
Automated Test Case Generation from
Domain-Specific High-Level Requirement

Models

Submitted for the Degree of
Doctor of Philosophy

At the University of Northampton

2018

Oyindamola Yeyejide Olajubu

© Oyindamola Yeyejide Olajubu 2018 (PhD).

This thesis is copyright material and no quotation from it may be published

without proper acknowledgement.

Abstract

One of the most researched aspects of the software engineering process is the veri�cation

and validation of software systems using various techniques. The need to ensure that

the developed software system addresses its intended speci�cations has led to several ap-

proaches that link the requirements gathering and software testing phases of development.

This thesis presents a framework that bridges the gap between requirement speci�cation

and testing of software using domain-speci�c modelling concepts. The proposed modelling

notation, High-Level Requirement Modelling Language (HRML), addresses the drawbacks

of Natural Language (NL) for high-level requirement speci�cations including ambiguity

and incompleteness. Real-time checks are implemented to ensure valid HRML speci�ca-

tion models are utilised for the automated test cases generation.

The type of HRML requirement speci�ed in the model determines the approach to be em-

ployed to generate corresponding test cases. Boundary Value Analysis and Equivalence

Partitioning is applied to speci�cations with prede�ned range values to generate valid and

invalid inputs for robustness test cases. Structural coverage test cases are also generated

to satisfy the Modi�ed Condition/Decision Coverage (MC/DC) criteria for HRML speci�-

cations with logic expressions. In scenarios where the conditional statements are combined

with logic expressions, the MC/DC approach is extended to generate the corresponding

tests cases.

Evaluation of the proposed framework by industry experts in a case study, its scalability,

comparative study and the assessment of its learnability by non-experts are reported. The

results indicate a reduction in the test case generation process in the case study, however

non-experts spent more time in modelling the requirement in HRML while the time taken

for test case generation is also reduced.

Keywords

Domain Speci�c Language, Model Based Testing, Requirement Based Testing, Modi�ed

Condition/ Decision Coverage

i

Acknowledgements

Firstly, I would like to thank my supervisory team Dr. Suraj Ajit, Dr. Mark Johnson

and Dr. Scott Turner for their support and guidance throughout my PhD. I am grateful

to General Electric (GE) Aviation, Cheltenham, UK and the University of Northampton,

UK for the joint sponsorship of this research. I would also like to thank Scott Thomson

and Mark Edwards at General Electric (GE) Aviation for providing the information about

development practices and sample documents for analysis.

I owe a great debt of gratitude to my family for their support, for their belief in me saw me

through the ups and downs. I am eternally grateful to my dad, Asiwaju Oyedeji Olajubu,

and my mum, Yeye Olufunke Olajubu, for their unfailing encouragement. To Oladeji and

Oloruntoba, my brothers, I am grateful to you for always having my back and our deep

friendship. My extended 'jand' family, the Okusanya's, the Arokoyo's and the Olayinka's,

mo dupe lowo yin o.

I would like to thank my postgraduate friends, Alyaa Al Barrak, Al-Khalil Ahmad, Ameer

Al-Sadi and Aldabbagh Marwan for their invaluable assistance and support. Finally, I

would like to specially thank a few of my friends who stood by me throughout my PhD:

Seyi Harris, Carolina Gomes De Andrade, Ezejanu Nwafor Orizu, Bolaji Alege, Justina

Abime, Ayo Adeeyo, Ayodeji Olamide, Cynthia Atufu, Kehinde Aina, Kehinde Adeniyi

and Charle Michael.

ii

Dedication

To my family and friends who continuously inspire and believe in me.

iii

List of Abbreviations & Acronyms

ACRE - Approach to Context-based Requirements Engineering

AE - Arithmetic Expression

AR - Arithmetic Requirement

ARM - Automated Requirements Management

ARSL - Aeromautical Rules Script Language

AS - Abstract Syntax

ASG - Abstract Syntax Graph

AST - Abstract Syntax Tree

ATL - Atlas Transformation Language

BVA - Boundary Value Analysis

CASL - Common Algebraic Speci�cation Language

CNL - Controlled Natural Language

CoRE - Consortium Requirement Engineering

CORE - Controlled Requirement Expression

COTS - Commercial O�-The-Shelf

DSL - Domain Speci�c Language

DSM - Domain Speci�c Modelling

EARS - Easy Approach to Requirements Syntax

EBNF - Extended Backus-Naur Form

EGL - Epsilon Generation Language

EMF - Eclipse Modelling Framework

EP - Equivalence Partitioning

iv

ET - Eclipse Time

ETL - Epsilon Transformation Language

EVL - Epsilon Transformation Language

ExactTC - Exact Validation Condition

GPL - General Purpose Language

HLR - High Level Requirements

HRML - High-level Requirement Modelling Language

ID - Identi�er

IDE - Integrated Development Environment

JTS - Jakarta Tool Suite

LCC - Logical Comparison Condition

LessTC - Less Time Condition

LLR - Low Level Requirements

LR - Logic Requirements

M2M - Model-to-Model

M2T - Model-to-Text

MBD - Model Based Development

MBE - Model Based Engineering

MBSD - Model Based Software Development

MBSE - Model Based Software Engineering

MBT - Model Based Testing

MC/DC - Modi�ed Condition/Decision Coverage

MDA - Model Driven Architecture

MDD - Model Driven Development

MDE - Model Driven Engineering

MOF - Meta Object Facility

MoreTC - More Time Condition

NL - Natural Language

NLP - Natural Language Processing

v

OCL - Object Constraint Language

OMG - Object Management Group

OPD - Object Process Diagram

OPL - Object Process Language

OPM - Object Process Methodology

OPCAT - Object Process CASE Tool

OTT - Overall Time Taken

QVT - Query/Views/Transformation

RAM - Random Access Memory

RBT - Requirement Based Testing

RQA - Requirements Quality Analyzer

RSML - Requirement Speci�cation Modelling Language

RSML-e - Requirement Speci�cation Modelling Language without events

SADL - Semantic Application Design Language

SCR - Software Cost Reduction

SoS - System of Systems

SUT - System Under Test

SysML - Systems Modelling Language

TAM - Technology Acceptance Model

TCID - Test Case ID

TCG - Test case generation

TDD - Test Driven Development

TLCC - Timed Logic Comparison Condition

UML - Uni�ed Modelling Language

VDM - Vienna Development Method

XML - eXtensible Markup Language

vi

Publications

1. Olajubu, O., Ajit, S., Turner, S. (2017) Automated test case generation from high-

level logic requirements using model transformation techniques. Proceedings of 9th

Computer Science and Electronic Engineering Conference (CEEC), 178 - 182.

2. Olajubu, O., Ajit, S., Johnson, M., Turner, S., Thomson, S., Edwards, M. (2015)

Automated test case generation from domain speci�c models of high-level require-

ments. Proceedings of the 2015 Conference on research in adaptive and convergent

systems - (RACS), 505 - 508.

3. Ajit, S., Olajubu, O., Thomson, S. and Edwards, M. (2015) Model transformation of

high-level requirements in a domain speci�c language into a formal speci�cation lan-

guage. Paper presented to: 15th International Workshop on Automated Veri�cation

of Critical Systems (AVOCS), Edinburgh, 01 - 04 September 2015.

4. Olajubu, O. (2015) A textual domain speci�c language for requirement modelling. In

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering

(FSE). New York, NY, USA: ACM, pp. 1060 - 1062.

vii

Contents

Abstract i

Acknowledgements i

1 Introduction 1

1.1 Software Testing . 2

1.2 Requirement Based Testing . 4

1.3 Model Based Testing . 7

1.4 Motivation, Aims and Objectives . 10

1.5 Structure of Thesis . 10

2 Background 12

2.1 Model-Based Development . 12

2.2 Model Transformations . 15

2.2.1 Model-to-Model Transformation . 16

2.2.2 Model-to-Text Transformation . 17

2.3 Domain Speci�c Languages . 18

viii

CONTENTS ix

2.3.1 DSL Frameworks . 19

2.4 Requirement Speci�cation . 20

2.4.1 Natural Language Requirement Speci�cation 20

2.4.2 Formal Methods for Requirement Speci�cation 22

2.4.3 Model-Based Requirement Speci�cation 23

2.5 Automatic Test Case Generation . 25

2.5.1 Test Case Generation from Natural Language Speci�cations 25

2.5.2 Test Case Generation from Models 26

2.5.3 Test Case Generation from Formal Speci�cations 28

2.5.4 Test Case Generation from Domain Speci�c Approaches 28

2.6 Requirement Speci�cation in Aviation Domain 30

2.7 Chapter Summary . 33

3 Requirement Modelling 34

3.1 The Proposed High-level Requirement Modelling Language (HRML) 35

3.1.1 Language Grammar and Metamodel 36

3.1.2 Input and Output . 37

3.1.3 De�nition . 38

3.1.4 Behaviour . 41

3.2 Requirement Validation . 49

3.2.1 Unique Requirement ID . 51

3.2.2 Redundant Input and Output Signals 51

CONTENTS x

3.2.3 Range Requirement Validation . 52

3.2.4 Unique Feature/State Validation 52

3.2.5 Duplicate Requirements . 53

3.2.6 Requirement Con�ict . 54

3.3 Discussion . 55

3.3.1 Comparison between CNL and HRML 55

3.3.2 Requirement Management Tools . 56

3.4 Chapter Summary . 57

4 Test Case Generation 58

4.1 Proposed Methodology . 58

4.2 Logic Requirement Test Cases . 60

4.2.1 Multiple Conditions and Single Operator 62

4.2.2 Multiple Conditions and Multiple Operators 68

4.3 Pseudo Requirement Test Cases . 73

4.4 Boundary Value Analysis . 77

4.5 Chapter Summary . 81

5 Evaluation 83

5.1 Industry Case Study . 84

5.1.1 Planning and Design . 85

5.1.2 Study Findings . 87

CONTENTS xi

5.1.3 Discussion . 91

5.1.4 Threats to Validity . 93

5.2 Evaluation of Learnability of the Approach 93

5.2.1 Planning and Design . 94

5.2.2 The Learnability Evaluation Results 96

5.2.3 Discussion . 100

5.3 Scalability Report . 102

5.3.1 Planning and Design . 103

5.3.2 The Scalability Evaluation Results 104

5.3.3 Discussion . 105

5.4 Comparison with Java-based Project . 106

5.5 Chapter Summary . 108

6 Conclusion 109

6.1 Summary of Thesis Achievements . 109

6.2 Research Contributions . 112

6.3 Applications . 113

6.4 Limitations and Future Directions . 114

References 116

A Metamodel 138

B Requirement Speci�cation Walkthrough 140

C Walkthrough of test case generation process 148

D GE Evaluation Exercises 154

E Learnability Evaluation Results 167

xii

List of Tables

3.1 Comparison between CNL and HRML accross di�erent aspects. 55

4.1 BREQ2 test cases represented in logic table with walking false pattern. . . 66

4.2 BREQ3 test cases from walking true pattern. 70

4.3 Walking false test cases for ANDed fragment in BREQ3. 72

4.4 Test cases for single condition in BREQ3. 73

5.1 The evaluation phases, activities and data collection process for the indus-

try case study. 86

5.2 Table describing the role of each participant, years of experience, level of

involvement in requirement and testing processes. 88

5.3 Phases and activities for the learnability evaluation. 95

5.4 Manual Testing results (in seconds). 97

5.5 Automated Testing results (in seconds). 99

5.6 Eclipse completion times (in seconds). 100

5.7 Computer and Java Virtual Machine Con�gurations for the performance

execution environment. 104

5.8 MC/ DC test case generation times from requirement models 105

xiii

5.9 Comparison between the proposed Eclipse-based and Java-based standalone

tool. 106

xiv

List of Figures

1.1 Veri�cation and Validation of development phases in the V model (Baresi

and Pezze 2006) . 3

1.2 Model Based Testing (Hierons et al. 2009) 8

2.1 Concepts of model transformations (Biehl 2010) 16

2.2 Software development processes and outputs adapted from (RTCA Inc.

2011a). 30

3.1 Overview of language development process. 36

3.2 Language metamodel showing the sections and requirement types. 37

3.3 Input and Output sections. 37

3.4 Metamodel for De�nition section. 39

3.5 Requirements in the De�nition section. 39

3.6 Metamodel for Range requirements. 40

3.7 Examples of range de�nitions. 40

3.8 Metamodel for Behaviour section. 41

3.9 Metamodel for Logic requirement. 42

xv

LIST OF FIGURES xvi

3.10 XText grammar de�nition for Logic requirements. 43

3.11 Examples of HRML Logic requirements. 43

3.12 Metamodel for Pseudo requirements. 44

3.13 Metamodel of time-related concepts. 45

3.14 Timing requirements in Car Alarm example in HRML. 46

3.15 XText grammar for HRML transition expressions. 46

3.16 XText grammar for conditional speci�cations as Pseudo requirements. . . . 47

3.17 An example of a nested Pseudo requirement. 47

3.18 XText grammar for HRML arithmetic expressions. 47

3.19 Metamodel for Arithmetic requirement. 48

3.20 Validation check for unique requirement ID. 51

3.21 Check for redundant input and output parameters. 52

3.22 Check for multiple range speci�cation for an element. 52

3.23 Validation check for duplicate state de�nitions. 53

3.24 Validation check for duplicate feature de�nitions. 53

3.25 Validation check for duplicate feature de�nitions. 53

3.26 Validation check for duplicate feature de�nitions. 54

4.1 Overview of proposed methodology for automated test case generation. . . 60

4.2 Pseudo requirement example with depth of 2. 75

4.3 Pseudo requirements example with depth of 3. 76

4.4 BVA test cases for parameters within range. 80

4.5 BVA with no range de�ned. 81

4.6 BVA out of range value for temperature. 81

5.1 Software development lifecycle at GE Aviation for manual approach to test

case generation. 84

5.2 Proposed automated approach to test case generation from domain speci�c

requirement models. 85

5.3 Overview of proposed framework. 86

5.4 Error rate based on the number of participants, correct and incorrect tests

in the manual testing exercise. 101

5.5 Comparison of the time taken (in seconds) to perform the manual and

automated tasks. 102

5.6 Pro�ling set up for EGL test case generation. 103

5.7 Test case generation times for requirement models with increasing number

of conditions. 105

xvii

List of Algorithms

4.1 Algorithm for test case generation for logic requirement with multiple con-

ditions and a single operator. 63

4.2 Walking false algorithm for test case generation for logic requirement with

"and" operator. 64

4.3 Walking true algorithm for test case generation for logic requirement with

"or" operator. 65

4.4 Algorithm for test case generation for logic requirement with multiple con-

ditions and multiple operators. 67

4.5 Algorithm for the �rst table generation for multiple operator logic require-

ments. 69

4.6 Algorithm for intermediate tables generation for multiple operator logic

requirements. 71

4.7 Algorithm for test case generation for di�erent levels of Pseudo requirements. 73

4.8 Pseudo test algorithm for level one . 74

4.9 Algorithm to check valid and invalid range inputs 78

xviii

Chapter 1

Introduction

The increasing complexity of software and computer systems drives the need for more

e�cient approaches to development. The world is continuously relying on software systems

in various sizes which are embedded into the devices used in our daily life. Traditional

methods of development involve the system programmers and testers manually deriving

the artefacts required in the development process. Software development involves several

phases conducted sequentially and/or iteratively to achieve the �nal product. In the �rst

phase, the purpose of the software in terms of client expectations are documented.

These are the software requirements describing the desired functionalities of the system to

be built. After the requirements have been speci�ed, further details on how the software

should achieve the intended functionalities are then described. What the software should

do is usually speci�ed at the requirement speci�cation phase while the further low-level

details are often done at the design phase. A speci�cation can be used to describe what

the desired behaviour of a component subsystem or system is by omitting details of how

it should be implemented (Heitmeyer and Bharadwaj 2000). The next phase of develop-

ment involves the implementation of the software code in an appropriate programming

language. Software validation, usually performed at later stages of the development life-

cycle, involves conducting several activities to determine whether the right software is

built.

1

1.1. Software Testing 2

To increase the productivity of the overall software development process, various in-

novative methods and tools have been proposed to automate development activities

(Viswanathan and Samuel 2016)(Zou and Liu 2014) to reduce the time taken and e�ort,

compared to manual approaches. Models are being used for automatic code generation

(Teixeira et al. 2017) and testing (Huang and Peleska 2017). In much larger systems, a

manual approach to software testing can be time consuming in addition to the probability

of introducing human errors to error prone tasks (Tretmans and Belinfante 1999). The

research presented in this thesis focuses on the automation of testing activities within the

software veri�cation phase. This chapter introduces the author's research thesis. Section

1.1 presents the role of testing and the need for its automation; section 1.2 describes the

use of requirement speci�cations for early software testing; In section 1.3, model based

approaches to deriving testing artefacts deduced from software models are presented. The

motivation of the research including the aims and objectives are stated in section 1.4 and

section 1.5 describes the structure of its subsequent chapters.

1.1 Software Testing

Software veri�cation focuses on building the system in the right way, validation is more

concerned with building the right system (Boehm 1984). Veri�cation is the con�rmation

that the software requirements are ful�lled (Institute of Electrical and Electronics Engi-

neers (IEEE) Standards Board 2017). The assurance that the right system is being built

requires the application of a number of validation activities (Boehm 1984). The validation

of a system ensures that the implemented system is a re�ection of stakeholders' needs.

The software validation process is concerned with con�rmation that the software satis-

�es the intended use and solves the right problem (Institute of Electrical and Electronics

Engineers (IEEE) Standards Board 2017). Software testing is a crucial activity in the

development lifecycle where techniques are employed for the detection of faults and errors

in software systems. Software tests are designed to ensure that the system built, conforms

to its speci�cations and can account to more than 50% of the total cost of development

1.1. Software Testing 3

Figure 1.1: Veri�cation and Validation of development phases in the V model (Baresi and
Pezze 2006)

(Blackburn, Busser, and Nauman 2004).

There are di�erent strategies that can be adapted in testing depending on the tester's

access to or knowledge of the internal details of the implemented software and the de-

velopment artefact in context. Black box testing basically tests the functionalities of

the system as a black box based on its speci�cations without knowledge of the internal

composition of the system implementation. White box testing is however concerned with

testing the internal structure of the system with regards/reference to the details of the

software implementation. Gray box testing combines black and white box testing to vali-

date the system by testing the system speci�cations with limited knowledge of the system

implementation.

There are di�erent forms of testing done against di�erent levels of the software life-cycle.

The scope of testing a system is relative to what development artefact is being tested.

Figure 1.1 adapted from (Baresi and Pezze 2006), illustrates how the system artefacts

are validated/veri�ed in the development life-cycle using the V model. The stakeholders'

needs are broken down at the requirements stage to the overall system speci�cations. At

the design phase, the system speci�cations are decomposed into various subsystems and

implemented on a component or module level.

At the lowest level of abstraction, unit testing is performed against chunks of the imple-

1.2. Requirement Based Testing 4

mentation code for each component or module under test. The aim of integration testing

applied to the system design, is to ensure that the implementation of related components,

work together. System testing focuses on verifying that the integration of the compo-

nents meets the system speci�cations and acceptance tests done at the highest level of

abstraction ensure that the stakeholders' needs are met. Acceptance testing can be done

by domain experts or potential users and is usually done by executing a test script against

de�ned acceptance criteria. Unit tests are low-level tests against the implementation of

low-level requirements while acceptance tests are against the high-level requirements.

1.2 Requirement Based Testing

The detection of faults by testing solely after the system has been implemented can lead

to additional costs to development. Therefore, veri�cation from early stages such as the

requirement speci�cation and design levels can be bene�cial when used as a preventive

measure. Over the years, automation of the di�erent aspects of software testing has been

introduced. Automated testing can reduce cost of software veri�cation in terms of time

and e�ort. It is advantageous to generate tests in parallel to development activities so

as to detect errors as early as possible (Baresi and Pezze 2006). By considering how the

software would be veri�ed and validated during the requirement speci�cation process,

faults and errors can be detected as early as possible.

Requirement engineering involves activities including elicitation, analysis and speci�ca-

tion. To produce quality requirements, there are certain attributes that are desired. These

attributes are traceability, precision, unambiguity, correctness, completeness, veri�ability,

atomicity, consistency, design independence, feasibility and �exibility. Requirement spec-

i�cations should be traceable in that each requirement should be identi�able and trace-

able to its source. The speci�cations should be precise in that they are clearly stated

to the point and well structured. They should be unambiguous in that it should not be

interpretable in di�erent ways. To reduce ambiguity, description of terms used in the

1.2. Requirement Based Testing 5

speci�cation can be provided. The correctness of the requirement is measured by how

adequately speci�ed it is to satisfy stakeholders' needs. Correct requirements should nei-

ther be unnecessarily "gold plated" nor contain useless information (noise). Requirements

should also be speci�ed completely in that limits or exceptions should be fully described.

Complete requirements should also not have dangling references (i.e. unde�ned features).

Every reference to features or objects of the system should be fully de�ned somewhere in

the speci�cation document.

Planguage is a speci�cation language which can be used for the speci�cation and analysis

of natural language system requirements (Gilb 1997)(Gilb 2005). Planguage has been

applied in system engineering to de�ne concepts, parameters and grammar where the lan-

guage syntax is speci�ed. Planguage supports the de�nition of requirement rules including

the version, status, tags, risks, source, quality level, etc. and has also been used in quan-

tifying the quality of the requirement speci�cations (Gilb 2006)(Tse and Kahlon 2013).

