝑟𝑎𝑡𝑒

, 𝑃𝑀𝑉 , 𝑅𝑀𝑉−𝐴 and 𝑅𝑀𝑉−𝐵.  
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