Easy Approach to Requirements Syntax (EARS) is an approach that introduces precision

to natural language speci�cations of high-level requirements (Mavin et al. 2009)(Mavin

and Wilkinson 2010). EARS templates have di�erent syntaxes including: general speci-

�cations to describe triggers and responses, ubiquitous requirements which have neither

triggers nor preconditions, event-driven requirements dependent on when a trigger occurs,

conditional speci�cation of unwanted behaviour, state-driven requirements to describe re-

sponses while the system is in a speci�c state, optional features and a combination of

keywords to de�ne complex requirements. The supporting tool for specifying controller

requirements, EARS-CTRL, includes an editor for the EARS speci�cation, analysis and

transformation of the natural language requirements into controller logic speci�cations

(Lúcio et al. 2017).

To support early veri�cation, every requirement should be speci�ed such that it is ver-

i�able/testable either directly or indirectly. Test engineers should be able to determine

whether the implemented system satis�es or meets the speci�ed requirements. Atomicity

is an attribute that ensures that requirements are not combined. Depending on the level

of requirement speci�cation, this usually means that each requirement should not be fur-

1.2. Requirement Based Testing 6

ther decomposable. The requirements must be consistent in not diverging from business

goals or overall functionality. This means that a requirement should not con�ict nor con-

tradict one another. Requirements speci�ed should be feasible, realistic and achievable

in practice. As change is inevitable, requirements should also be speci�ed in a �exible

manner. To specify quality requirements, the notation used should be such that it caters

for some of these quality attributes.

There is a correlation between the artefacts in the requirements phase and the veri�cation

phase. One needs to take into consideration the veri�cation and validation of software

from the requirements engineering phase. The �rst phase of any development is the

speci�cation and understanding of what the system is to do.

Over the years, several methods and notations have been developed for requirement speci-

�cation. However, requirement speci�cation for lot of systems are still done with a combi-

nation of natural language (NL) and informal diagrams (Miller et al. 2004) (Ryan 1993).

This is due to the high level of expressiveness achieved by the use of natural language

because it requires no additional training and it is easy to understand. Testing natural

language requirements could be challenging because they are often ambiguous, imprecise,

inconsistent and incomplete. This has in turn led to the other formats and tools for re-

quirement speci�cation. Controlled natural language (CNL) is one of the formats that

has been proposed for requirement speci�cation. A CNL is used to refer to requirement

patterns that restrict the expressiveness of natural language by allowing certain phrases

and a restricted vocabulary (Fockel and Holtmann 2014). This keeps requirements speci-

�ed in this format to be automatically processed and understandable by the stakeholders.

Fully testing a system could require an exponential number of test cases as exhaustive

testing is usually impractical. However, requirement based testing (RBT) can be feasible

with a �nite list of requirements and a set of completion criteria unlike exhaustive testing

(Hayhurst and Veerhusen 2001). Requirement speci�cations describe the behaviour of the

system without knowledge of the implementation. Therefore, black box testing strategies

can be applied to the requirement speci�cations to verify the behaviour of the system.

(Heitmeyer and Bharadwaj 2000).

1.3. Model Based Testing 7

1.3 Model Based Testing

Model Based Software Development (MBSD) is an approach to software development

where models are primary artefacts and are used in one or more phases of the development

life-cycle (Zheng and Taylor 2013). The use of models for the automation of software

testing activities is generally known as Model-based Testing (MBT). The application of

MBT approaches in development involves using models in di�erent formats for veri�cation

purposes. The generation of tests using model-based approaches has been extensively

studied including approaches based on the Uni�ed Modelling Language (UML) and formal

methods especially in safety critical domains (Shamsoddin-Motlagh 2005). The tools for

applying formal methods use proofs to verify certain properties of the behavioural model

of the software systems (Hierons et al. 2009). Formal methods which use mathematically

based notations for concise speci�cations however have high learning curves making them

unpopular in non-critical domains.

In the aviation domain, formal methods and requirement-based testing are acceptable in

the software veri�cation process according to certi�cation standards DO-178C (RTCA

Inc. 2011a). The formal methods supplement to DO-178C, RTCA DO-333 (RTCA Inc.

2011c) provides a guide for the use of mathematically based techniques for the speci�ca-

tion, development, and veri�cation of software. Although formal methods route can be

used in development and veri�cation of systems in aviation, an alternative veri�cation

approach is the application of requirement-based test coverage analysis is also an accept-

able technique in the veri�cation process (Holloway 2012)(Moy et al. 2013). Another

supplement to DO-178C, DO-331 (Moy et al. 2013) is also provided for the application

of model-based approaches to support the di�erent stages of development. The applica-

tion of formal methods would require all stakeholders to understand the mathematical

techniques employed which could have a high learning curve. However, the modelling

approach proposed introduces formalism to the existing process of representing require-

ments in natural language. The proposed requirement modelling notation in described in

Chapter 3 represents the speci�cations in a concise manner for the automatic generation

1.3. Model Based Testing 8

Figure 1.2: Model Based Testing (Hierons et al. 2009)

of test cases to satisfy Modi�ed Condition/ Decision Coverage (MC/DC), an industry

standard structural testing technique (Hayhurst and Veerhusen 2001).

Model-based approaches can be applied to di�erent aspects of software testing including

test oracle derivation, model checking, static and dynamic analysis as shown in Figure 1.2.

These applications span throughout the levels of development and at the requirements

level, test cases can be generated to satisfy acceptance test objectives. Dias Neto et al.

2007 outlines the following as challenges to the automation of test case generation using

model-based techniques:

I. Models used for test case generation are usually not integrated with other artefacts

in the development process;

II. Available model-based testing approaches cannot usually represent and test non-

functional requirements such as usability and reliability;

III. The approaches require knowledge of the modelling language in view and specialised

generation tools;

IV. Most approaches are not evaluated empirically and/or not transferred to industrial

environments.

1.3. Model Based Testing 9

This research proposes a framework for automatic test case generation that targets these

de�ciencies. The primary focus of the proposed approach is the use of models which aid

representation of requirements using terms and semantics that are speci�c to a domain.

These type of models termed Domain Speci�c Models (DSM) have been shown to be more

expressive than their generic counterparts when applied in a particular domain (Zheng

and Taylor 2013). This is because they aid understanding and e�ective communication

among stakeholders by using concepts related to their domain (Tolvanen 2006).

The use of DSMs for requirement speci�cation and test generation would aid integration

with the requirements gathering and testing phases of software development, addressing

the �rst de�ciency (I). The requirement models can in turn be used for lower level ac-

tivities by increasing the level of detail in speci�cation and design phases. Also, the test

cases generated for acceptance activities can be transformed to test scripts used for system

and integration tests by including platform-speci�c details. The second de�ciency (II) is

addressed by the proposed approach in that it includes the modelling of non-functional

properties represented at this level of abstraction, such as timing properties and temporal

constructs in the system. Although timing requirements can be described as aspects of

a system's functionality, they can also be views as a subset of performance requirements

and therefore categorised as non-functional (Glinz 2007). The use of a domain-speci�c no-

tation which captures domain knowledge addresses (III), by aiming to reduce the learning

curve of the modelling language. In this manner, the requirement speci�cations are in do-

main terminology familiar to the stakeholders combined with a user-friendly automation

tool which requires minimal user intervention. The �nal de�ciency (IV) is addressed by

using an industry case study in the aviation domain to empirically evaluate the proposed

approach.

1.4. Motivation, Aims and Objectives 10

1.4 Motivation, Aims and Objectives

The high initial cost of automation set up, selecting the right tools and sta� training

are some of the limitations of automated software testing (Ra� et al. 2012). Over the

years, a lot of research has been conducted on several generic approaches to automated

test case generation and relatively less on domain speci�c techniques. Focusing on the

aviation domain, the author takes a tailored approach to automate test case generation

by employing open source software to develop tools that complement existing processes.

This allows for integration of the resulting requirement speci�cation and testing artefacts

into existing development practices. The main aim of this research is:

• To propose and validate a model-based testing framework for the speci�cation of

high-level requirements and automatic generation of corresponding test cases from

domain speci�c models within an industrial software engineering life-cycle.

The objectives of the research are outlined below:

• Objective 1: To develop a domain speci�c modelling notation for requirement spec-

i�cation using an industrial case study.

• Objective 2: To use model transformation techniques to generate abstract test cases

from the requirement models.

• Objective 3: To apply empirical strategies to evaluate the proposed framework.

1.5 Structure of Thesis

This chapter has brie�y introduced the di�erent concepts related to this research. These

concepts are further discussed in the next chapter. The aims and objectives have also been

outlined. The �nal chapter draws conclusions from the research conducted and identi�es

possible directions for future work. The remainder of this thesis is organized as follows:

1.5. Structure of Thesis 11

Chapter 2 provides more detailed description of the background concepts relevant to the

research and reviews existing work.

The domain speci�c language developed is presented in Chapter 3. The grammar and

components of the language are described. The di�erent types of inconsistencies detected

among requirements are also described.

Chapter 4 describes the proposed approach to test case generation from the di�erent

requirements modelled in the speci�cation language. The approach employs relevant

testing strategies to di�erent requirement types to achieve industry standard coverage

criteria.

In Chapter 5, the evaluation of the proposed framework is presented. This includes

industry based empirical evaluation as well as scalability and learnability evaluation.

Chapter 6 summarises the thesis and presents the conclusions. The limitations of the

framework and future directions are discussed.

l

Chapter 2

Background

This chapter presents the background concepts relevant to this research and the state of

the art. Section 2.1 introduces the use of model-based approaches to software development

and model transformations are presented in section 2.2. Section 2.3 introduces domain-

speci�c languages (DSL) for modelling, the approaches to DSL development as well as

its industrial application are discussed. The state of the art of formats for requirement

speci�cation are discussed in section 2.4. Section 2.5 describes existing approaches to

automatic test case generation, Section 2.6 describes requirement speci�cation in the

aviation domain including how DSLs have been used previously in the domain and the

chapter is summarized in section 2.7.

2.1 Model-Based Development

There has recently been a shift from traditional software development approaches to in-

clude the use of modelling concepts to separate concerns in complex systems (Martínez,

Cachero, and Meliá 2013) (Volter et al. 2013) (Lepuschitz et al. 2017) (Tesoriero and

Altalhi 2017). The transition from code-centric development to model-based approaches

allow stakeholders to focus on capturing the high-level needs of the system using di�erent

forms of abstractions (Martínez, Cachero, and Meliá 2013). Model-Based Development

12

2.1. Model-Based Development 13

(MBD), also known as Model-Driven Development (MDD) or Model-Driven Engineering

(MDE), involves the utilization of models in di�erent phases of the software development

lifecycle (Staron 2009). Models can be described as abstractions of certain aspects of

a system for the purpose of human understanding or mechanical analysis (France and

Rumpe 2007). The models are used to capture the relevant information at each phase

and can be used to derive other development artefacts such as implementation code and

tests (Born et al. 2004). Various studies (Sendall and Kozaczynski 2003) (Kamma and

Kumar 2014) (Pastor, España, and Panach 2016) have shown that one of the bene�ts

of model-based techniques is an increase in productivity. This is mainly by optimizing

software development processes through automation of manual tasks such as software im-

plementation and testing (Baker, Loh, and Weil 2005). For example, there are automatic

code generators from models to support the manual development of software implementa-

tion code (Dezani et al. 2011) (Hu et al. 2014) (Teixeira et al. 2017). To support software

veri�cation, speci�cation models can also be used to automatically generate test cases

(Funke 2011)(Mohalik et al. 2014).

(Schätz et al. 2005) proposed an approach for the management of requirement text to

design models. encourages detailed requirement speci�cation for easier design transmis-

sion links. informal requirements are transformed into structured models for analysis and

design while maintaining traceability in each phase. The traceability links can also exist

between speci�cations as well as sub-requirements. The AutoRAID to supports hierar-

chical structuring of the informal natural language speci�cations, the classi�cation for the

requirements and analysis of consistency in the requirement speci�cations. The tool also

captures decision process bidirectional tracing from requirements to support the incre-

mental transformation into design models from informal requirement speci�cations. In

the domain of systems of systems (SoS) engineering, the Approach to Context-based re-

quirements engineering (ACRE) is applied to specify the implementation notation for the

SoS-ACRE ontology, the framework and the set of processes for utilizing the framework

(Holt et al. 2015). A complete set of requirements in visualised in ACRE by describing a

requirements ontology that is used to de�ne a number of views. The ontology is de�ned

2.1. Model-Based Development 14

using SysML and provides a visualization of all the key concepts required, describes the

terminology, and the interrelationships between the de�ned concepts.

Models can also be viewed as entities that represent a system at a particular level of ab-

straction (Jackson 2012) (Whittle, Hutchinson, and Rounce�eld 2014). A model describes

a system, usually expressed in a modelling language and conforms to a metamodel (Sei-

dewitz 2003). A metamodel is a model of a modelling language and de�nes what can be

expressed as a valid model. Every model that is valid in a speci�c notation must also con-

form to the constraints de�ned in its metamodel. At high abstraction levels, a model can

include relatively less information or details when compared to its counterparts at lower

abstraction levels. In software development, it can be inferred that the higher the level of

implementation details, the lower the level of abstraction. Models can also be represented

in either a textual or graphical format, usually determined by the appropriate notation for

the type of information to be speci�ed. Textual modelling involves the use of structured

text to create models while Graphical models are developed with the use of diagrammatic

elements for speci�cation. Modelling notations can also be classi�ed as generic or domain

speci�c based on the purpose for which they were developed. Generic or general-purpose

modelling languages consist of robust libraries and are designed for use across multiple

domains. Domain speci�c languages on the other hand utilise constructs and terminology

that are restricted to a particular domain with limited applicability beyond its targeted

domain.

Model-based development has been applied in the understanding of complex software,

both in academia and industry (Panach et al. 2015)(Morin, Harrand, and Fleurey 2017).

With many proposed techniques and tools, it is important to investigate how these tools

are used in the industry to support the many claims of MBD's potential bene�ts. Several

empirical studies (Mohagheghi et al. 2012) (Torchiano et al. 2013) (John, Jon, and Mark

2014) (Sanchez, Luis, and Izquierdo 2014)(Allen 2016) have been conducted, looking at

various aspects on the adoption and use of model-based techniques in industry projects.

One of such studies (Hutchinson, Rounce�eld, and Whittle 2011), focuses on the experi-

ences of three organizations to identify how social and organizational factors in�uence the

2.2. Model Transformations 15

successful adoption of model-based practices. With several tools available, selecting the

most appropriate tools on a project to project basis could a�ect successful adoption. The

compatibility of the model-based tools are in terms of integration with existing processes

can also be a factor a�ecting its adoption (Mohagheghi et al. 2012). In addition to com-

patibility, tool performance and scalability to large projects should be considered when

developing model-based tools for industry adoption. Another component for considera-

tion whilst developing novel approaches is the cost of training users/employees to adopt

the model-based tools. Therefore, to successfully develop such tools for industry use,

factors such as learnability for target users, ease of integration with existing processes,

performance and scalability have to be examined and evaluated.

2.2 Model Transformations

Model transformations are key to model-based development in that they allow for the

transition from one phase of development to another. It is concerned with reusing in-

formation captured in models in a particular development phase to derive the artefacts

required for other development tasks. Model transformations can also be used to compare

the information in two or more models conforming to their respective metamodels. The

use of models at the several phases of development requires conversion of the models at

di�erent abstraction levels to other development artefacts (between di�erent formats and

levels of abstraction). A key challenge is taking model-based approaches to development

is the transformation of high level models into formats that are used for code generation.

Model transformations are automated processes that follow a set of transformation rules

to generate one or more target models/text as output from one or more source models

(Sendall and Kozaczynski 2003).

Source models serve as inputs to transformations while target models are the output

(Figure 2.1). Model transformations can be de�ned from one or more source models to

one or more target models. Both source and target models conform to their respective

2.2. Model Transformations 16

Figure 2.1: Concepts of model transformations (Biehl 2010)

metamodels and understanding the metamodels is required for de�ning these model trans-

formations. A model transformation description de�nes how one or more source models

are transformed into one or more target models and can consist of a set of transformation

rules (Biehl 2010). A model transformation rule describes how speci�c elements in source

models are transformed into their corresponding formats in target models. A model trans-

formation engine executes the transformation description to the source models to generate

the target models.

2.2.1 Model-to-Model Transformation

The process of deriving models from another model representation is known as Model-

to-model (M2M) transformations. M2M transformation takes models that conform to a

metamodel as input and based on de�ned rules, transforms them into models conforming

to another metamodel. This is particularly useful for deriving models in another format

showing a di�erent perspective or with lesser/more details. Query/Views/Transformation

(QVT) (Kurtev 2008) and Atlas Transformation Language (ATL) (Jouault et al. 2008)

facilitate M2M transformation and are based on the Object Management Group (OMG)'s

Meta Object Facility (Object Management Group 2018b) supported by the Model Driven

Architecture (MDA) (Bézivin and Gerbé 2001) framework. The QVT approach consists

of 3 sublanguages used for di�erent purposes. The Relations language de�nes transfor-

mations as a set of relations among models, the Core language allows for the speci�ca-

tions of the semantics of the relations language and the Operational Mappings language

2.2. Model Transformations 17

allows for the de�nition of imperative constructs such as loops and conditions. ATL de-

�nes unidirectional transformations where write-only target models are generated from

read-only source models. The logic of ATL transformations can be described within its

transformation rules which can be expressed either declaratively or imperatively. Epsilon

Transformation Language (ETL) is one of the model management languages presented

by (Kolovos, Paige, and Polack 2008). It is a hybrid model transformation language with

the advantage of seamless integration with other task-speci�c languages on the Epsilon

platform. QVT Core supports the de�nition of explicit traces between source and target

elements in models while QVT Relations, ATL and ETL are Traceless (Guerra et al.

2011).

2.2.2 Model-to-Text Transformation

In the course of the software development lifecycle, documentation and communication can

be done using di�erent types of notations (Kellner et al. 2016). Development artefacts such

as requirement speci�cation and implementation code in several programming languages

including (Java (Oracle Technology Network for Java Developers) and Python (Shein

2015)) can be represented using text. Software testing documents such as test scripts

and test cases can also be de�ned using text (Chen and Miao 2013). Model-to-text

(M2T) transformations derive textual artefacts from source models. It maps elements

from the input model to generate formatted or non-formatted text (Biehl 2010). Epsilon

Generation Language (EGL), is a template language based on Epsilon platform for text

generation from models (Rose et al. 2008). Some other languages based on the OMG's

Meta Object Facility are MOFScript and MOF Model-to-text transformation language

(Oldevik et al. 2005).

2.3. Domain Speci�c Languages 18

2.3 Domain Speci�c Languages

Domain Speci�c Languages (DSL) o�er increased expressiveness and are usually devel-

oped for a target domain or a speci�c purpose (Vasudevan and Tratt 2011). They are

executable languages that use appropriate constructs, notations and abstractions speci�c

to a particular domain to express knowledge in that domain. DSLs are usually tailored to

aid user expressiveness using concepts relevant to an application domain (Van Deursen,

Klint, and Visser 2000). Relevant domain knowledge can also be captured using DSLs

and reused for other development processes. Using constructs and terminology relevant to

their domain, users can develop concise programs without the constraints o�ered by Gen-

eral Purpose Languages (GPLs). These programs can be more precise and less complex

as they do not have to be modi�ed to conform to the constructs of GPLs.

To implement a DSL, its abstract syntax has to be de�ned along with one or several

concrete syntaxes (Langlois, Jitia, and Jouenne 2007). The Abstract Syntax (AS) is used

to express elements in a domain and how they interact at an abstract level. The AS

of the language is also its grammar used to de�ne the acceptable tokens and format.

The abstract syntax can be represented by a graph or tree (i.e. Abstract Syntax Graph

(ASG) or Abstract Syntax Tree (AST) respectively). In the context of model-based

development, the AS is the metamodel of the language to which speci�cations should

conform. The Concrete Syntax of a DSL is its representation in a human_usable format.

This could be represented imperatively or declaratively in formats such as texts, graphic,

etc. Speci�cations in DSLs should be such that they can be transformed to derive other

development artefacts. Transformations are usually de�ned at metamodel level and its

application is done at model level. DSLs can be implemented using traditional and non-

traditional approaches. Vasudevan and Tratt 2011 classi�es the implementation of DSLs

into traditional and non-traditional approaches as described below.

Traditional approach: This approach (Vasudevan and Tratt 2011) provides the lan-

guage author with complete control to build a compiler/interpreter from scratch by tailor-

ing the language to domain speci�c needs. A drawback to developing DSLs in this manner

2.3. Domain Speci�c Languages 19

is its cost implications in terms of time and e�ort especially, if the language is limited

to a single application with limited probability of reuse. The emergence of language de-

velopment tools such as XText (Itemis 2014) however address this problem by deriving

tailored compilers for user de�ned languages. With these tools, language developers need

not manually build interpreters and can focus more on designing the language itself.

Non-traditional approaches: This is when the DSL is built in conjunction with a

host /base language. These non-traditional approaches can be categorised into three,

based on the strategy employed in the implementation of the DSL (Vasudevan and Tratt

2011). The �rst approach is to develop embedded languages which allow the reuse of the

compiler/interpreter of a base language while restricting the expressiveness of the DSL

syntax. With this approach, the infrastructure of the host language is inherited by the

DSL and reduces development costs by facilitating reuse (Vasudevan and Tratt 2011). The

notation proposed in (Aziz and Rashid 2016), for example, uses UML as base language for

domain speci�c modelling of cyber physical systems. Secondly, DSLs can also be developed

for pre-processing/macro-processing. This approach requires the new domain constructs

of the DSL to be translated by a pre-processor to the host language. The third non-

traditional approach is the implementation of an Extensible compiler/interpreter. This

approach integrates the processor with the host language compiler for better optimization

and type checking.

2.3.1 DSL Frameworks

Domain speci�c languages can be either graphical or textual. A tool for the development

of textual DSLs is XText (Itemis 2014). It is a language development framework built

atop the Eclipse Modelling Framework with strong Java integration. This tool generates

a parser and dedicated editor for designed languages. The use of DSL can be disadvan-

tageous due to the cost on implementation and maintenance of the language. There is

also the cost of training the users of the language. The Jakarta Tool Suite (JTS) is a

set of tools for implementing embedded DSL as an extension of existing programming

2.4. Requirement Speci�cation 20

languages (Batory, Lofaso, and Smaragdakis 1998). This allows for reuse of the infras-

tructure of the programming language. These tools are domain independent targeted to

create languages by extending industrial programming languages with constructs speci�c

to a targeted domain. This framework consists of two languages/tools. The Jak language

extends Java to de�ne the semantics of the language and the Bali tool de�nes the syntax

of the language.

2.4 Requirement Speci�cation

Software requirements are important in the development process, as they de�ne what

the system must do in di�erent formats (Bjarnason, Wnuk, and Regnell 2011). During

the requirement speci�cation process, the di�erent stakeholders involved express their

expectations of the system so as to guide the software developers to achieve the desired

results. The requirements acquired in this process often vary in the level of detail in which

they are expressed with the level of details included in the requirement speci�cations

determining its level of abstraction. High-level requirements usually include no design or

implementation details and are therefore at a higher level of abstraction. At this level,

the stakeholders are more concerned with what is expected from the system in terms of

what the functionalities/ behaviour of the system should be and not how it should be

achieved. Subsequent phases in the life-cycle, however involve the further decomposition

of the high-level requirements to include more details. A decrease in the abstraction level

leads to an increase in the granularity of the requirements. These decomposed lower

level requirements can then be used to describe more design and implementation speci�c

details.

2.4.1 Natural Language Requirement Speci�cation

The requirement de�nition process usually involves stakeholders with varying levels of

expertise. It is therefore paramount to communicate e�ectively in a manner that is under-

2.4. Requirement Speci�cation 21

stood by all participants. Natural Language (NL) is the preferred choice mostly because

it is considered easy to use in comparison to other formal modelling languages (Fockel and

Holtmann 2014). With NL, the stakeholders can easily express their needs without having

to learn a special notation. Requirements expressed in NL can however be ambiguous and

imprecise as there are no constraints applied (Boddu, Mukhopadhyay, and Cukic 2004).

The participants of the requirement de�nition and re�nement process are therefore able

to express the requirements freely without limitations in any manner or format, leading

to ambiguous speci�cations. NL speci�cations can also be inconsistent and incomplete,

and that, if not managed, could lead to errors that are propagated to other stages of the

software development (Gervasi and Nuseibeh 2002)(Boddu, Mukhopadhyay, and Cukic

2004).

An attempt to introduce some level of precision to requirements speci�ed in natural lan-

guage, led to the introduction of Controlled Natural Languages (CNLs) (Wyner et al.

2010). A CNL is basically a subset of a natural language that aims to increase concise

representation using requirement templates and a restricted vocabulary (Fockel and Holt-

mann 2014). An example of a CNL for requirement speci�cation is Attempto (Fuchs and

Schwitter 1995) which was initially constructed to represent speci�cations in a manner

that was expressive and also computable. Attempto speci�cations were also translated

into executable format in the Prolog programming language. Over the years, several CNLs

based on the English language have been developed. Kuhn (2014) proposes a classi�cation

scheme for CNLs using the following dimensions: Precision, Expressiveness, Naturalness

and Simplicity. Taking it further, the concept of controlled hybrid languages was also

recently introduced in (Haralambous, Sauvage-Vincent, and Puentes 2017). The aim of

this hybrid language is to combine a CNL with a controlled visual language to render

both textual and graphical representation of speci�cations. The Object Process Method-

ology (OPM) (Dori and Reinhartz-Berger 2003) also supports equivalent speci�cation in

both graphical and textual formats using the Object Process CASE Tool (OPCAT) (Dori,

Reinhartz-Berger, and Sturm 2003). The application of OPM is based on the de�nition of

the system ontology which can then be utilised in di�erent stages of the development life-

2.4. Requirement Speci�cation 22

cycle. The graphical models de�ned in Object Process Diagrams (OPD) have equivalent

sentences in the Object Process Language (OPL) which is a subset of natural language.

This allows for simultaneous translation from the textual sentences to corresponding di-

agrams in OPD.

2.4.2 Formal Methods for Requirement Speci�cation

Formal speci�cation languages were introduced to address the drawbacks of natural lan-

guage speci�cations (Harry 1996). They are mathematically based languages used to

capture system requirement speci�cations in a concise format. The formal speci�cation

languages are often used in combination with tools that can analyse and mathematically

prove the correctness of certain properties of the speci�ed system. Examples of formal

languages are Z (Spivey 1992), B (Wu, Dong, and Hu 2015) and Vienna Development

Method (VDM) (Zafar 2016) and tools such as theorem provers (Abbasi, Hasan, and

Tahar 2013)(Jacquel et al. 2013) and model checkers (Liu et al. 2016). The approach in

(Miller et al. 2004) involves translating natural language requirement statements into the

Requirement State Machine Language without events (RSML-e) for formal validation. A

model checker and theorem prover are then used to verify the properties of the RSML-e

requirements. The errors found during this process are then used to rewrite more precise

"shall" statements.

The Software Cost Reduction (SCR) method is another formal method which is based on

the use of tables for the speci�cation of requirements for safety-critical software systems

(Heitmeyer 1998). This method was developed at the Naval Research Laboratory and has

been applied to practical systems such as avionics systems and safety-critical components

of nuclear power plants (Wu et al. 1999). Supporting tools called SCR* (Heitmeyer 1998)

includes: a speci�cation editor for creating the tabular requirement speci�cations; Depen-

dency graph browser for displaying variable dependencies in the speci�cation; Consistency

checker for detecting errors such as type errors and missing cases; Simulator for validating

the speci�cations and Model checker for checking application properties. The tabular for-

2.4. Requirement Speci�cation 23

mat of SCR has been demonstrated to be relatively easy to understand and scalable for

describing large quantities of requirement information concisely (Heitmeyer, Kirby, and

Labaw 1997). The tabular notation in SCR is dependent on an underlying state machine

model and allows for the speci�cation of required values of a variable in a mathematical

function de�ned for di�erent conditions and events. Using SCR, the behaviour of a system

can be de�ned using condition tables, event tables and mode transition tables.

Although there are many advantages to using formal methods, it has a high learning

curve which sometimes leads to involving external experts rather than to train members

of development teams (Easterbrook et al. 1998) (Polak 2002) (Abernethy et al. 2000)

(Esteve et al. 2012). Also, requirement speci�cation processes usually involve a number

of technical and non-technical stakeholders making it challenging to utilize mathematically

based languages.

2.4.3 Model-Based Requirement Speci�cation

Software requirements can also be expressed using combinations of di�erent types of

modelling notations. Existing work on the use of models for requirement speci�cation

has often meant supplementing natural language text with graphic-based UML models

or formal models (Fouad et al. 2010)(Holtmann, Meyer, and Detten 2011). These models

can be used to capture certain aspects and properties of the system for further analysis

or computation. Several graphical modelling notations have been proposed for use at the

requirement speci�cation phase. The Consortium for Requirement Engineering (CoRE)

integrates graphical models and formal speci�cations (Faulk et al. 1992). This method

has been shown to be e�ective in rigorously analysing requirements of safety-critical ap-

plications (Faulk et al. 1994). The CoRE method requires the de�nition of behavioural

model and class model of real-time embedded systems. The behavioural model captures

what the system must do while the class model divides the system into independent parts

and de�nes the relationships between these parts. A similarly named approach Controlled

Requirement Expression (CORE) is a method for requirement analysis and speci�cation

2.4. Requirement Speci�cation 24

from the viewpoint of stakeholders (Mullery 1979). CORE is general purpose method

compared to the focus on real-time speci�city anf formalism of CoRE. CORE de�nes

functional and non-functional viewpoints of requirements at di�erent levels using a com-

bination of tabular and diagrammatic representations (Kotonya and Sommerville 1992)

(Nuseibeh, Kramer, and Finkelstein 1994). The Uni�ed Requirement Modelling Language

(URML) is another graphical notation which allows for the speci�cation of system require-

ments by de�ning the business, customer and user goals (Helming et al. 2010). This visual

language intended for use in environmentally critical systems incorporates the concepts

of hazards and threats in requirement speci�cations which are not always applicable in

other types of software systems.

There are also speci�cation techniques that have combined models with natural language

for the representation of system requirements. A model-based methodology presented

in (Fockel and Holtmann 2014) combines the advantages of NL-based and model-based

documentation formats through bidirectional model transformations. The models are

used for de�ning the context including inputs and outputs, goals of the system, as well

as scenarios of interactions between inputs and outputs. Furthermore, the functional

hierarchy speci�cations based on the de�ned context and scenarios are also modelled.

These function hierarchy models are then transformed into CNL representations of the

requirement speci�cations, where additional speci�cations not included in the models can

be de�ned in CNL.

The Object Process Methodology (OPM) supports the application of model-based con-

cepts and has been implemented in Web development (Reinhartz-Berger, Dori, and Katz

2002)(Jacobs, Wengrowicz, and Dori 2014). OPM models can be used to represent links

between objects and their behaviour. Object Process Diagrams (OPDs) are used to de�ne

graphical models which are saved in XML format. The syntax of the corresponding text

generated from models are enforced by performing checks on the equivalent sentences de-

�ned in the Object Process Language (OPL). Therefore, the OPL sentences are mapped

to OPD constructs to ensure model persistence in the development lifecycle.

2.5. Automatic Test Case Generation 25

Another approach to integrating models and text for requirement speci�cation is presented

in (Robinson-Mallett 2012). Block diagrams and state-charts are used to model the

architectural and behavioural aspects of each element in the speci�ed system. The block

diagram shows the input and output signals while the state charts process sets of inputs

that produce a set of outputs including the transitions from one state to another. The

textual speci�cations are derived from the models to represent the logic condition type

declarations and the related descriptive text. The result of these types of combination

approaches is that there will be several documents (i.e. textual descriptions and graphical

models) to be maintained and synchronized to address possible maintenance concerns

between the two formats of the requirement speci�cations.

2.5 Automatic Test Case Generation

The derivation of test cases for the increasing complexity and size of software systems

can be labour-intensive (Anand et al. 2013). The e�ectiveness of the automation of this

software testing activity depends on selecting the appropriate tools for a software system.

Over the years, several techniques to automate test case generation have been proposed

using di�erent development artefacts. In this section, approaches to test case generation

from speci�cations in modelling and non-modelling formats/techniques are described.

2.5.1 Test Case Generation from Natural Language Speci�cations

The common use of natural language for speci�cation has led to research of di�erent

approaches to generate tests from requirements in this format. To determine the testa-

bility of NL requirements, the Automated Requirements Measurement (ARM) tool has

been proposed to parse the NL speci�cations to identify and evaluate potential words

or phrases to generate test cases (Rosenberg, Hammer, and Hu�man 1998). The tests

generated are for acceptance testing against requirements as they are the basis for legal

contracts. Test coverage metrics are employed to verify that each requirement is tested

2.5. Automatic Test Case Generation 26

at least once, i.e. linked to at least one test case. Another tool Text Analyser, identi�es

potential test cases from NL requirements using text mining techniques (Sneed 2007).

The test cases are extracted by scanning through the speci�cation text to identify nouns

with conditional clauses to derive 2 test cases, one which ful�ls the conditional clause,

and another which does not ful�l the condition.

Test cases can also be generated from Controlled Natural Language (CNL) speci�cations

(Carvalho et al. 2014). The �rst step is to translate the natural language text to a devel-

oped CNL to minimize the ambiguity in the requirements. Natural language processing

techniques such as syntactic analysis and semantic mapping are then used to derive equiv-

alent Software Cost Reduction (SCR) speci�cations from the CNL requirements. SCR is

used as an intermediate representation to provide hidden formalism to standardize the

requirements before the test cases are generated.

Several NL-based techniques also involve translating to an intermediate model for auto-

mated testing. In (Sarmiento, Do Prado Leite, and Almentero 2014), tests were generated

from natural language descriptions which are transformed into activity diagrams for dif-

ferent scenarios. The test scenarios extracted from the diagrams are then used as basis

for model-based test case generation. Another approach involves translating the natural

language speci�cations into Statechart models (Santiago Junior and Vijaykumar 2011).

The methodology proposed in this approach not only generates abstract tests but also

executable test cases for the system. (Schnelte 2009) also proposes a CNL based technique

where the speci�cations are transformed into a formal model for analysis and test case

derivation.

2.5.2 Test Case Generation from Models

Model based development encourages the use of models not only horizontally, in aiding

description and analysis of the system, but also vertically in phases of development for

veri�cation of each process. For veri�cation purposes, models can be utilized to automate

several software testing activities including the generation of test data, test scenarios and

2.5. Automatic Test Case Generation 27

test oracles. The application of models in software testing is referred to as Model Based

Testing (MBT) (Dalal et al. 1999). The Uni�ed Modelling Language (UML) is the stan-

dard notation proposed by the Object Management Group (OMG) (Object Management

Group 2018a). There are several types of UML diagrams for capturing di�erent views or

aspects of modelled systems and these diagrams have been used for test case generation.

UML activity diagrams for instance can be used to model the dynamic aspects of a group

of objects or control �ow of system operations. The approach in (Mingsong, Xiaokang,

and Xuandong 2006) involves using UML activity diagrams for design speci�cations and

randomly generates a set of test cases for a JAVA program under test such as to satisfy

path coverage criteria. The program is then run with the generated test cases to get

corresponding program execution traces. The next steps involve deriving a reduced set

of test cases from the model based on some selected test adequacy criteria. (Devasena

and Valarmathi 2012) also proposes a method based on UML activity diagram models to

generate black-box and white-box tests. In this method, functional and structural testing

are performed in parallel by using functional speci�cations from the problem de�nition

and the source program code to achieve branch coverage for structural tests.

Use cases can also be combined with activity diagrams to generate software tests as pro-

posed in (Kundu and Samanta 2009). In this approach, an activity diagram is constructed

based on the use cases in the requirement speci�cation. By augmenting the activity di-

agrams with additional information necessary for testing, the diagrams are converted to

activity graphs and test cases are generated using a test average criterion called activity

path coverage criterion. The focus of this approach is the detection of loop and syn-

chronization faults, especially the identi�cation of location of fault in the implementation

source code. Although the aforementioned model-based techniques target early veri�ca-

tion, they refer to elements in the design and implementations phases of development.

The input models are lower level UML design models and not high-level requirements,

which is beyond the scope of this research.

2.5. Automatic Test Case Generation 28

2.5.3 Test Case Generation from Formal Speci�cations

The application of formal veri�cation methods usually requires the system to be rep-

resented in a concise format. Although the most common use of formal methods is for

checking and proving the correctness of certain properties in a system, various approaches

to generating test cases from formal speci�cations have been proposed. Speci�cations in

the formal language Z coupled with the software implementation have been demonstrated

to generate test cases (Helke, Neustupny, and Santen 1997). This approach bene�ts from

the assurance that speci�cations used for the veri�cation tasks are correct as it utilizes

the Isabelle theorem-prover. Taking an object-oriented strategy, (Murray et al. 1999)

proposes a testing tool TinMan for speci�cations represented in the Object Z formal lan-

guage. With this tool, a user can apply testing strategies to the formal speci�cations

coupled with the automatically generated valid input space for the system. The speci�ca-

tions can then be used as basis for the system implementation and to derive test templates

that satisfy several test strategies including cause e�ect, boundary and partition analysis.

2.5.4 Test Case Generation from Domain Speci�c Approaches

Empirical studies have identi�ed domain speci�c solutions as an important factor for the

adoption of model-based approaches in the industry (Mohagheghi et al. 2012). There are

several approaches to automating the veri�cation of systems which have applied domain

speci�c techniques. In the railway domain, a methodology that supports automatic ver-

i�cation from domain speci�c speci�cations was proposed in (James et al. 2012) (James

and Roggenbach 2014). The domain knowledge is captured as graphical model speci�-

cations of concepts in the domain via classes, attributes, data properties and relations

between concepts. The veri�cation of the system is then achieved by transforming the

domain model into formal speci�cations in the Common Algebraic Speci�cation Language

(CASL). Gerking et al. 2015 also combines domain speci�c modelling with formal veri�ca-

tion in the form of model checking. In this case, bi-directional translation is done between

the DSL speci�cations and the input language of the model checker. The counter exam-

2.5. Automatic Test Case Generation 29

ples provided by the formal tool are then back-translated into the DSL format to hide the

complexity. (Zalila, Cregut, and Pantel 2016) also exploits the expressiveness of DSLs

to represent feedback from formal veri�cation tools to a less complex format for domain

experts.

Apart from formal veri�cation, DSMs have also been used for test case generation. An

MBT approach proposed in (Kanstrén and Puolitaival 2012) requires a test model to

be developed by a domain expert and a language expert using the Java programming

language. This test model dominated by domain concepts is then used to guide the

derivation of tests cases for the system under test (SUT). By taking this approach, the

tests are not deduced from the software speci�cation for requirement based testing but

rather takes a test driven perspective whereby the test model is the primary artefact.

Nguyen 2015 also proposes an approach to test case generation from DSL speci�cations

of web application pages. However, to generate tests in this method, the model of the

page has to be implemented thereby reducing the level of abstraction in which the method

can be applied as well as the granularity of the test cases.

In Santiago et al. 2013, a DSL was proposed to represent test speci�cations for the cloud

based software domain. The constructs of the language allow for the de�nition of di�erent

concepts of test case speci�cation. This includes lower level details such as system con�g-

urations in addition to de�ning preconditions for a test case, test scenarios and steps. The

authors of (Im, Im, and McGregor 2008) developed a DSL for test case speci�cation in the

software product line domain. The language was used to describe use case models from

which the test cases were automatically extracted. Puolitaival et al. 2011 also proposed a

domain speci�c notation for test case representation. In this approach, a graphical DSL is

used to specify test scenarios used for automatic execution of test cases. The application

of domain speci�c modelling proposed in this thesis however, di�ers in that the domain

concepts are utilized to capture concise requirement speci�cation to aid e�ective test case

generation and not to generate test case descriptions.

2.6. Requirement Speci�cation in Aviation Domain 30

Figure 2.2: Software development processes and outputs adapted from (RTCA Inc. 2011a).

2.6 Requirement Speci�cation in Aviation Domain

Requirements play a critical role in software development lifecycle because they capture

the needs of stakeholders and serve as a continuous reference for subsequent development

phases. The requirements of a system are constantly being re�ned throughout the de-

velopment process. The initial needs of the stakeholders will have to be reviewed several

times to ensure the right product is being developed. This re�nement is done to ensure

there are neither inconsistencies nor ambiguities in what is required of the implemented

system.

The software development lifecycle processes in the DO-178C (RTCA Inc. 2011a) guide

the construction of software products and include the processes shown in Figure 2.2.

The left side of the diagram shows the di�erent processes involved in the development

of software for airborne systems and the right side displays the primary output from the

processes.

To distinguish between the abstraction levels of software requirements, the software de-

velopment processes as de�ned in the DO-178C are illustrated in Figure 2.2. In the

2.6. Requirement Speci�cation in Aviation Domain 31

Software Requirement Process, system engineers are tasked with eliciting and analysing

the stakeholder needs to derive a documentation of High-level requirements (HLR) and

the architecture of the system. HLRs are ideally used to specify functional, performance,

interface and safety-related requirements which are passed on to software engineers. In

the software requirement process, the HLRs are to be analysed to ensure there are no am-

biguities, inconsistencies and that each requirement is veri�able. Low-level requirements

(LLRs) are derived from the re�nement of the HLRs through one or more iterations in the

Software Design Process. The LLRs outputs of this process should include greater detail

and information that would inform the Software Coding Process. The implementation

of the software is done in the Software Coding Process using the assigned programming

language to produce Software Code that conforms to the software architecture. The In-

tegration process is concerned with compiling the produced code into a format that is

loaded into target computers for integration. This is done to ensure that the new code

is compatible with previously implemented software components and also the hardware

speci�cations of the system. Software veri�cation processes including testing activities are

ideally supposed to be ongoing through the development processes illustrated in Figure

2.2.

IBM's Rational DOORS (IBM 2017) is an example of a Commercial O� The Shelf (COTS)

tool that is widely used as a requirement management and traceability repository. It sup-

ports the documentation of customer requirements that are represented in textual Natural

Language (NL) format at di�erent abstraction levels. The tool can also provide links from

speci�cations de�ned at system level to the derived lower level software requirement spec-

i�cations. These links are bene�cial for traceability purposes, to facilitate the generation

of traceability matrices to map out from which system requirement, subsequent software

level requirements are derived (Badreddin, Sturm, and Lethbridge 2014)(Akman et al.

2016). Its support for testing is such that it allows software tests to be linked to the

requirements from which they were sourced. This link to software tests is however, not

done automatically, as the tests for each requirement would have to be manually assigned

and copied into the tool. This can potentially incur additional costs in time and e�ort

2.6. Requirement Speci�cation in Aviation Domain 32

to maintain traceability between requirement and related tests. This is because for every

change made to the software test external to the tool, the DOORS speci�cation will have

to be updated.

There is a consistent view that Natural Language is the preferred format used for specify-

ing requirements for software systems in many industrial domains due to its expressiveness

and ease of use (Sikora, Tenbergen, and Pohl 2012). The major concerns with NL speci�ca-

tions have been ambiguity, consistency and completeness (Umber and Bajwa 2011)(Yang

et al. 2011). Several Controlled Natural Languages (CNL) have been proposed (Schwitter

2011) (Kuhn and Bergel 2014) (Gruzitis and Dannells 2017) to use patterns to restrict the

expressiveness of NL while making them computable including REQPAT in the automo-

tive domain (Holtmann, Meyer, and Detten 2011). A CNL for requirement speci�cation

in the aviation domain is proposed in (De Castro, Bezerra, and Hirata 2015). The CNL

supports the de�nition of requirements on system and subsystem levels using descriptions

of di�erent elements, conditions and arithmetic expressions. Speci�cations written in the

CNL are translated into XML representations for automatic processing into models and

test cases. A comparison with the author's proposed language is presented in section 3.3.

In the aviation domain, the DO-331 (RTCA Inc. 2011b) standards were introduced as a

supplement to DO-178C (RTCA Inc. 2011a). The supplement provides guidelines for the

use of models in the di�erent phases of software development life-cycle including require-

ment speci�cation to meet certi�cation standards. There are various bene�ts to using

modelling notations and tools for requirement speci�cation which have been identi�ed as

discussed in section 2.4.2 and 2.4.3. However, the learnability of the tools and cost of

training system engineers are factors that could in�uence the eventual adoption in indus-

try. It is therefore important to introduce tools that are user friendly that complement

existing processes to reduce the learning curve. Over the years, several modelling nota-

tions have been proposed including domain speci�c modelling notations known as Domain

Speci�c Languages (DSLs) to capture di�erent types of speci�cations and focused to focus

on representing speci�c types of domain information. The Semantic Application Design

Language (SADL) proposed by Crapo and Moitra 2013, for example, is a DSL that en-

2.7. Chapter Summary 33

ables experts in a domain to de�ne its ontology in a controlled-English language. The

development environment also supports querying and testing of the SADL models. SADL

allows for the capturing of domain knowledge using detailed description of concepts in a

particular system and the relationships between them. While SADL provides support for

the validation of speci�cations by querying its models, the language does not support the

speci�cation of behavioural constraints such as logical and temporal constructs for sys-

tem veri�cation/ testing. The Aeronautical Rules Script Language (ARSL) (Sinlapakun

and Limpiyakorn 2013) is another DSL developed for airborne systems. The goal of the

language is not for requirement speci�cation at any level but for the de�nition and con�g-

uration of air tra�c rules. ARSL was also not developed for software veri�cation of any

kind but for e�ective representation and communication of relevant domain information.

2.7 Chapter Summary

This chapter presents the background of relevant concepts and related work in this the-

sis. In support of early software veri�cation, alternatives to natural language for more

concise requirement speci�cation have been proposed. With the increasing popularity of

model-based techniques, formal and UML speci�cations have been used to generate soft-

ware testing artefacts at multiple stages in the development process. Although domain

speci�c techniques have been employed to software veri�cation, there is comparatively

less research done on more general-purpose approaches. The majority of previous work

done has concentrated on using model-based approaches for lower level requirements and

design phases. This thesis proposes a tailored solution to the industrial aerospace domain

for automatically generating test cases from high level requirement speci�cations..

Chapter 3

Requirement Modelling

The speci�cation of software requirements can be done in a number of modelling and

non-modelling formats. The use of a modelling language to represent the requirement

speci�cation, can aid the generation of other software development artefacts such as im-

plementation code and support testing activities. Existing modelling languages have

targeted di�erent levels of abstraction to allow users to express various levels of details

in their requirement speci�cation. In this chapter, a modelling language for representing

high-level requirements is presented. A textual Domain Speci�c Language (DSL) has been

developed to bridge the gap between natural language expressiveness and the rigour of

formal methods. The language can be used to capture functional properties of software

using conditional statements as well as temporal constructs with time related conditions

within a textual model. The main goal of the language is to enable domain experts to

specify requirements in a model from which test cases can be generated automatically.

Section 3.1 gives a description of the methodology applied in the development of the

modelling language and the di�erent types of speci�cations it supports. In section 3.2,

the validation of the DSL requirement models according to customised constraints are

presented. In Chapter 2, the concept of Controlled Natural Languages (CNL) was intro-

duced and section 3.3 provides a comparison between the proposed language and existing

CNLs in the aviation domain. Finally, Section 3.4 summarizes the chapter.

34

3.1. The Proposed High-level Requirement Modelling Language (HRML) 35

3.1 The Proposed High-level Requirement Modelling

Language (HRML)

This section presents the proposed novel modelling language for representing high-level

requirements. The language is termed domain speci�c because its use is restricted to

the speci�cation types supported by high-level requirements in the software requirement

process for aviation software (Figure 2.2). The goal is not to support every existing type

of requirement speci�cation, the proposed language is however focused in its constructs

to support the kind of requirements that aid veri�cation techniques that are speci�c to

safety-critical domains.

The objective of the language is not to support all the requirement types available, it

however targets the requirements relevant for the automation of early veri�cation activ-

ities. The language can be used in any domain where the supported requirement types

are deemed appropriate. There are several aspects to be considered when developing

a modelling language and understanding the domain is a crucial step, especially, when

building a domain speci�c language (James and Roggenbach 2011). The �rst step to

capture the concepts required to build the language is to understand the context of its

use. This was done through analysis of sample requirement documents provided by GE

Aviation followed by discussion with their domain experts. These documents comprised

of natural language speci�cations, usually products of liaisons between customers and

system engineers at GE Aviation. They were high-level requirements which de�ned the

functionality of proposed systems expressed in a combination of natural language text,

�gures and tables. The results of the analysis identi�ed the di�erent types of functional

requirements, commonly used for system speci�cation in the domain. These were used to

elicit the concepts/terminology for the modelling language.

3.1. The Proposed High-level Requirement Modelling Language (HRML) 36

Figure 3.1: Overview of language development process.

3.1.1 Language Grammar and Metamodel

The information gathered from the analysis of GE Aviation documents was used for the

de�nition of the language grammar. 15 source documents were analysed consisting of

design models, organisational standards and conventions in addition to sample require-

ment speci�cations. The implementation process required several iterative cycles where

the feedback given by industry experts in�uenced the subsequent phase of the language

development. Figure 3.1 shows the main phases of the language development process.

The metamodel of a language can be used to capture the relevant concepts and the

relationships between them. It is used to specify constraints and what is acceptable in the

language. In the context of model-based development, the grammar of a language can be

referred to as the metamodel to which models are to conform (Biehl 2010). The proposed

language is implemented using the XText (Itemis 2014) framework supported by the

Eclipse IDE. It is a language development tool that generates a model from the Extended

Backus-Naur Form (EBNF) representation of the grammar. It also generates a parser

and a dedicated editor for speci�cation of models using the de�ned modelling language.

There are several language implementation frameworks but the interconnectivity of XText

to the Eclipse Modelling Framework (EMF) (Steinberg et al. 2008) is advantageous. The

EMF is a modelling framework which facilitates the building of tools and model-based

applications. As XText is based on the EMF, XText-developed languages are compatible

with the various model-based tools and applications available on the EMF.

Modelling of system requirements can represent the relationships between its input and

output, usually expressed using "shall" statements (Lee and Friedman 2013). The models

3.1. The Proposed High-level Requirement Modelling Language (HRML) 37

Figure 3.2: Language metamodel showing the sections and requirement types.

Figure 3.3: Input and Output sections.

describe the logic for computing the expected output based on the system or user input,

at a high level of abstraction. Each model speci�ed in this language can consist of up

to 4 sections (Figure 3.2): an input section, an output section, a de�nition section and a

behaviour section.

3.1.2 Input and Output

The input section is the �rst optional component of the requirement model. In this sec-

tion, zero to many InputParameters can be enclosed between the "Input" and "end"

keywords as shown in Figure 3.3. The InputParameters represent signals that are re-

quired by the system being speci�ed and are usually provided by an external system or

subsystem. The reference to the external system is optional and is speci�ed using the

"Ext" keyword and an identi�er for the external component/subsystem from which it

3.1. The Proposed High-level Requirement Modelling Language (HRML) 38

was derived. Additional information about the InputParameters can also be represented

using descriptive text. The input section in Figure 3.3 illustrates examples of InputPa-

rameters. The �rst parameter in the section, inputSignal1, is a representative case where

the system engineers have the details of the source of the input to the system. In this

case, the external system SubSys1 can be referenced. The possible values of the input

parameter can also be de�ned and at this level of speci�cation, although they need not

be exhaustive. This only gives an idea of expected values of On or O� for inputSignal1.

There are however instances when specifying the requirements for a system component

where the exact source of an input signal is yet to be known. An example is inputSignal2

in Figure 3.3. In this case, what input is required by the system is known but the details

about the component providing the input signal are unknown.

The output section on the other hand can be used to de�ne what is expected from the

system being modelled. Variables or signals to be exported from the system, referred to as

OutputParameters, can be described in this section of the model. In a similar way to the

input section, within the output section, zero to many OutputParameters can be speci�ed

between the "Output" and "end" keywords. These variables are generated or modi�ed

within the modelled system and are required by external components/subsystems. Out-

putParameters in a similar fashion as InputParameters can be de�ned solely to reference

the component or element of the system from which it is derived. This is done by using the

"Int" keyword. In the original requirement documents, some input and output parame-

ters were simply used within requirement statements without explicit de�nition. De�ning

the parameters as done in HRML speci�cations allows for cross-referencing within other

sections of the model. An example of an output signal is shown in Figure 3.3.

3.1.3 De�nition

High-level requirements can de�ne the system parameters including their attributes and

values according to the DO-178C standard (RTCA Inc. 2011a). A De�nition section in

the requirement model is where the features of elements are de�ned. This section can

3.1. The Proposed High-level Requirement Modelling Language (HRML) 39

Figure 3.4: Metamodel for De�nition section.

Figure 3.5: Requirements in the De�nition section.

be an optional miscellaneous section for de�ning additional constraints and features on

elements of the system. The states of system component/elements can also be de�ned in

this section (Figure 3.4). The de�nition also allows the assignment of one or more features

to prede�ned elements.

Figure 3.5 illustrates the de�nition of two requirements REQ1 and REQ2. In REQ1, a

PumpIndicator element is de�ned and a white feature is assigned to it. This demonstrates

the relationship that can be de�ned between system components and each of their di�erent

attributes. There are some requirements that are however, more descriptive in format and

do not necessarily provide automated veri�cation value such as REQ2 in Figure 3.5. They

can be useful for documentation purposes and advantageous in scenarios where further

descriptions or additional context is required. These types of requirements do not de�ne

features of elements, instead they have their descriptions enclosed in blue coloured strings

(SeeREQ2 in Figure 3.5). In addition to specifying the features of an element, its possible

states can also be de�ned. For example, REQ3 in Figure 3.5, de�nes states "active" and

3.1. The Proposed High-level Requirement Modelling Language (HRML) 40

Figure 3.6: Metamodel for Range requirements.

"inactive" for the PumpIndicator element.

RangeRequirement: Speci�cations with Range Values

Range requirements were included in the grammar to ensure that valid behaviour re-

quirements can be speci�ed through the de�nition of acceptable values. These types of

requirements are included in the De�nition Section with de�ned upper and lower bound-

aries with optional margin values (Figure 3.6). The lower and upper boundaries are the

minimum and maximum values of the requirement respectively. These values are de�ned

as integer values in the grammar. Examples of this type of requirement are shown in

Figure 3.7.

Figure 3.7: Examples of range de�nitions.

3.1. The Proposed High-level Requirement Modelling Language (HRML) 41

Figure 3.8: Metamodel for Behaviour section.

3.1.4 Behaviour

The Behaviour section is where the interaction between elements are de�ned, sometimes

using logical operands. Signals or variables that are referenced in the requirement docu-

ment are de�ned in input and output sections which serve as some sort of data dictionary.

The behaviour constraints of the system can be de�ned in this section using many re-

quirement types. Combinations of prede�ned elements, features, states, input and output

signals can be used to represent behaviour constraints. The requirements use pre-de�ned

elements in the De�nition section of each requirement document and also parameters in

the Input/ Output sections. This added step ensures an error is produced when a non-

de�ned element is referenced. The metamodel in Figure 3.8 illustrates the major types of

requirements expressed within the Behaviour section of the DSL model.

LogicRequirement: Speci�cations with Basic Logic Expressions

The 26 pages of requirement speci�cations provided by GE Aviation, consists of 6 re-

quirement speci�cation documents across the de�nition of 4 subsystems. Out of 167

requirements analysed, 92% of the behaviour requirements were composed of logic ex-

pressions. These requirements describe the system behaviour by expressing several logic

3.1. The Proposed High-level Requirement Modelling Language (HRML) 42

Figure 3.9: Metamodel for Logic requirement.

constraints on di�erent components of the system. Requirements with logic expressions

are behaviour requirements, which de�ne a combination of one or more logic-based state-

ments for variables speci�ed in previous sections of the model. The metamodel in Figure

3.9 shows the related components of logic requirements.

Figure 3.10 is an excerpt from the language grammar showing the concepts used to repre-

sent requirements with logic expressions. The format of a LogicRequirement (LR) is such

that a decision is made based on the output of the combination of multiple conditions

and Boolean operators. After assigning an ID to the requirement, the �rst part of the LR

is to de�ne what the action is based on one or more constraints.

This expected action can be setting the prede�ned feature of a parameter to a certain

value or specifying Condition. A Condition (with or without brackets) can be a Logical-

ComparisonCondition, TimedLogicalCondition, an ArithmeticExpression or a Transition.

Each requirement can contain one condition or several as illustrated in the requirements

in Figure 3.11. A StdExpr in this context is a logic expression and could be combined

using logical operator keywords. In the evaluation of HRML logic requirements, the "not"

operator takes precedence, followed by the "and", "or", "xnor" and "xor" operators.

3.1. The Proposed High-level Requirement Modelling Language (HRML) 43

Figure 3.10: XText grammar de�nition for Logic requirements.

Figure 3.11: Examples of HRML Logic requirements.

LogicRequirement with Timing Expressions

Timing requirements describe the timing behaviour of system events in real time systems

(Goknil and Peraldi Frati 2012). They are a type of behaviour requirement used to spec-

ify time-related constraints on certain components of a system. The modelling of timing

constraints in the language is done in combination with the conditions in logic require-

ments. In the context of this language, a timing requirement is a logic requirement which

has at least one logic condition with a time condition. To describe the timing behaviour

of a requirement, the metamodel of the logic condition is extended to accommodate the

additional time-related constructs.

Figure 3.13 is an excerpt from the HRML metamodel illustrating the timing requirement

concepts. A timing requirement is one that is composed of atleast one TimedLogicalCom-

parisonCondition (TLCC) which is also a type of a NonBracketCondition (described in

the previous section). TLCC compares its right Variable to either a value of a Numerical

type or a left Variable using any of the operators enumerated in LogicalComparisonOp-

erators. The Numerical type is used to de�ne numerical variables as either an integer

value or a �oat value. The TLCC di�ers from logic conditions because of its compulsory

3.1. The Proposed High-level Requirement Modelling Language (HRML) 44

Figure 3.12: Metamodel for Pseudo requirements.

TimeCondition. The time condition comprises of a TimeExpression that is de�ned either

at the exact speci�ed time (ExactTC), more than the speci�ed time (MoreTC) or less

than the speci�ed time (LessTC). Every TimeExpression has a time value of type Nu-

merical and a unit expressed in the TimeUnit enumeration of millisecond (ms), second

(s) or minute (m).

The speci�cation of timing requirements is demonstrated using the car alarm example in

(Schnelte 2009). The main di�erence between the two approaches is that the elements

are de�ned as part of the vocabulary and in the DSL they are de�ned in the De�nition

section (Figure 3.5). And the requirements are in table templates. The DSL di�erentiates

between states and attributes while such a distinction is not reported in the CNL. In the

DSL speci�cation (Figure 3.14), it is assumed that the Alarm is an element in the system

that can be in states SET or UNSET. Also assumed is that the Sounder is an element

that can be ACTIVE or INACTIVE. The requirements in the behaviour section of the

3.1. The Proposed High-level Requirement Modelling Language (HRML) 45

Figure 3.13: Metamodel of time-related concepts.

HRML model are the DSL equivalent of the examples in (Schnelte 2009).

LogicRequirement with Transition Expressions

Events such as state transitions can also cause a di�erent reaction in the system behaviour.

In HRML, the transitions between states are speci�ed using the Transition rule (Figure

3.15) which is a type of NonBracketCondition (Figure 3.10). In the Transition rule,

variable param is the object of the transition, left and right can be either of its prede�ned

states or values. This is to enable the speci�cation of complex behaviour requirements

with combinations of the transition expression and any of the other aforementioned types

of conditions. The following is an example of a behaviour requirement with transition

expression: "Req1: The lightDisplay is active when lightSwitch transitions from O� to

On and temperature> 30 degrees.". There are two conditions in this example, a transition

3.1. The Proposed High-level Requirement Modelling Language (HRML) 46

Figure 3.14: Timing requirements in Car Alarm example in HRML.

expression (lightSwitch transitions from O� to On) and a logical comparison expression

(temperature > 30). A decomposition of this requirement to a lower level could include

further details of what event should occur when the transition has taken place after a

period of time.

Figure 3.15: XText grammar for HRML transition expressions.

PseudoRequirements: Speci�cations with Conditional Expressions

The analysis of the sample requirements revealed that there are instances where pseudo

code is used to represent system behaviour. This can be the case if the customers have

some technical background and prefer to use this format to express alternative behaviour

for a particular variable. The metamodel for this type of requirement is shown in Figure

3.12.

The format of the pseudo requirements can be described as a fusion of conditional and

logic statements speci�ed in "if..then..else..endif" structure (Figure 3.16). A PseudoRe-

quirement can have a Pseudo component where the e�ects of the success or failure of

conditional statements can be de�ned in a StandardPseudoExpression. Nested condi-

tional statements in a PseudoRequirement are implemented by de�ning another Pseudo

component for the "then" or "else" variables. Figure 3.17 illustrates an example of a

3.1. The Proposed High-level Requirement Modelling Language (HRML) 47

Figure 3.16: XText grammar for conditional speci�cations as Pseudo requirements.

Figure 3.17: An example of a nested Pseudo requirement.

requirement where a Pseudo "if..then..else..endif" de�nition is embedded in the "else"

property of the requirement. HRML supports nesting of conditional statements to the

depth level of 3. The depth level is determined by the number of Pseudo components

de�ned within the requirement.

ArithmeticRequirement: Speci�cations with Arithmetic expressions

Figure 3.18: XText grammar for HRML arithmetic expressions.

3.1. The Proposed High-level Requirement Modelling Language (HRML) 48

Figure 3.19: Metamodel for Arithmetic requirement.

Behaviour requirements with arithmetic expressions in the HRML metamodel can be

speci�ed using the ArithmeticRequirement (AR) rule (Figure 3.10). The Xtext represen-

tation of the HRML grammar for requirements with arithmetic expressions is illustrated

in Figure 3.18 and its metamodel in Figure 3.19. An instance of AR has an identi�er bid

and an expression of type ArithmeticExpression (AE). The left side of the expression is

the variable in context followed by the ":=" keyword and the right side of the equation.

The ":=" keyword is used instead of "=" to distinguish between the equal logical com-

parison operator (Figure 3.10) and AEs. The right side of the expression can contain zero

to many combinations of the Right rule with ArithmeticOperators, Numerical values or

another prede�ned variable.

3.2. Requirement Validation 49

3.2 Requirement Validation

Requirement validation activities check for consistencies and completeness using tech-

niques such as review, prototyping and test case generation (Sommerville 2011). The

requirement validation process, di�erent from overall software validation, is essential to

identify con�icts and ensure errors are not propagated to other phases of development.

This can be done by checking for inconsistencies and redundancies in the speci�cation

model (Urbieta et al. 2012). A speci�cation is consistent if no con�ict is identi�ed in the

requirements (Institute of Electrical and Electronics Engineers (IEEE) Standards Board

1998a). Speci�cation models can be validated through the application of a number of for-

mal analysis tools. Requirements speci�ed in a controlled natural language for example

can be validated through model checking (George and Selvakumar 2013). This requires

the CNL requirements to be translated into intermediate models on which formal analysis

is performed and a model checker is used to detect inconsistencies and completeness in the

speci�cations. Although there are several advantages to using a formal approach, if there

are changes in the requirements, there would always be an additional e�ort to translate

CNL to formal speci�cations which can be time consuming when done manually based

on the level of formal expertise of the user.

Another approach to automatically validate CNL requirements is proposed in (Holtmann,

Meyer, and Detten 2011). The CNL requirements are transformed into an Abstract Syntax

Graph (ASG) representation, where structural patterns are used to detect inconsistencies.

There is also a correction feature, where incorrect ASG speci�cations are transformed into

correct ones before transformation into correct CNL requirements using code generation

techniques. The author employs the use of the XText validation rules which is automati-

cally applied to the underlying abstract syntax representation of the DSL while Java can

be used to implement automatic �xes. An approach to validating domain speci�c language

speci�cations of modelling tools is proposed in (Semerath et al. 2015). The DSL models

are mapped to �rst order logic for further analysis using constraint solvers. The require-

ment models in the HRML do not require an intermediate formal model as validation rules

3.2. Requirement Validation 50

once de�ned are applied in real time as they are speci�ed. The goal of the requirement

validation presented in this section, is not to exhaustively implement all the language

validation rules. However, it demonstrates that organisational or project speci�c business

rules and constraints rules can be implemented for the HRML requirement models. This

approach is �exible in that for documentation purposes, the IDs can be customised, for

example, all behaviour requirements ID may be de�ned using certain naming conventions.

Unique identi�ers could be generated by the concatenation of a combination of system,

subsystem or module names. E.g. Requirements in the Sensor Management (SM) module

in the Display System (DS) could be identi�ed by the pre�x "SM_DS". In this manner,

the IDs can be used to deduce what system, subsystem or module the requirements refers

to improve traceability. The IDs also provide requirement-to-test mapping in that they

are used to identify the collection of test cases generated from a speci�c requirement as

shown in Step 11. in APPENDIX C. The uniqueness of the IDs therefore prevents test

cases from being overwritten by test cases from another requirement with a duplicate ID.

Requirement validation in the context of this work is about ensuring or enabling the

user of the speci�cation language to de�ne correct models. Languages such as Object

Constraint Language (OCL) and Epsilon Validation Language (EVL) can be used to

de�ne validation rules on models. Using either of these languages would require running

another script by loading the model. The validation will not be done in real time as

the speci�cation is being written but rather by another execution process. The XText

validation tools are utilised for the speci�cation language. The syntax of the speci�cation

is automatically validated by the parser of the language. If there are any broken links or

hanging references, they are automatically resolved in the language editor. Any validation

errors or warning messages are displayed and can be customised. Custom validators can

be implemented using methods with the @Check annotations in the Xtend(Bettini 2016)

language. These methods are used to represent some business rules or validation checks

on the DSL speci�cation at runtime automatically. Some of the custom validation rules

de�ned for the speci�cation language are described below.

3.2. Requirement Validation 51

3.2.1 Unique Requirement ID

Every requirement should have a unique identi�cation number. The test case generation

is done on a requirement to requirement basis. Therefore, each requirement must have a

unique requirement ID to avoid its test cases being overwritten by another. The XText

framework comes with a Unique ID validation check by default. This however is not

applicable in this case and a validation method is implemented to address this. Every

de�nition and range requirement in the De�nition section should have a unique ID, other-

wise, a warning is displayed. Figure 3.20 illustrates the implementation of the validation

check for unique De�nition Requirement ID. This also applies to all Range requirements in

the De�nition section and all Behaviour requirements in the Behaviour section to ensure

that there are no duplicate identi�ers.

Figure 3.20: Validation check for unique requirement ID.

3.2.2 Redundant Input and Output Signals

The Input and Output sections of a requirement model are used to de�ne input and

output variables or signals for the system being modelled. A check is implemented to

ensure that each input/output signal is unique in the section. As shown in Figure 3.21,

for each input signal, a search is conducted on the containing section for any signal with

the same name. The condition is set to �ag up a warning if the duplicate value is not

null. A similar check is performed on all output signals in the Output section of the

requirement model. A limitation in terms of the context of the validation check needs to

be explicitly de�ned. This context limitation is to ensure that an input signal de�ned in

an HRML model cannot be de�ned as a signal with the same name in another HRML

3.2. Requirement Validation 52

model within the same project.

Figure 3.21: Check for redundant input and output parameters.

3.2.3 Range Requirement Validation

This check is performed to ensure that range values are not de�ned more than once for

a variable as shown in Figure 3.22. The duplicate variable is used to collect all range

requirements in the De�nition section which have the same name as the requirement in

context. If a duplicate exists, a warning is �agged up.

Figure 3.22: Check for multiple range speci�cation for an element.

3.2.4 Unique Feature/State Validation

The De�nition section allows for the speci�cation of elements within a system as well as

assignment of features and states to them. This element speci�cation can span across mul-

tiple de�nition requirements. For example, REQ1 can de�ne the features and attributes

of an element and REQ2 can be used to de�ne its states. There is no limitation to how

many requirements can be used to model an element.

3.2. Requirement Validation 53

Figure 3.23: Validation check for duplicate state de�nitions.

However, there has to be a check to ensure that a feature/state is not assigned to an

element more than once. The method in Figure 3.23 checks for duplicate state assignments

and Figure 3.24 is used to check that a feature is not de�ned for an element more than

once. This is done by �agging up an error when that happens.

Figure 3.24: Validation check for duplicate feature de�nitions.

3.2.5 Duplicate Requirements

Figure 3.25: Validation check for duplicate feature de�nitions.

This method is used to check for redundant de�nition requirements. A comparison is done

between the element name, its features and its states. If a duplicate requirement is found

3.2. Requirement Validation 54

for each of these attributes, a redundancy warning is shown as illustrated in Figure 3.25.

The duplicate "white" feature was rede�ned in REQ2 for "PumpIndicator". To identify

duplicity in requirements in the behaviour section, a validation check is implemented for

logic requirements.

Figure 3.26: Validation check for duplicate feature de�nitions.

The elements and features of two logic requirements are �rst compared. If they are

found to be identical, the conditions in the �rst requirement is then compared to that of

the second requirement. Identical elements, features and conditions imply that the logic

requirement is redundant. In Figure 3.26, "outputSignal" and "low" values in BREQ2 are

identical to BREQ1. Furthermore, the condition "inputSignal = O�" is also equivalent

to that of BREQ1 resulting in the display of a warning message.

3.2.6 Requirement Con�ict

When a logical or temporal con�ict arises in the description of the behaviour of a system

it leads to inconsistencies in the speci�cation Institute of Electrical and Electronics Engi-

neers (IEEE) Standards Board 1994. An example of a con�ict in a logic requirement is an

input variable set to two di�erent values for the same expected output. For example, one

speci�cation states "The pump is on when the switch is on" and the other speci�cation

states "The pump is on when the switch is o�". Con�ict can also appear in temporal

related conditions. For example, one speci�cation states "The light is green when switch

is on for more than 2.0s" and the other speci�cation states "The light is green when switch

is on for exactly 5.0s". In this example, the con�ict is in the timing constructs "for more

than 2.0s" and "for exactly 5.0s".

3.3. Discussion 55

Table 3.1: Comparison between CNL and HRML accross di�erent aspects.

Aspects CNL HRML
speci�cations with
mathematical descriptions

Mathematical Expressions ArithmeticExpression

descriptions with
conditional speci�cations

Choice Expressions Pseudo

conditional statements
with boolean results

Boolean Expressions LogicalComparisonCondition

tabular representations LookUp Tables N/A

3.3 Discussion

3.3.1 Comparison between CNL and HRML

CNLs can be used for requirement speci�cation using prede�ned patterns, templates and

a restricted vocabulary. DSLs can also use the terms, concepts and vocabulary to capture

di�erent types of domain knowledge in models. De Castro, Bezerra, and Hirata 2015

propose a CNL targeted at the aerospace domain and can therefore be compared with

HRML, the proposed DSL. The two languages support similar requirement speci�cations

in terms of the de�nition of system elements and di�erent types of constraints. There

are four di�erent types of expressions supported by the Condition Element of the CNL

that are usable interchangeably in a similar manner as HRML. Table 3.1 shows a com-

parison between the two languages across di�erent aspects. The CNL expressions are

Mathematical expressions, Boolean expressions, Choice expressions and an expression for

one-dimensional tables called Lookup tables. HRML has equivalent concepts to these

expressions. The Arithmetic Requirement is equivalent to Mathematical expression and

the counterpart of Choice expressions in the CNL is Pseudo Requirements in the HRML.

Boolean expressions, referred to as Logic requirements in the HRML also have Relational

expression which is assumed to be relational algebra. The HRML currently does not

support tables of any sort. It however builds upon the basic requirements to include time

constraints and transitions between states. An additional advantage is that while the

CNL need to be translated to XML for processing, a modelling approach generates the

requirements in a computable format.

3.3. Discussion 56

3.3.2 Requirement Management Tools

Requirement management tools are used for the creation and maintenance of software

requirements. These tools have robust features including requirement traceability and

change requests to support the requirement engineering process. The format of the re-

quirement speci�cations may di�er from tool to tool. IBM Rational DOORS, for example,

allows for NL speci�cation in a hierarchical manner for systems and subsystems. Require-

ment traceability in DOORS can be done across the abstraction levels of the requirements,

such that LLRs can be linked to the HLRs from which they were developed. The LLRs

can emerge in the design process as results of iterations of re�nement of HLRs (RTCA Inc.

2011a). Traceability can also be demonstrated between requirements and tests such that

a link can be de�ned between manually derived test cases and the originating require-

ments. Tracking the changes in requirements is another important aspect of requirement

management. Change requests can be made in the DOORS tool and this would iden-

tify all the other related requirements that are linked to the changed requirements for

review. Additionally, graphical UML and SysML models can be imported into DOORS

to support transitioning and traceability to the design phase of development. REQPAT is

another requirement management framework that supports more restricted speci�cations,

represented in a CNL (Fockel and Holtmann 2015). Génova et al. 2013 also proposed a

framework in which the Requirement Quality Analyzer (RQA) (The Reuse Company

2014) can be used to measure the quality of natural language requirement speci�cations

based on numerical values assigned to identi�ed metrics.

The implementation of a robust requirement management tool is beyond the scope of

this research. However, the proposed DSL-based approach attempts to address some

of the requirement engineering tasks. Traceability in the DSL approach was not aimed

to be between requirement and design phases. Instead, it is between requirements and

tests (described in Chapter 4). As the DSL approach is based on the Eclipse Modelling

Framework (Steinberg et al. 2008), supporting requirement to design translation can be

achieved using model transformation tools to generate graphical UML models. The re-

3.4. Chapter Summary 57

quirment validation strategy employed in the DSL approach also di�ers in a way such

that inconsistency is done in real time instead of as a separate process (Section 3.2). The

auto-correction of inconsistent requirements is not implemented in the DSL approach,

although it is feasible using the JAVA quick �x feature supported by Eclipse. There are

several version control tools such as Git (Eclipse 2017b) and SVN (Eclipse 2017a), also

supported by Eclipse that can be employed to track requirement changes in the DSL

approach.

3.4 Chapter Summary

In this chapter, a novel domain-speci�c modelling language has been proposed for high-

level requirement speci�cation. The language HRML, targets the software requirement

process as de�ned by the DO-178C standard for the certi�cation of aviation software

systems (RTCA Inc. 2011a)(RTCA Inc. 2011b). With the distinction between the di�er-

ent levels of requirement speci�cation, HRML allows for the de�nition of non-ambiguous

and consistent high-level requirements for automatic veri�cation. The requirement types

supported by the language are derived from analysis of high-level customer requirements

provided by the industry partner. Although developed using constructs from require-

ment samples in aviation domain, the language can be used to specify requirement types

commonly used in other domains such as logic and timing constraints. The chapter

also describes the author's proposed approach to the validation of requirement models,

speci�ed in the HRML. The requirement validation process detects possible con�icts and

inconsistencies in the requirements to ensure that errors are not propagated to other de-

velopment processes. Following the de�nition of valid requirements, the next chapter will

present the approach to automatically generate requirement-based test cases from testable

HRML speci�cations.

Chapter 4

Test Case Generation

The automation of manual processes, in general, aims to increase productivity by re-

duction of e�ort and time taken to perform a task. The application of automation to

software testing involves the use of appropriate tools to satisfy test objectives. In this

chapter, an approach for automatic test case generation from requirement models, rep-

resented in HRML, the modelling notation proposed in Chapter 3, is presented. Model

transformation techniques are applied to the requirement models to satisfy the test cover-

age criteria for each speci�cation type. Section 4.1 gives an overview of the proposed test

case generation approach. The implementation algorithm for the Modi�ed Condition/

Decision Coverage (MC/DC) criteria for the di�erent categories of logic requirements is

described in section 4.2. In section 4.3, the algorithm is extended to support the veri�ca-

tion of conditional statements, de�ned in pseudo requirements. Boundary Value Analysis

is combined with the MC/DC algorithm in section 4.4 to automate test case generation

from range requirements and section 4.5 summarizes the chapter.

4.1 Proposed Methodology

Software veri�cation can be responsible for more than 50% of the overall development cost

(Rayadurgam and Heimdahl 2003). The veri�cation process can include the de�nition of

58

4.1. Proposed Methodology 59

test scenarios, test cases and executable test scripts. The test scripts can detect errors

and �nd faults in the software. Automated testing can refer to techniques that use test

scripts to automatically drive test execution on the software (Schnelte 2009). In this way

the derivation of the test cases to describe the test input and expected output is still done

manually. Reducing the manual e�ort to generate these test cases could lead to further

reduction in software veri�cation costs. In Model-Based Testing (MBT), models can

be used to capture the high-level test objectives of certain aspects of system behaviour

for automatic test case generation (Kosmatov et al. 2004). This usually involves the

automatic generation of test related artefacts from various formats of software models.

The application of MBT techniques to software veri�cation supports automation of various

testing activities using models (Dalal et al. 1999). A model in the context of MBT is a

graphical or textual representation of certain aspects of a software system at some level of

abstraction. These models can be used to generate test data input, test case descriptions

and executable test scripts.

Existing MBT techniques have used di�erent formats of software abstractions including

State Charts (Salman and Hashim 2016), Sequence Diagrams (Sarma, Kundu, and Mall

2007), Activity Diagrams (Kundu and Samanta 2009) and formal speci�cations (Liu and

Nakajima 2010). However, these techniques are targeted at the decomposition of high-

level requirements into design models at a lower abstraction level. Formal methods and

speci�cations can also be used for MBT but usually requires extensive knowledge of the

mathematical notations. This can seem impractical at an early requirement speci�cation

phase where there is continuous communication and liaison with di�erent stakeholders.

While there are advantages to having generic MBT approaches, one drawback is the ap-

plicability of speci�c strategies and customizations to di�erent contexts (Ali et al. 2010).

To address this, context-based speci�cation, represented in a domain speci�c language

(DSL), is used to drive the proposed test automation approach. The use of a DSL ensures

that the software requirements are represented in an expressive and concise manner for

MBT. The textual DSL proposed in Chapter 3 has expressive NL features for communica-

tion with non-technical stakeholders and supports the application of model manipulation

4.2. Logic Requirement Test Cases 60

Figure 4.1: Overview of proposed methodology for automated test case generation.

techniques. This implies that stakeholders can use a notation, that incorporates domain

jargon, to de�ne the functionality of software and automatically generate test cases to

verify the implemented solution.

An overview of the proposed approach to requirement-based test generation is illustrated

in Figure 4.1. The process starts by loading the HRML requirement model into a Model-

to-text transformation engine. Transformation templates implemented in the Epsilon

Generation Language (Rose et al. 2008) generates tests for the di�erent types of testable

requirements in the model. The testability of the requirement is the measure of how tests

can be deduced from the speci�cation (Institute of Electrical and Electronics Engineers

(IEEE) Standards Board 1998b). It is the degree to which the test criteria for a require-

ment can be determined and the extent to which the tests can be carried out to ensure

that the criteria is satis�ed. The testable requirements in the HRML speci�cation models

are identi�ed as requirement types from which test scenarios can be inferred at the current

level of abstraction. The following sections describe the testing strategies applied to such

requirements.

4.2 Logic Requirement Test Cases

Logic requirements in the HRML model capture system requirements using a combina-

tion of logic conditions and operators. Each Condition, is a Boolean expression with no

operators while a Decision is a Boolean expression containing conditions and zero or more

operators (Hayhurst and Veerhusen 2001). Requirements which have logic conditions are

veri�ed in accordance with the DO-178C certi�cation standards, which require the sat-

isfaction of Modi�ed Condition/Decision Coverage (MC/DC) (Hayhurst and Veerhusen

4.2. Logic Requirement Test Cases 61

2001). The MC/DC criteria was developed by Chilenski and Miller to achieve a level of

con�dence to e�ectively test logical expressions without exhaustive testing (Chilenski and

Miller 1994). The use of this criteria in functional testing has been reported to detect

important errors that could not have been found at lower level tests (Dupuy and Leveson

2000). Speci�cation of requirements de�ned informally or formally can often include logic

expressions to express behaviour constraints on the system. Hence, MC/DC can be em-

ployed to derive e�cient tests where exhaustive testing of speci�cations is infeasible and

measure the adequacy of test cases derived from logical expressions (Hayhurst and Veer-

husen 2001). To achieve this coverage for the requirements-based test cases, the following

requirements for MC/DC are considered (Hayhurst and Veerhusen 2001) :

• every decision in the program has taken all possible outcomes at least once

• every condition in a decision in the program has taken all possible outcomes at least

once

• every condition in a decision has shown to independently a�ect that decision's out-

come

There are several approaches to achieving structural coverage using MC/DC. A model

checker was applied to RSML-e speci�cations in (Rayadurgam and Heimdahl 2003). By

using a symbolic or bounded model checker, counterexamples/test cases can be deduced by

specifying a search depth. A simulator checks the formal speci�cation of the behavioural

model which is translated by an analyst into a format suitable for the veri�cation tools.

(Ghani and Clark 2009) proposes a lower level approach to achieve MC/DC by generat-

ing test data from Java classes. However, the focus of this research is requirement-based

testing which is on a di�erent abstraction level to classes in implementation code. In

(Almeida, Melo Bezerra, and Hirata 2013), the requirement speci�cations are translated

into a system representative graph to identify the paths in the graph. The require-

ments and resulting MC/DC test cases derived from these paths are represented in XML.

4.2. Logic Requirement Test Cases 62

However, these requirements speci�cations are not validated for consistency beforehand,

thereby, introducing the possibility of propagating errors from inconsistent requirements.

Kangoye, Todosko�, and Barreau 2015 presents three approaches to MC/DC (Universal,

Intermediate and Exhaustive), implemented using binary trees and constraint solvers.

The Universal approach implements the (N + 1, where N is the number of conditions in

the decision) (Kelly J et al. 2001) rule to satisfy unique-cause MC/DC. The Intermediate

approach selects the minimum feasible set of test cases after generating several possible

test suites from the speci�cations while the Exhaustive approach uses 2N (where N is

the number of conditions in the decision) to generate a comprehensive truth table for

the decision in a speci�cation. The exhaustive approach can be infeasible and not cost

e�ective, as it would require testing every possible combination of the conditions. The

result of the evaluation of these three methods is that, given the time taken and condition

size for each approach, the exhaustive approach is suitable for less than ten conditions,

but the Universal approach is a more e�ective approach to detect faults. The proposed

MC/DC approach extends the Universal approach (N + 1, where N is the number of

conditions in the decision), in di�erent variations for the HRML requirement types. The

DSL examples in Listing 4.1 illustrates three di�erent scenarios for logic speci�cations.

The �rst requirement, BREQ1, has a single condition (brightnessMonitor = O�). For

logic speci�cations with one condition, there can be only two resulting test cases: when the

condition is true and when the condition is false. For scenarios where the speci�cation has

multiple conditions (e.g. BREQ2 and BREQ3), test cases are derived by the application

of variations of the universal approach to achieve MC/DC, depending on the combinations

of operators in the requirement.

4.2.1 Multiple Conditions and Single Operator

Requirements that fall into this category have multiple conditions with either only AND

operators or only OR operators. An example of this classi�cation of logic requirements

is BREQ2 in Listing 4.1 with only AND operators. The minimum number of test cases

4.2. Logic Requirement Test Cases 63

required to satisfy MC/DC for these types of speci�cations can be calculated using the

formulae N + 1, where N is the number of conditions in the speci�cation (Mitra, Chatter-

jee, and Ali 2011). The operator type in the speci�cation also determines what algorithm

is implemented to achieve MC/DC.

Listing 4.1: Examples of HRML Logic requirements.

BREQ1: The d i sp layPane l s h a l l be Off when br ightnessMoni tor = Off .

BREQ2: The d i sp layPane l s h a l l be On when

(temperatureSensor = ac t i v e and pre s su r eSenso r = ac t i v e

and sensorMonitor = On) .

BREQ3: System s h a l l be s e t to standBy when

pressureMonitor = i n a c t i v e and temperatureMonitor = i n a c t i v e

or temperatureDisplay = Off .

Algorithm 4.1 Algorithm for test case generation for logic requirement with multiple
conditions and a single operator.

logic = Logic Requirement;
ops = logic.getOperators();
conds = logic.getConditions();

if conds.size() > 1 then . Requirement with multiple conditions
opSet = ops.asOrderedSet().size(); . Requirement operators as a set
if opSet = 1 then . Requirement with single operator

if (opSet.�rst() = "and") then
logic.walkingFalse();

else if (opSet.�rst() = "or") then
logic.walkingTrue();

end if
end if

end if

4.2. Logic Requirement Test Cases 64

Algorithm 4.2 Walking false algorithm for test case generation for logic requirement
with "and" operator.

logic = Logic Requirement;
ops = logic.getOperators();
conds = logic.getConditions();

function walkingFalse(ops, conds)
for all c in conds do

table:Map; keys = getKeys(conds);
for all k in keys do

table.put(k,true);
end for
tbrSeq = toBeReplacedByFalse(conds);
for all d in tbrSeq do table.put(d, false);
end for

end for
return table;

end function

function getKeys(conds)
a = 1;
rows = conds.size() + 2;
cols = conds.size() + 1;
while a < rows do

keys.addAll(generateRows(a,cols));
a++;

end while
return keys;

end function

function generateRows(i, k)
counter =1;
seq, r;
while counter < k do

r = i.toString() + ","+ counter.toString();
seq.add(r);
counter++;

end while
return seq;

end function
function toBeReplacedByFalse(conds)

b = 0; countf = 2; g = 1;
while b < conds.size() do

r = countf + "," + g;
tbr.add(r);
countf++; g++; b++;

end while
return tbr;

end function

4.2. Logic Requirement Test Cases 65

Algorithm 4.3 Walking true algorithm for test case generation for logic requirement
with "or" operator.

logic = Logic Requirement;
ops = logic.getOperators();
conds = logic.getConditions();

function walkingTrue(ops, conds)
for all c in conds do

table:Map; keys = getKeys(conds);
for all k in keys do

table.put(k,false);
end for
tbrSeq = toBeReplacedByTrue(conds);
for all d in tbrSeq do table.put(d, true);
end for

end for
return table;

end function

function getKeys(conds)
a = 1;
rows = conds.size() + 2;
cols = conds.size() + 1;
while a < rows do

keys.addAll(generateRows(a,cols));
a++;

end while
return keys;

end function

function generateRows(i, k)
counter =1;
seq, r;
while counter < k do

r = i.toString() + ","+ counter.toString();
seq.add(r);
counter++;

end while
return seq;

end function

function toBeReplacedByTrue(conds)
b = 0; countf = 2; g = 1;
while b < conds.size() do

r = countf + "," + g;
tbr.add(r);
countf++; g++; b++;

end while
return tbr;

end function

4.2. Logic Requirement Test Cases 66

Table 4.1: BREQ2 test cases represented in logic table with walking false pattern.
tS=temperatureSensor , pS=pressureSensor, sM= sensorMonitor, dP=displayPanel

TCID tS=active pS=active sM=On Expected Output (dP=On)
TC1 T T T T
TC2 F T T F
TC3 T F T F
TC4 T T F F

The BREQ2 requirement in Listing 4.1 is used to demonstrate a walking false pattern,

which ensures that the value of each condition is changed at least once for the AND oper-

ator. This pattern is implemented to give the illusion of a false value, moving diagonally

across the table to show that each condition independently a�ects the outcome of the deci-

sion. The resulting test cases from the application of the walking false pattern for BREQ2

is illustrated in Table 4.1. TC1, the �rst test case in the table has all the conditions set

to true values and with the AND operator, the expected output is true. The subsequent

test cases (TC2, TC3, TC4) have one of the conditions in the speci�cation exclusively set

to false. For TC2, the condition (tS=active) is set to false while the other conditions in

the requirement are �xed as true. This is to demonstrate that the condition (tS=active)

independently a�ects the expected output. The combination of condition values in test

cases TC3 and TC4 show the independent e�ect of conditions (pS=active) and (sM=On)

respectively. Algorithm 4.1 describes how test cases for a LogicRequirement with multi-

ple conditions and a single operator is assigned based on the logic operator. The walking

false algorithm is described in Algorithm 4.2. The logic table for a speci�cation with only

OR operators would apply a walking true pattern (Algorithm 4.3). The illusion of a true

value moving diagonally across the table while setting all other conditions to false is used

to demonstrate this.

4.2. Logic Requirement Test Cases 67

Algorithm 4.4 Algorithm for test case generation for logic requirement with multiple
conditions and multiple operators.

logic = Logic Requirement;
ops = logic.getOperators();
conds = logic.getConditions();

procedure multipleOperators(ops, conds)
splitFrags = splitFragments(conds);
count = 0;
while count < splitFrags.size() do

if ("and".isSubstringOf(splitFrags.at(count))) then
anded.add(splitFrags.at(count));

else
nonAnded.add(splitFrags.at(count));

end if
count++;

end while
�rstTable(splitFrags,conds, ops);
intermediateTables(conds.size(), splitFrags,conds, ops);

end procedure

function splitFragments(conds)
resultConds = conds.split("or");
return resultConds;

end function

The automation of the test case generation process using the proposed approach is im-

plemented using model-to-text transformation scripts. All the logic requirements are

identi�ed, when the speci�cation model is loaded. In the given example, the equivalent of

the above logic table is represented by a Map and its keys are generated using the number

of conditions in the speci�cation. In BREQ2, there are three conditions (columns) and

the number of test cases is calculated by the formula, N + 1 = 3 + 1= 4. The number

of conditions and test cases corresponds to the number of columns (3) and rows (4) re-

spectively. These numbers are then used to generate in a "(row, column)" combination,

with the following keys to the table map: (1,1) (1,2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3,

2) (3, 3) (4,1) (4,2) and (4,3). The keys are generated using the GETKEYS function in

Algorithm 4.2.

The next step involves the population of the table using the generated keys with all

4.2. Logic Requirement Test Cases 68

true values. The keys to the table cells, to be replaced by false values are generated

(TOBEREPLACED function in Algorithm 4.2) to form a diagonal pattern (2, 1) (3, 2)

and (4, 3). The corresponding values required are replaced and the expected output for

each row is calculated. Individual test cases are denoted by the rows in the map that

contain input values and their expected output. The reverse is done for walking true if

there is a single OR operator in the requirement (Algorithm 4.3). After the keys have

been generated, the table is populated with all false values. The cells identi�ed to give

the walking true illusion are then replaced by true values.

4.2.2 Multiple Conditions and Multiple Operators

Behavioural requirements with multiple operators in the requirement model contain at

least three conditions with combinations of AND and OR operators. An example of a

speci�cation with multiple operators and conditions is BREQ3 in Listing 4.1. To generate

test cases for this type of logic requirement, the (N + 1) formulae is no longer adequate to

ensure that MC/DC is satis�ed. This is because, these types of speci�cations introduce

an additional layer of complexity with the possibility of masking conditions that could

a�ect the outcome of the expression (Kelly J et al. 2001). To achieve MC/DC satis�ed

test cases for multiple operator logic requirements, the use of several intermediate tables

is employed with the OR, and then AND operators, in order of precedence. The algorithm

to generate tests from these types of logic requirements is presented in Algorithm 4.4.

4.2. Logic Requirement Test Cases 69

Algorithm 4.5 Algorithm for the �rst table generation for multiple operator logic re-
quirements.

logic = Logic Requirement;
ops = logic.getOperators();
conds = logic.getConditions();

procedure firstTable(splitFrags,conds, ops)
table; keys;
counter = 1;
rows = splitFrags.size() + 2;
cols = conds.size() + 1;
while counter < rows do

keys.addAll(generateRows(counter, cols));
counter++;

end while
for k in keys do

table.put(k, false);
end for
tbrKeys; counter = 2; ccv = 1; count = 1;
for s in splitFrags do

while count < s.split("and").size() +1 do
tbrKeys.add(counter.toString() + "," + ccv.toString());
count++; ccv++;

end while
counter++; count = 1;

end for
for t in tbrKeys do

table.put(t, true);
end for

. Calculate expected output and print table
end procedure

First step: separated conditions

The �rst step is to identify the fragments in the requirement that are separated by the

OR operator. In the context of the DSL requirement models, a fragment is a condition

or combination of conditions and operators within the overall decision. In a requirement

with multiple operators, a fragment is derived by splitting the decision into multiple

sections. The split is done by grouping conditions, joined by the AND operators before

an OR operator is encountered. For this step in the test case generation process, each

section/fragment joined by AND and separated by OR is treated as an individual entity.

4.2. Logic Requirement Test Cases 70

The initial requirement example, in Listing 4.1, can then be rewritten as shown in Listing

4.2.

Listing 4.2: Separated conditions for BREQ3.

BREQ3: System s h a l l be s e t to standBy when

(pressureMonitor = i n a c t i v e and temperatureMonitor = i n a c t i v e)

or temperatureDisplay =Off .

The ANDed fragments are the conditions in brackets, combined with the AND operator

while non-ANDed fragments are separate single conditions. The non-ANDed single con-

dition fragment in the BREQ3 requirement example is temperatureDisplay = O� and the

ANDed fragment is (pressureMonitor = inactive and temperatureMonitor = inactive).

Table 4.2 shows the �rst set of test cases that are derived by addressing the ANDed frag-

ments in the speci�cation. The test cases are the combination of values, resulting from

the application of a walking true pattern. Each condition in the ANDed fragment is set

to true in a diagonal manner. The algorithm for the generation of the �rst table for the

requirement is illustrated in Algorithm 4.5.

Table 4.2: BREQ3 test cases from walking true pattern.
pM=pressureMonitor, tM=temperatureMonitor, tD=temperatureDisplay

pM= inactive and tM=inactive Expected Output

TCID pM=inactive tM=inactive tD=O� System = standBy
TC1 F F F F
TC2 T T F T
TC3 F F T T

In the �rst test case TC1, all conditions are set to false and hence, the expected output

is false. The evaluation of other combinations of values in the table results in true. TC2

sets all conditions in the �rst OR-separated fragment (pressureMonitor = inactive and

temperatureMonitor = inactive) to true, holding all others to false. TC3 in the next row

sets only the (temperatureDisplay = O�) condition to true, while others are false.

4.2. Logic Requirement Test Cases 71

Algorithm 4.6 Algorithm for intermediate tables generation for multiple operator logic
requirements.

function intermediateTables(splitFrags,conds, ops)
nit = 0; . number of intermediate tables
table; keys;
atKeys; . all true keys
tbrKeys; . keys to be replaced
rows; cols;
ccv = 1; . current column value
crv = 1; . current row value
for f in splitFrags do

if f .split("and").size() > 1 then
nit++;
count = 1;
rows = f .split("and").size() + 1;
cols++;
while (docount < rows)

keys.addAll(generateRows(count, cols));
count++;

end while
for k in keys do

table.put(k, false);
end for
count = 1; . reset counter to 1
while (docount < rows)

atKeys.addAll(generateRows(count, cols - 1));
count++;

end while
for atk in atKeys do

table.put(atk, true);
end for

. apply walking false to only anded columns
b = 0;
kc = 1; . keys counter tbr . generate keys to be replaced by false

while b < rows - 1 do
tbrKeys.add(kc.toString() + "," + crv.toString());
kc++; crv++; b++;

end while
for tbr in tbrKeys do

table.put(tbr, false);
end for

. Calculate expected output for each row in the table and print table

row = 0; cols = 0; table.clear();
tbrKeys.clear(); atKeys.clear(); keys.clear();

end if
end for

end function

4.2. Logic Requirement Test Cases 72

Second step: grouped fragments

After generating test cases in the �rst table, subsequent intermediate tables address each

ANDed fragment in the requirement (Algorithm 4.6). In this step, intermediate tables

are generated for each fragment, with more than one condition, separated by the AND

operator. In the BREQ3 example, there is only one fragment that �ts this criteria (pres-

sureMonitor = inactive and temperatureMonitor = inactive). The isolation of this frag-

ment shows how the alternating values independently a�ect the expected output. As the

conditions in the fragment are separated by the AND operator, the test cases are derived

by implementing the walking false pattern and keeping all other conditions false, as shown

in Table 4.3.The �rst test case in the table is a duplicate combination of values, same as

TC2 in Table 4.2, which is why it is assigned the same test case ID (TCID). It is usually

the case for all intermediate tables in the step to have duplicate combinations of values.

Table 4.3: Walking false test cases for ANDed fragment in BREQ3.
pM=pressureMonitor, tM=temperatureMonitor, tD=temperatureDisplay

TCID pM=inactive tM=inactive tD=O� Expected Output
(System = standBy)

TC2 T T F T
TC4 F T F F
TC5 T F F F

The generation of tables for the grouped fragments, is followed by intermediate tables

for non-ANDed fragments with single conditions. The intermediate tables for each of the

single conditions have two test cases for when the condition is true and when the condition

is false, while setting all other conditions to false. In the BREQ3 example, there is only

one single condition fragment (temperatureDisplay = O�) and its test cases are shown in

Table 4.4. The test cases for the single conditions are usually duplicates of combinations

in the �rst table of test cases (i.e. Table 4.2), as with the case of TC1 and TC3.

Following the generation of all the required intermediate tables, all unique combinations

of values are identi�ed. These combinations are the minimum test cases required to

satisfy MC/DC for the logic requirement speci�cation. The minimum number of MC/DC

test cases for a behaviour speci�cation with multiple operators can be derived using the

4.3. Pseudo Requirement Test Cases 73

Table 4.4: Test cases for single condition in BREQ3.
pM=pressureMonitor, tM=temperatureMonitor, tD=temperatureDisplay

TCID pM=inactive tM=inactive tD=O� Expected Output
(System = standBy)

TC3 F F T T
TC1 F F F F

following formulae: Test Cases= TCI + TAC, where TCI is the number of tests in the

initial table and TAC is the total number of conditions in AND-separated fragments. In

this example, there are three test cases in the initial table, and two conditions in the �rst

AND-separated fragment. Therefore, there are 3 + 2 = 5 unique combinations (i.e. test

cases).

4.3 Pseudo Requirement Test Cases

Algorithm 4.7 Algorithm for test case generation for di�erent levels of Pseudo require-
ments.
pseudo = Pseudo Requirement;
level = pseudo.getLevels();

if level = 1 then
levelOne(pseudo);

end if
if level = 2 then

levelTwo(pseudo);
end if
if level = 3 then

levelThree(pseudo);
end if

Pseudo requirements can be described as a combination of logic expressions and condi-

tional if statements. They are used to specify the logic for a parameter using nested if

statements in pseudo code format. The conditional statements can be de�ned to a max-

imum depth of three levels. Test case generation for this type of requirement is done at

each level. The �rst step is to determine the depth (number of levels) in the requirement,

which is equivalent to the number of nested ifs (Algorithm 4.7). Each pseudo requirement

4.3. Pseudo Requirement Test Cases 74

is split into scenarios, the number of scenarios are determined by the depth level of the

requirement plus one. Each scenario has the conditions for that level, the operators for

that level, the expected output, when the conditions are true (trueExpected) and the

expected output when the condition is false (falseExpected).

Algorithm 4.8 Pseudo test algorithm for level one

procedure levelOne(pseudo)
decision = pseudo.decision;
conds = decision.getConditions();
ops = decision.getOperators();
if conds.size() < 2 then

generate single condition test cases;
else . multiple conditions

if ops.asOrderedSet().size() = 1 then
. Requirement with single operator

if (ops.asOrderedSet().�rst() = "and") then
walkingFalse(decision);

else if (ops.asOrderedSet().�rst() = "or") then
walkingTrue(decision);

end if
else . speci�cations with multiple operators

multipleOperators(decision);
end if

end if
end procedure

For example, if the depth level is one, there are two scenarios:

Scenario 1: The condition is true and the condition after the then keyword is executed.

Scenario 2: The condition is false and the condition after the else keyword is executed.

For each scenario in this level, the size of the conditions and the type of logic operator

(Algorithm 4.8). The same concept is applied to requirements with di�erent levels. In

addition to deriving the scenarios, the speci�cation in each scenario is evaluated as a

single or multiple operator logic speci�cation. The pseudo requirement example in Figure

4.2 has a depth level of 2, resulting in 3 di�erent scenarios.

Scenario 1: Display greenFlag when the �rst condition (inputSignal12 = invisible) is

true.

4.3. Pseudo Requirement Test Cases 75

Figure 4.2: Pseudo requirement example with depth of 2.

Scenario 2: Display yellow �ag and inputSignal14:=60*30000 when the �rst level con-

dition (inputSignal12 = invisible) is false and second level condition (anotherComponent

= open) is true.

Scenario 3: Display redFlag when the �rst level condition (inputSignal12 = invisible) is

false and the second level condition (anotherComponent = open) is also false.

The speci�cation in Figure 4.3 is an example of a pseudo requirement with depth of 3

nested if statements. To derive test cases for this requirement, there are four scenarios:

Scenario 1: The �rst level condition (inputSignal12 = invisible) is true, and the expected

output is the trueExpected value for the �rst level (i.e. display greenFlag).

Scenario 2: The �rst level condition (inputSignal12 = invisible) is false and the second

level condition (anotherComponent = open) is true. In this case, the expected output is

the trueExpected value for the second level (i.e. display yellowFlag and inputSignal14 :=

60* 30000).

Scenario 3: The �rst level condition (inputSignal12 = invisible) is false, the second level

condition (anotherComponent = open) is false and the third level condition (inputSignal10

4.3. Pseudo Requirement Test Cases 76

Figure 4.3: Pseudo requirements example with depth of 3.

<= inputSignal11) is true. The expected output is the trueExpected value for the third

level (inputSignal14 := 500* 30).

Scenario 4: The �rst level condition (inputSignal12 = invisible) is false, the second level

condition (anotherComponent = open) is false, and the third level condition (inputSig-

nal10 <= inputSignal11) is false. The expected output is the falseExpected value for the

third level (i.e. display redFlag).

For each test scenario in the requirement described above, logic-based test cases are gen-

erated by applying the appropriate MC/DC strategy. This will be based on the number

of conditions, types of operators and the expected output for true/false values. Typi-

cally, conditional statements can be unit tested after the software has been implemented.

However, the approach presented in this section provides a higher level solution.

4.4. Boundary Value Analysis 77

4.4 Boundary Value Analysis

E�ective derivation of tests from a given set of requirements requires coverage of normal

range and abnormal range scenarios (Ostrand and Balcer 1988). Real and integer input

values within the speci�cations are tested using a combination of boundary value analysis

and equivalence classes identi�ed (RTCA Inc. 2011a)(Basili and Selby 1987). Boundary

value analysis (BVA) is a strategy to test what values are acceptable by the system. It

involves analysing how the system reacts to valid and invalid values of a variable, for

which a range has been de�ned. If the range of acceptable values has been speci�ed, it

can be impractical to test every single value in the range. An e�cient way of generating

test cases would be to divide the values into Equivalent classes/partitions (Huang and

Peleska 2016). This partitioning is done by identifying a group of values or equivalent pairs

which could produce the same behaviour in the system. (Weisleder and Schlinglo� 2007)

utilizes a combination of UML models and OCL constraints to generate partitions of test

input data for boundary testing. SysML models are used for Partition testing in (Hubner,

Huang, and Peleska 2015). Another model-based approach to equivalence partition testing

is proposed in (Huang and Peleska 2017) for reactive transition systems, where there are

possibly in�nite input variable domains, while the state variables and outputs are �nite.

Robustness behaviour is captured using UML pro�les and state machines while constraints

are de�ned using OCL constructs in (Ali, Briand, and Hemmati 2012). Search algorithms

were combined with constraints that have been rewritten to generate boundary values for

testing in (Ali et al. 2016) and the strategy is demonstrated using 6 scenarios of multiple

conditions/operators.

4.4. Boundary Value Analysis 78

Algorithm 4.9 Algorithm to check valid and invalid range inputs

logic = Logic Requirement;
ops = logic.getOperators();
conds = logic.getConditions();

for all c in conds do p = c.parameter; v = c.value; . check if range values,minimum
and maximum values are de�ned for p

if (p.minval()! = null) and (p.maxval != null) then
. generate lower boundary value tests for p

BVA1 = v + 1 || v +margin;
BVA2 = v;
BVA3 = v − 1 || v −margin;

. generate mid boundary value tests for p
BVA1 = v + 1 || v +margin;
BVA2 = v;
BVA3 = v − 1 || v −margin;

. generate upper boundary value tests for p
BVA1 = v + 1 || v +margin;
BVA2 = v;
BVA3 = v − 1 || v −margin;

if (v ≥ p.minval) and (v ≤ p.maxval) then
. generate MC/DC test cases if v is a valid input within the de�ned range for p

generate MC/DC test cases for the logic requirement
generate MC/DC test cases for the logic requirement

else
Display out of boundary warning for invalid input

end if
else . check if no range values are de�ned for p

generate MC/DC test cases for the logic requirement
end if

end for

The implementation of BVA, using equivalence partitioning is demonstrated by using

the examples in Listing 4.3 and Listing 4.4. The requirements in Listing 4.3 show the

de�nition of the acceptable values for the temperature and pressure elements of the sys-

tem. These elements can be used as components with logic comparison operators (=, <,

>, <=, >=) for di�erent behaviour requirements. The speci�cations in Listing 4.4 are

examples of range de�nitions for elements, with or without a speci�ed margin. REQ4

states the upper and lower boundary for the temperature element and REQ5 includes a

4.4. Boundary Value Analysis 79

margin of 0.20 to the range de�nition for the pressure element. The range speci�cations

are usually split into three equivalent classes: lower, mid-range and upper boundary. For

each equivalence class, the boundaries are tested with values, that are +/- 1.0, unless

a margin is stated (Algorithm 4.9). In the examples in Listing 4.3, the lower boundary

values for the temperature element are (-1.0,0.0,1.0) while that of the pressure element are

(19.8,20.0,20.2) because of the de�ned margin of 0.20. Equivalently, the upper boundary

values are (119.0,120.0,121.0) and (39.8,40.0,40.2), for temperature and pressure respec-

tively. For robustness testing, test cases for out of range values are included on purpose, to

verify the reaction of the system to invalid input values in addition to valid input values.

Listing 4.3: Range values for temperature and pressure.

REQ4: The temperature s h a l l range between 0 .0 and 120 .0 degree s .

REQ5: The pr e s su r e s h a l l range between 20 .0 and 40 .0

with a margin o f 0 . 2 0 .

Three di�erent behaviour requirements in Listing 4.4 are used to demonstrate how BVA is

addressed in the test case generation. These logic requirements incorporate the values of

the temperature and pressure elements in the conditions. The �rst check is for parameter

values in the requirement to ensure that they are within the prede�ned range. This is

done by verifying that the stated values are greater than the minimum lower boundary

value and less than the maximum upper boundary value. If the veri�cation returns a true

result, test scenarios are produced for +/- 1.

Listing 4.4: Examples for Boundary Value Analysis.

BREQ1BVA: overload_warning i s v i s i b l e when temperature > 100

and pre s su r e < 30 .

BREQ2BVA: overload_warning i s v i s i b l e when speed > 100 .

BREQ3BVA: overload_warning i s v i s i b l e when temperature >= 130

or p r e s su r e <= 30 .

In the �rst example BREQ1BVA in Listing 4.4, the comparison values assigned to tem-

4.4. Boundary Value Analysis 80

perature (100) and pressure (30) are certainly within the range boundaries. The test cases

for the parameters are shown in Figure 4.4. The expected behaviour for temperature and

range values are derived, based on the comparison operator in context. A false output

is calculated when temperature value is -1 (i.e. 99.0), because even though 99 is a valid

input for the parameter, it does not satisfy the logic condition. The result of the valid

input of 100.0 in second test case BVA2 is also false output as the logic condition is not

satis�ed. In BVA3 however, the value of + 1 (i.e. 101) meets both the validity and

condition requirements for temperature.

Figure 4.4: BVA test cases for parameters within range.

With regards to the pressure parameter, the de�ned value - 1, (i.e. 29.0) is valid and

satisfactory to the logic condition and hence is a true result. Although, the values 30.0

and 31.0 in BVA2 and BVA3 respectively, are both valid for pressure, they produce false

outputs by not satisfying the logic condition. Consequently, as all the requirements in the

listing are logic-based, MC/DC test cases are further generated in addition to the BVA

conducted. The di�erent scenarios, derived as a result of BVA can then be substituted in

the true and false instances of the resulting logic tables.

The second requirement BREQ2BVA in Listing 4.4 is an example of a speci�cation, where

the acceptable values of a parameter have not been previously de�ned. The requirement

validation check for speed identi�es that there are no range boundaries for the parameter

4.5. Chapter Summary 81

Figure 4.5: BVA with no range de�ned.

Figure 4.6: BVA out of range value for temperature.

and issues a warning. Figure 4.5 shows the warning message, that is displayed before

the MC/DC test cases are generated. In the BREQ3BVA requirement, the validation

check detects that the value 130 is out of range for the temperature parameter. A warn-

ing message is displayed as shown in Figure 4.6 while test scenarios are derived for the

valid pressure values. Finally, logic-based test cases are generated, to satisfy MC/DC by

applying the walking true algorithm, as described in section 4.2.

4.5 Chapter Summary

This chapters presents the author's proposed approach to automatic test case generation

from several requirement types. With the requirement speci�cations represented in a con-

cise manner using the DSL, targeted strategies have been implemented to complement the

individual requirement formats. An algorithm has proposed to deduce MC/DC compliant

4.5. Chapter Summary 82

test cases from logic requirements, with single and multiple boolean operators. An ex-

tension of this MC/DC approach is also presented to accommodate the complexity of the

combination of logic statements and conditional statements in pseudo requirements. This

proposed methodology also goes further to employ black box techniques, of boundary-

value analysis and equivalence partitioning, to each condition in the derived test cases.

This di�ers from existing MC/DC approaches such as Universal, Intermediate and Ex-

haustive (Kangoye, Todosko�, and Barreau 2015) in that, it goes on to identify individual

elements in the conditions in a decision, to ensure that, they fall within the bounds of pre-

viously de�ned range values where applicable. This additional veri�cation ensures that,

valid test cases are generated from veri�ed speci�cations. In the next chapter, empirical

evaluation of the proposed methodology will be described.

Chapter 5

Evaluation

Empirical evaluations have been conducted in both non-industrial and industrial contexts

with expert software practitioners (Briand and Labiche 2004)(Baker, Loh, and Weil 2005)

(Kamma and Kumar 2014)(Madeyski and Kawalerowicz 2018)(Falessi et al. 2018). It is

important to test the di�erent aspects of concerns, especially how the existing frame-

works and organisational processes integrate with the new approach. In this chapter,

the proposed tool is evaluated across di�erent spectrums including feedback from domain

experts and non-technical users in terms of learnability and ease of adoption. To assess

the viability of the proposed method for automated MC/DC test case generation, several

experiments were conducted. Firstly, the proposed method has been implemented as a

full functional tool and tested with industry experts at General Electric Aviation (GE

Aviation), an aviation company. This case study with technical industry participants is

described in section 5.1. In contrast, the second evaluation described in the next section

5.2, is focused on the learnability by non-expert users of the tool to model requirements

using HRML and generate test cases. The next section is concerned with the performance

of the tool, particularly regarding how it handles the derivation of test cases from large

requirement models. Therefore, section 5.3 reports on experiments performed to analyse

the scalability of the tool with increasing numbers of logic speci�cations and conditions

in the HRML requirement models. The usability of the tool described in Chapter 4 is

83

5.1. Industry Case Study 84

evaluated in comparison to an Eclipse-independent implementation in section 5.4. Finally,

the chapter is summarised in section 5.5.

5.1 Industry Case Study

Requirement to test case traceability, manual design and execution of test cases are some

limitations faced in software development in industry (Kruse et al. 2013). To test the

designed MC/DC tool in a real-world industrial scenario, system engineers and testers in

an organisation that specialises in the development of aerospace software systems (GE

Aviation) are employed. Here, the proposed MC/DC tool is compared with a baseline

which is the manual test case derivation from natural language requirement speci�cations.

This manual process has been employed by the company for several decades.

Figure 5.1: Software development lifecycle at GE Aviation for manual approach to test
case generation.

The lifecycle of the baseline involves translating natural language requirements provided

by customers into Simulink design models for simulation, veri�cation and automatic code

generation as shown in Figure 5.1. To verify the implemented systems, test cases are

manually written against the speci�ed software requirements. The low-level requirements

derived from the software requirements are represented using Simulink design models.

The automation employed in this process is in the generation of implementation software

code after the Simulink models have been veri�ed. However, to test the high-level and

low-level requirements, test cases are manually developed for the requirement speci�cation

5.1. Industry Case Study 85

Figure 5.2: Proposed automated approach to test case generation from domain speci�c
requirement models.

and design phases respectively. Identifying errors at these testing phases would require

the modi�cation of the software high-level requirement, its derived low-level requirements

and regeneration of a�ected implementation code. and additional e�ort to correct and are

also reviewed for manual test case derivation from the design models. The development of

tailored solutions to support existing processes in industry has been a contributing factor

to the successful adoption of Model Based Development (MBD) (Whittle et al. 2017).

Figure 5.2 illustrates the author's proposed model-based testing approach to automatically

generate the test cases from high-level requirement. By employing techniques to achieve

requirement-based testing, the software requirements are modelled in a domain speci�c

notation to derive industry standard test cases. In Figure 5.3, the tasks involved in the

proposed framework are presented. For each tasks, the object of focus are de�ned linked

with supporting technologies employed to derive the task output artefacts. Requirement

speci�cation modelling and model validation is described in Chapter 3 and the test case

generation process presented in Chapter 4.

5.1.1 Planning and Design

The main goal of this evaluation was to get qualitative feedback on the proposed method-

ology from industry experts. The participants are system engineers at the partner organ-

5.1. Industry Case Study 86

Figure 5.3: Overview of proposed framework.

isation, involved in the use of model based tools to support system development.

Table 5.1: The evaluation phases, activities and data collection process for the industry
case study.

Evaluation Phase Evaluation Activities Data Collection
Phase 1 (03.08.2016) Installation Kit sent to

participants including user
guide and exercise guide.

Feedback forms were
distributed to all
participants.

Phase 2 (17.08.2016) Introductory demonstration
of modelling and testing
using the tool.

Data collected from
semi-structured interviews
conducted.

Table 5.1 illustrates a timeline of the phases in the evaluation process. Phase 1 was the

training period where the participants were provided with an evaluation package including

an installation kit to get familiar with the proposed tool. The installation kit contained

a customised Eclipse Integrated Development Environment (IDE) with HRML plugin in-

stalled, required model transformation scripts and sample HRML models. The evaluation

package also contained a user guide describing the process of creating requirement models

in the Domain Speci�c Language (DSL) and the generation of corresponding test cases

from the models using the tool. A list of exercises that involved sample requirement spec-

i�cations using the DSL and test case generation from the di�erent requirement types

were also provided to the participants. The purpose of the exercises was to familiarize

themselves with the tool for review and provide feedback in a form provided. During the

training period, they were also encouraged to use the tool to model other requirements at

5.1. Industry Case Study 87

their discretion to test the scope of the tool. The user guide and feedback form distributed

are presented in APPENDIX D.

Phase 2 of the evaluation commenced after the training period of two weeks. The partic-

ipants were given an hour of live demonstration of the tool before the interviews began.

This was done as a refresher of the overall proposed automated process and to gather

collective feedback before the individual interviews. The demonstration provided a walk-

through of the requirement modelling for di�erent requirement types as described in

section 3.1 and test case generation for each type as presented in Chapter 4. The data

collection process was done by conducting semi-structured interviews to elucidate on the

answers provided by each participant in their previously completed feedback forms. Each

interview of the participants lasted approximately 50 minutes, was recorded and tran-

scribed manually. The interview questions were designed using factors of the Technology

Acceptance Model (TAM) (Venkatesh and Davis 2000) about the perceived usefulness and

ease of use of the Model Based Testing (MBT) methodology. Some other factors included

perceived compatibility and opinions on future usage of the approach (Mohagheghi et al.

2012). However, the subjective norm factor was not included in this study as Model Based

Development (MBD) is currently adopted within the organisation.

5.1.2 Study Findings

There were four participants involved in this study with all having experience using model-

based development tools, requirement speci�cation and system testing. Table 5.2 describes

the role of each participant at the organisation and their level of expertise with the

application of MBD concepts. From the interviews conducted, the author became aware

of another research project being worked on internally on the use of a variation of Semantic

Application Design Language (SADL) (Crapo and Moitra 2013) to specify requirements

for further veri�cation. The work is however proprietary, and details could not be provided

for comparison with the proposed language.

5.1. Industry Case Study 88

Table 5.2: Table describing the role of each participant, years of experience, level of
involvement in requirement and testing processes.

Participant Role MBD Experience Requirement Testing
PO1 Software

engineering
manager and
MBD group.

10 years Has been
involved in
requirement
speci�cation.

Has experience
in software
testing.

PO2 Model Based
Development
process and
support
engineer with
previous
experience as
avionics system
engineer.

7.5 years of overall
industry experience
with 1.5 years using
MBD.

Used natural
language to
specify
requirements
and manual
review. Also has
experience of
formal
speci�cation for
requirement
speci�cation
and analysis.

Has experience
in formal
methods for
veri�cation.

PO3 Engineering
Higher
Apprentice.

Less than 1 year. Has generated
dummy
requirements for
internal tool
veri�cation.

Generates unit
test cases for
stress testing
internal tools.

PO4 Model Based
Development
process and
support
engineer.

4 years. Involved in
review of
requirements at
di�erent levels
of abstraction to
maintain
consistency and
identify missing
requirements.

Maintains a
traceability
matrix in
Rational Doors
between
requirements
and test cases.

Requirement Modelling Questions in this section focused on challenges with current

practices of requirement speci�cation. The responses showed that the mixed abstraction

levels within a requirement set can lead to more time being spent on proper documentation

of the speci�cation. The set can also consist of con�icting requirements or incomplete

speci�cations which do not capture scenarios for di�erent error cases. When found out

later in the development, these stages can have huge cost implications especially with

the manual review done for each a�ected artefact. With several engineers working on

the requirement sets, this could lead to inconsistent styles, which have to be interpreted

during manual review.

5.1. Industry Case Study 89

Reported bene�ts of the proposed approach are its simplicity and the enforcement of a

consistent style of speci�cation. It was also said to be relatively easier to pick up compared

to the SADL approach because of its modularity. It was also stated that some requirement

types are more common in di�erent categories of projects and concerns were raised with

regards to the extensibility of the DSL to support possibly new requirement templates

that do not exist in the HRML notation. There were also concerns about scalability of

the proposed tool as all the requirement speci�cations are contained in one model �le.

The reality is that there are usually thousands of requirements with multiple engineers

working on them and therefore con�guration management would need to be considered.

Three out of four participants responded to questions on how useful and easy to use the

methodology is on a scale of 1 to 5. All three respondents gave a rating of 4 for perceived

usefulness of the tool as in its current state but informed that this could potentially be

a 5 for a more mature tool. On how useful the tool was, there were two scores of 4 and

one of 3. The issue stated for the lower score of 3 was because there was no requirement

veri�cation feature. The requirement veri�cation feature was implemented subsequently.

There were also concerns about con�guration management as many engineers could be

working on a requirement set at the same time.

Test Case Generation The manual process for testing requirements can range from a

day to a week depending on the complexity of the requirement set. The participants were

asked to carry out test case generation exercises given by the author using the proposed

tool and then review the corresponding results for each requirement type.

Logic based tests: The time taken to manually develop test cases that satisfy MC/DC

for requirements with logic speci�cation has been reported to range from an hour to 16

hours depending on the complexity. The test cases were described to be accurate for the

requirement sets in the exercises. However, some limitations of the tool were reported. For

complex speci�cations, where a component could be in multiple di�erent states, the tool

does not provide alternatives. For example, if there is a constraint that a "Display can be

5.1. Industry Case Study 90

Red, Amber or Green". When the expected result is false, the NOT keyword is inserted

(NOT Red) instead of suggesting an alternative state such as Amber or Green. The test

cases were also reported to be abstract and not descriptive enough. This is due to the

level of abstraction from which the source requirement models are de�ned. A review to

include additional information such as implementation code programming language and

hardware speci�cations may be required to enable translation of the requirement models

into detailed executable test scripts.

Pseudo based tests: For this requirement type, it was reported to have been historically

di�cult for new sta� to manually develop test cases for them. The test cases generated

using the proposed methodology were reported to accurately break down the implied

logic of this type of requirements from the if-else structure through the levels of hierarchy.

They were particularly bene�cial for the more complicated requirements. One challenge

identi�ed was the maintenance of unique IDs for the test cases with multiple levels. After

test cases for one level has been generated, the test case ID is reset to 1 at each pseudo

level. For example, for the pseudo requirement in Figure 4.2 with a depth of 2, the tests

cases for each scenario described in section 4.3 restarts at 1. This could cause clashes

in documentation and when trying to perform traceability back to a failed test case for

example. It could be di�cult to determine which test case ID of 1 is being referred to,

because it appears for each level. A solution to this challenge is to utilise a counter for

the test case generation where the test case ID for each level is an increment from the last

test case ID of the previous level. Alternatively, separate folders in the projects could be

automatically assigned to collate the test cases in each level. The results generated were

mostly positively reviewed but viewed as still immature for adoption because it does not

generate concrete executable scripts which is beyond the scope of this work.

The generated abstract test cases are text formatted descriptions of the combination of

input values and expected results for each scenario. For each test case derived, corre-

sponding input values are assigned for each parameter in the requirement in context to

determine the expected output. The derivation of executable test scripts would require

prior knowledge of the intended testing framework to be adopted. As these framework

5.1. Industry Case Study 91

and testing tools could vary from project to project and also from organisation to organ-

isation depending on project speci�c requirements, abstract test cases provides the tester

with implementation �exibility. The resulting test cases from the proposed approach in

this thesis can be translated into executable test scripts by software testers when further

details of testing tools and supported format of the tests become available later in the de-

velopment lifecycle. Alternatively, the test cases can be generated in eXtensible Markup

Language (XML) and transformation scripts implemented to derive executable tests.

Boundary Value Analysis: The process of performing this analysis on requirements

usually involves identifying the boundary values for each parameter concerned. The cor-

responding test cases are then generated using a table to show the input values around

the stated boundary and the expected result. It was indicated that the strategy used in

the proposed methodology accurately addresses analysis of parameters with or without

prede�ned range values. These are parameters which do not have range requirements

de�ned for them. There was a call to however integrate the analysis better into the test

cases rather than just being stated at the top of the test de�nition document as described

in section 4.4.

5.1.3 Discussion

This section discusses the �ndings of the study. The participants acknowledged the use-

fulness of the proposed MBT methodology and provided positive feedback. The test cases

generated by the tool accurately represented the test cases that were manually developed

by the engineers. In comparison to approaches involving formal methods, it was found

to be simpler to learn and use. While the participants found the Eclipse environment

relatively easy to use due to experience with internal systems, the process of setting up

the run con�gurations every time was a bit tedious. There have been improvements to the

language and tool since the study was conducted, including the implementation of real

time requirement validation and test case generation from timing requirements de�ning

temporal constructs.

5.1. Industry Case Study 92

One needs to take into account the initial cost of adequately training all the potential

users. The extension of the language to support new requirement types in the future

could also incur additional costs of a language expert. However, as previously mentioned,

the company is currently using XText based languages for a proprietary research project.

Therefore, it can be assumed that the adaptation and extension of HRML is feasible.

Overall, all the participants agreed that the proposed methodology would o�er huge ben-

e�ts in terms of time, accuracy and cost in the long term when compared to their current

process (manual) adopted within the industry. There was no doubt among the partici-

pants that a mature version of the tool could be potentially deployed within the industry

in the future. The time that would be required to translate the generated test cases into

executable test scripts in the target test environment, was mentioned as a factor a�ect-

ing the tool's maturity. In comparison with the approaches that involve a number of

open source tools and formal speci�cations, most participants stated that the proposed

methodology was more straightforward and easier to understand. However the perceived

ease of use could vary as a result of their experience with other modelling tools, which in

the case of PO1 is about 10 years.

The conclusion from this evaluation is that the positive feedback from the participants

has shown that the initial aims of the project presented in Figure 5.2 have been achieved.

This is from the feedback given about the modelling notation used to describe high-level

requirements from which high-level test cases are automatically generated. These test

cases have also been demonstrated to satisfy the MC/DC industry standard. Although

the proposed methodology is bene�cial in terms of early requirement validation for con-

sistency, consequently, the next step in the lifecycle would be the vertical transformation

of the requirement models for use in other development stages. The translation could be

from the DSL models to design models for simulation and further decomposition of high

level test cases to lower level executable test scripts. With regards to future adoption,

there is an obvious interest in the use of models for requirement description for di�er-

ent development processes. This is inferred from the various ongoing internal research

projects in the organisation in context. From the available tools, decisions can therefore

5.2. Evaluation of Learnability of the Approach 93

be made on the most appropriate model-based tool that best supports the process for

speci�c projects.

5.1.4 Threats to Validity

By employing a single case study evaluation, there are several threats to the validity of

the exercise. The sample size of the participants used in the evaluation is too small to

represent the aviation industry. It is also possible that the familiarity of the participants

with modelling tools and DSLs impacted the positive feedback received about the proposed

methodology. The use of model-based tools internally in the organisation could have

introduced bias in their feedback. Finally, the evaluation focuses on a company that

embraces model-based practices at an organisational level. According to (Hutchinson,

Rounce�eld, and Whittle 2011), there are several factors, including the attitude of the

organisation in terms of motivation, support and integration that a�ect the adoption of

MDE. Therefore, it is a possibility that a study conducted in a di�erent type of company in

which model-based tools are not incorporated into development processes may produce a

di�erent result. However, with the combined expertise of the participants at GE Aviation,

the overall feedback about the proposed tool was positive. The tool was able to support

early requirement-based testing using relevant domain concepts and testing strategies.

5.2 Evaluation of Learnability of the Approach

The adoption of new methodologies and tools can be dependent on the learning curve or

cost of training its intended users. This has been stated as a limitation to the widespread

adoption of formal methods in industry; despite its e�ectiveness in system veri�cation

and test case generation. In this section, the learnability of the proposed approach is

evaluated by using subjects who are not domain experts. This is done by comparing the

time taken for the subjects to generate MC/DC test cases manually with that of using

the automated approach. A model for evaluating the learnability of software application

5.2. Evaluation of Learnability of the Approach 94

is proposed in (Ra�que et al. 2012). This model considers six characteristics of a system

to determine its learnability: Interface Understandability (how the interface of the system

enable the user to achieve desired goals), Feedback Suitability (interaction with the user

to provide adequate information and responses to actions), Predictability (the ability of

a user to predict the response of a system to speci�c actions), Task Match (the degree

to which the resources required by a user to perform desired tasks are available), System

Guidance Appropriateness (the degree to which a user is enabled to e�ectively perform

tasks with the help of the system) and Operational Momentum (how e�ectively the system

guides a user to subsequent stages). The learnability characteristic of focus in this study

is on the understandability of the proposed tool by the participants. This is to investigate

how they are able to model requirements in HRML and generate test cases using the

model transformation scripts. (Grossman, Fitzmaurice, and Attar 2009) also characterizes

software learnability into Initial, Extended and Learning as a Function of Experience. The

Initial learning is based on the initial performance of a user with respect to the system

under review. Extended learning is concerned with how the performance of a user with

a system changes over time. The third category of Learning as a Function of Experience

considers users who may be novices to a particular system but are experienced users of

a system that are similar to that under review. The primary learnability category of

concern to be addressed in this evaluation is Initial learning of participants of the study

who are novice users in contrast to the expert participants in the study described in the

section 5.1.

5.2.1 Planning and Design

This evaluation exercise was done in two phases for manual and automated testing.

The participants of this exercise were computing masters students of the University of

Northampton. Masters students were chosen because of the possibility of them having

prior software testing experience. The choice of computing masters students is also based

on the assumption that they understand the underlying basic concepts of software pro-

5.2. Evaluation of Learnability of the Approach 95

Table 5.3: Phases and activities for the learnability evaluation.

Phase Duration Evaluation Activities

Phase 1

45 minutes Give background of study, introduction to structural test-
ing and MC/DC tutorial.

60 minutes
Provide pre-exercise questionnaire to participants.
Manual MC/DC testing exercises and measure time taken
by each participant.
Provide post-exercise questionnaire to participants.

Phase 2
30 minutes Tutorial of proposed automated tool.

60 minutes
Automated tool exercise and measurement of time taken
by each participant.
Provide post-exercise questionnaire to participants.

cesses, the role/need for tests/veri�cation and how it �ts into the software development

lifecycle. The cost of training and the learning curve of new approaches are factors to

be considered for its adoption in industry. The goal of this study is to investigate the

learnability of the approach and the e�ectiveness of the automated approach compared to

manual testing by non-experts. To understand the learnability of the proposed test au-

tomation approach, the time taken to derive test cases manually is compared to the time

taken using the proposed automated approach. An initial questionnaire to assess previ-

ous knowledge of structural testing was distributed beforehand as shown in APPENDIX

E. The version of the tool used for this evaluation had been improved from the version

evaluated by the experts in section 5.1. The computers used by the participants were

setup to include an installation kit containing Eclipse, HRML and EGL scripts for the

model transformation.

Table 5.3 outlines the phases of the learnability experiments conducted. In the �rst phase,

the students were introduced to MC/DC as the criteria for structural testing. A tutorial

was given to demonstrate the manual steps to derive test cases from logic speci�cations

with Single AND, Single OR and Multiple operators. The concept of walking false and

walking true patterns as described in section 4.2, were also explained to the students.

After the tutorial, the students were given sample exercises and encouraged to manually

work out the tests for the logic speci�cations individually or by collaborating with other

classmates as potentially done in a real-life testing team. The round of sample exercises

5.2. Evaluation of Learnability of the Approach 96

was followed by presenting the participants with evaluation speci�cations for which tests

should be worked out manually. There were six requirement speci�cations with varying

numbers of conditions: 2 logic speci�cations with Single OR, 2 logic speci�cations with

Single AND and 2 logic speci�cations with multiple operators. For each speci�cation,

the participants were asked to indicate the time they started working on the task and

the time they �nished the test case derivation for that speci�cation in a tabular format.

Open-ended questions were also presented to obtain feedback from the students.

The second phase was concerned with evaluating the proposed tool in comparison with the

manual process. A demonstration of the requirement modelling language and testing tool

was presented to the participants. An exercise guide was then assigned to each student

to model using the requirements language of the tool and generate tests. As with the

�rst phase, the exercise guide consisted of 6 logic speci�cations, 2 in each category of

Single AND, Single OR and Multiple operators. The time taken for the whole process

including the start/�nish time and the actual time for the generation of the tests from

the requirement model by Eclipse were recorded. A feedback form was also distributed

so as to collate their experience with using the tool. The exercises and feedback forms for

both phases can be found in APPENDIX E of this thesis.

5.2.2 The Learnability Evaluation Results

The data collated from the manual and automated evaluation exercises are described in

this section. The responses to all the questionnaires for all the phases of the evaluation

exercise are listed in APPENDIX E. The �rst phase of data collection was done to

determine if the participants had previous industrial software development experience.

Out of the fourteen participants, a majority (twelve) of the students had less than two

years of work experience. The remaining two participants had between three and �ve

years working in industry. One of these two had performed unit testing and Test-Driven

Development (TDD). However, neither of them had experience in MC/DC nor model

based tools. Out of the six participants that had previous software testing experience,

5.2. Evaluation of Learnability of the Approach 97

two of the participants were limited to testing in the context of their university courses

or school projects while the other four did not state what type of experience they had.

Therefore, in the context of this evaluation and model-based testing, all the participants

are regarded as novices.

Table 5.4 shows the time taken in seconds for each participant to complete each manual

task. The incorrect values in the table represent instances for each task where the partici-

pant's solution was inaccurate. For each task, the participants were expected to manually

derive the corresponding test cases for the requirement speci�cation provided. Two par-

ticipants out of the overall fourteen successfully completed all six tasks with correct truth

tables broken down for each step of the tasks. Two participants did not get any correct

test cases for all the tasks. Task 1 was a single OR speci�cation with three conditions

and hence four test cases were expected to be derived using the walking true pattern. For

this task, there was a success rate of 57.14% with eight participants correctly deducing

the test cases at an average time of 120s. For the second single OR requirement Task 2,

the participants were required to generate six test cases from the �ve conditions. There

were ten correct answers for this task and hence, a 71.43% success rate with an average

time of 126s.

Table 5.4: Manual Testing results (in seconds).

Participant # Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
P1 180 120 Incorrect Incorrect Incorrect Incorrect
P2 60 60 60 60 300 180
P3 60 180 Incorrect Incorrect Incorrect 360
P4 Incorrect 60 Incorrect Incorrect Incorrect Incorrect
P5 Incorrect Incorrect 60 120 Incorrect 240
P6 Incorrect Incorrect 60 120 Incorrect Incorrect
P7 240 240 Incorrect Incorrect Incorrect Incorrect
P8 120 60 60 120 Incorrect 1020
P9 180 60 60 120 720 120
P10 60 120 60 Incorrect Incorrect 240
P11 60 120 120 120 Incorrect Incorrect
P12 Incorrect Incorrect Incorrect Incorrect Incorrect Incorrect
P13 Incorrect Incorrect Incorrect Incorrect Incorrect Incorrect
P14 Incorrect 240 Incorrect Incorrect Incorrect Incorrect
average 120.00 126.00 68.57 110.00 510.00 360.00

5.2. Evaluation of Learnability of the Approach 98

The next round of questions was in the format of single AND speci�cations. Task 3 had

four conditions where �ve test cases were expected by applying the walking false pattern.

50% of the answers were correct and majority of the participants deduced the test cases

in about 60 seconds except for P11 who took 2 minutes (120s). The number of conditions

for Task 4 was greater than that of Task 3 and hence majority of the participants took

more time to generate the test cases. From the six conditions in this task, the seven

expected test cases were derived at an average time of 110s. The �nal group of questions

for multiple operator speci�cations had the least number of correct answers. It is assumed

that this is as a result of the increased complexity introduced to the tasks. In Task 5,

there were only two correct answers with adequate test cases to satisfy MC/DC and these

were from the participants (P2, P9) that successfully completed all six tasks. It took an

average of 510s for the 2 participants to generate the 4 sub-tables from which the seven

MC/DC test cases were inferred. Finally, for Task 6, there were six correctly generated

tests for the given speci�cation. Seven test cases from three sub-tables were expected to

be derived and it took an average time of 360s.

Table 5.5 shows the results of the automated phase of the evaluation exercise. The overall

time taken (OTT) for each task is derived from the start and �nish times recorded by the

participants while the Eclipse time (ET) (shown in Table 5.6) is the time taken to run

the EGL script to generate the test cases for the logic speci�cation in context. 8 out of

15 students completed all the assigned tasks for this phase of the evaluation. In Table 5.5

and Table 5.6, the incomplete values refer to tasks that were not successfully completed

by participants within the designated evaluation time (Table 5.3). As with the manual

exercises, Task 1 and Task 2 are Single OR speci�cations, Task 3 and Task 4 are single

AND speci�cations while Task 5 and Task 6 are speci�cations with multiple operators.

For each task, a new requirement model was created, and the students were required to

model the variables, states, features in the speci�cation, create a new launch con�guration

for the EGL transformation, to load the DSL model and run the transformation script.

The resulting test cases that are automatically generated in each scenario is based on

the MC/DC implementation described in section 4.2. Task 1 had the highest OTT of

5.2. Evaluation of Learnability of the Approach 99

Table 5.5: Automated Testing results (in seconds).

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
OTT OTT OTT OTT OTT OTT

P1 1080 780 1080 720 Incomplete Incomplete
P2 480 360 420 660 600 360
P3 1800 720 540 600 Incomplete Incomplete
P4 480 480 480 600 300 Incomplete
P5 720 240 480 600 300 Incomplete
P6 120 180 180 480 240 300
P7 240 540 1200 660 Incomplete Incomplete
P8 540 420 240 720 180 360
P9 420 480 900 660 Incomplete Incomplete
P10 60 360 540 540 420 300
P11 300 540 180 480 300 240
P12 900 480 240 240 240 180
P13 480 300 360 480 Incomplete Incomplete
P14 480 360 420 360 360 300
P15 300 360 120 420 300 180
average 560 440 492 548 324 277.5

560s to generate tests for the 3 conditions and expected output. The OTT for each task

includes the time taken to model the speci�cation in a HRML document, load the models

for transformation and run the test case generation script. For Task 2, there were �ve

conditions which had to be modelled, and six test cases were generated in an average OTT

of 440s. The �rst single AND speci�cation was provided in Task 3 with �ve individual

fragments including four conditions. The �ve resulting test cases are generated using the

walking false pattern in average OTT of 492s. The logic speci�cation in Task 4 has six

conditions separated by the AND operator. The average OTT was higher (548) than

that of Task 3 (492) with the maximum being 720s compared to Task 3's maximum of

1200s. The multiple operator tasks had less than 100% participation completion. 66% of

the participants completed Task 5 in an average OTT of 324s while 53% of the students

completed Task 6 in an overall average time of 277.5s.

The evaluation results show that the overall time of the proposed approach is higher

compared to the manual exercises because of the time taken to model the speci�cations in

HRML. Some of the challenges faced by the participants as reported in the post-evaluation

feedback (APPENDIX E) are related to limited familiarity with the tool and the time

5.2. Evaluation of Learnability of the Approach 100

restriction of the exercises. These challenges could have therefore led to the incompletion

of some of the tasks.

Table 5.6: Eclipse completion times (in seconds).

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
ET ET ET ET ET ET

P1 0.14 0.17 0.09 0.13 Incomplete Incomplete
P2 0.085 0.156 0.107 0.131 0.067 0.074
P3 0.07 0.11 0.1 0.11 Incomplete Incomplete
P4 0.11 0.14 0.09 0.14 0.1 Incomplete
P5 0.336 0.139 0.003 0.127 0.063 Incomplete
P6 0.09 0.13 0.1 0.09 0.1 0.07
P7 0.1 0.09 0.09 0.09 Incomplete Incomplete
P8 0.08 0.12 0.11 0.1 0.08 0.08
P9 0.1 0.19 0.08 0.11 Incomplete Incomplete
P10 0.05 0.09 0.08 0.12 0.1 0.05
P11 0.1 0.11 0.09 0.09 0.09 0.07
P12 0.13 0.15 0.13 0.08 0.07 0.09
P13 0.13 0.1 0.17 0.09 Incomplete Incomplete
P14 0.156 0.132 0.118 0.134 0.096 0.074
P15 0.16 0.13 0.09 0.11 0.07 0.08
average 0.122 0.131 0.097 0.110 0.084 0.074

5.2.3 Discussion

The learnability of the proposed tool from the perspective of non-industry experts is the

main focus of this evaluation. Figure 5.4 shows the correct and incorrect answers to the

manual approach phase of the evaluation. For the less complex tasks with single operators,

it is shown that there are more correct test cases. However, with more complex exercises

where tests were to be derived from multiple operator speci�cations, there is a higher

level of incorrect answers. On the other hand, for the automated approach, it is di�cult

to capture the error rate for requirement modelling in the automated approach because

of the real-time checks which highlights errors before the tests are generated. The errors

in the test cases for the automated approach are not applicable because the accuracy

of the algorithm has been con�rmed and discussed by industry experts in section 5.1.

Overall, there is a reduced error rate by using the proposed tool because even if there are

errors, they would be as a result of incorrect models. However, these errors would have

5.2. Evaluation of Learnability of the Approach 101

Figure 5.4: Error rate based on the number of participants, correct and incorrect tests in
the manual testing exercise.

been identi�ed during the requirement speci�cation process before the test case generation

script is run.

Figure 5.5 compares the overall time taken to perform the manual and automated ap-

proaches. The �gures for the automated approach include the time taken to model the

speci�cation. As mentioned in the results, the time taken to generate the tests cases are

in fractions of a second. Overall, the automated approach takes more time because of

the requirement modelling done. However, there is a trade-o� between taking the faster

manual approach in this case with the possibility of introducing errors or taking the time

to get the speci�cations right by modelling the requirements in the right way before the

automatic generation. Despite the limited training and expertise, there are more correct

answers using the automated approach compared to the manual testing. With manual

testing, it takes less time for the overall process but more mistakes were made by the

participants.

Another advantage of doing the modelling and expressing the requirements in a com-

putable format is that it could be used to derive other development artefacts such as

implementation code. With the manual testing approach, the requirements are in a for-

mat that would require additional e�ort of translating into formats for use in generation

5.3. Scalability Report 102

Figure 5.5: Comparison of the time taken (in seconds) to perform the manual and auto-
mated tasks.

of other artefacts including models and implementation code.

5.3 Scalability Report

One of the challenges that a�ects practical adoption of many model-based testing ap-

proaches in real world systems is scalability. As with most emerging approaches and

technologies, scalability is one of the major concerns. This is because it is important that

model-based approaches are evaluated in terms of how they handle large and complex

systems. (Jiménez-Pastor, Garmendia, and Lara 2017) for example addresses breaking

complex models into smaller fragments to ease large model manipulation. They proposed

an approach to split these large models by applying strategies to e�ectively visualize and

breakdown the models at a metamodel level. Although the HRML models can alter-

natively be represented using multiple smaller models, in this section, the models are

evaluated as a whole. An evaluation of their approach was shown to speed up the model

loading time up to 55 x the standard EMF time for larger non-fragmented models. The

manipulation of models for generation and execution of tests can create an explosion in

state-space capacities, especially with increase in size and complexity (Aichernig, Nickovic,

5.3. Scalability Report 103

and Tiran 2015). In this section, the performance of the proposed test case generation

approach concerning scalability is presented. The performance evaluation experiments

were conducted on a 64-bit computer running Windows 8.1 with a 2.4 GHz and 8GB

RAM.

5.3.1 Planning and Design

The performance of the algorithm was evaluated by generating test cases with increasing

number of conditions. The complexity of the models are determined by the number of

conditions and the type of logic operators. The time taken was measured using the Eclipse

pro�ling tool when running the script as shown in Figure 5.6. The time taken to run the

transformation script for each requirement model was recorded. For requirement models

with single condition in the logic speci�cations, all possible test cases including MC/DC,

timing and BVA where applicable were generated. A requirement model was populated

with 1000 logic requirements in the behaviour section for each condition level. The test

case generation process was repeated for each model as described in section 4.2.

Figure 5.6: Pro�ling set up for EGL test case generation.

As mentioned in previous chapters, logic requirements can have single and multiple op-

erators and the approach to testing them are slightly di�erent. For single operator re-

quirements, the experiments were performed for OR requirements and AND requirements.

Test cases were generated for 1000 requirements in each category (Single OR, Single AND

and Multiple operators) with increasing number of conditions. A detailed description of

5.3. Scalability Report 104

Table 5.7: Computer and Java Virtual Machine Con�gurations for the performance exe-
cution environment.

Computer Con�guration
Operating System Windows 10

Processor
Intel(R)
Core(TM) i7-8550U, CPU @ 1.80GHz

System type 64-bit OS
RAM 8.00GB
Eclipse Version Eclipse DSL Tools, Luna Service Release 1
XText Version 2.7.3
Epsilon Version 1.2.0

Java Virtual Machine Con�guration
Execution Environment JRE 1.8.0_25
Initial Memory 128MB
Maximum Memory 4GB

the execution environment used for these experiments is speci�ed in Table 5.7.

5.3.2 The Scalability Evaluation Results

The results of the experiments are presented in Table 5.8. The time taken to generate

test cases from a requirement model with a single condition was not included in the table

because neither the Single OR operator, Single AND operator nor Multiple operators

are applicable in this instance. The test cases generated from a model with 1000 logic

requirements comprising single conditions, was done in 4214ms. Table 5.8 presents the

generation times for test cases derived from models with di�erent number of conditions

with single and multiple operators. In the model with 1000 2-condition logic requirements,

test case generation times are not applicable for multiple operators, because a speci�cation

with two conditions cannot have more than one operator. With the sample size of 1000

requirements in each model between 2 and 9 conditions, the maximum time taken overall

was 99.960 seconds. This was the case for a requirement model consisting of 9 conditions

and multiple operators.

5.3. Scalability Report 105

Table 5.8: MC/ DC test case generation times from requirement models

Number of Conditions Single OR Single AND Multiple Operators
2 6573ms 7029ms N/A
3 9960ms 10682ms 19774ms
4 15496ms 14748ms 32942ms
5 21504ms 20957ms 50985ms
6 25335ms 26389ms 30771ms
7 49994ms 47417ms 46444ms
8 60364ms 69185ms 54927ms
9 86902ms 90476ms 99960ms

Figure 5.7: Test case generation times for requirement models with increasing number of
conditions.

5.3.3 Discussion

The sample documents provided for analysis by GE had requirements with between 20 and

50 speci�cations. The tool has been shown to conveniently generate tests for speci�cations

with 20 times more number of requirements in some cases (Figure 5.7). Projects of a larger

scale can still be broken down into smaller chunks to be handled by one model as it is

common practice to break down the system into subcomponents for which requirements

can then be speci�ed in a single HRML model.

5.4. Comparison with Java-based Project 106

5.4 Comparison with Java-based Project

Table 5.9: Comparison between the proposed Eclipse-based and Java-based standalone
tool.

Eclipse based tool Java based tool

Requirement
Speci�cations

- Dedicated/ customized
XText generated editor for
HRML

- Standalone editor for RSL
models (previous version of
HRML).

- Requires Eclipse installation - Eclipse independent solution
and does not require an IDE.

- Prede�ned templates, syntax
highlighting and suggestions

Requirement
Validation

- Real time requirement vali-
dation checks with XTend and
custom warnings and errors.

-Click a button to validate the
requirement speci�cations.

Test case
generation

- Flexibility of model transfor-
mation

- Hard coded algorithm with
limited �exibility.

- Model loading can be time
consuming and delay perfor-
mance

- Straightforward process with-
out complex model loading
tasks.

In the previous section, the performance of the approach that is dependent on the Eclipse

framework was measured. One drawback of the proposed approach is its dependence

on Eclipse and that a user will require an Eclipse installation to use the modelling and

test case generation facilities. To address this, the author collaborated with a �nal year

computing student to develop an alternative standalone solution. The aim of the project

was to develop a standalone program to support the requirement speci�cation in HRML

and the derivation of resulting test cases from the requirement models in an environment

independent of Eclipse. The student was provided with an earlier version of the Xtext

grammar for HRML and is a variation from the most current version of the language in

Chapter 3.

The resulting tool was implemented using Java and the student was also required to im-

plement MC/DC test case generation. The speci�cation language was plugged into the

tool such that users could specify range and logic requirement speci�cations to derive test

cases. To generate the test cases, a di�erent approach to that presented in Chapter 4 was

employed. Unlike the methodology used in Chapter 4, this tool translates speci�cations

5.4. Comparison with Java-based Project 107

in DSL requirements model into another Expression language (Xsemantics 2014) when

loaded onto the standalone platform. This language allows for the conversion of condi-

tional expressions into numbers and Boolean expressions. This intermediate Expression

language adds a level of formality to the speci�cations before the test cases are derived.

To achieve MC/DC, the variation that was employed was the Universal (Kangoye, To-

dosko�, and Barreau 2015) approach, which was implemented and hard coded using Java

methods/classes. The standalone tool also checks that the requirements are consistent

before test cases are generated. The consistency constraints are implemented in Java and

test cases could be derived from range and logic requirements after they were veri�ed to

contain no errors.

In Table 5.9 above, a comparison is made between the features of the standalone tool and

the methodology presented in Chapter 3 and Chapter 4. For requirement speci�cation,

the XText editor bene�ts from the many features of an Eclipse workspace and can there-

fore come across as overwhelming for non-technical users or users with no prior experience

with Integrated Development Environments (IDEs). The Java tool is Eclipse independent

and has relatively less features as it is customised to focus on solely those related to the

requirement speci�cation, validation checks and test case generation tasks. Although the

standalone tool bene�ts from being lightweight as it does not require a bulky IDE to

function, it loses out on possible usability features such as syntax highlighting, prede�ned

templates and suggestions. The standalone tool will also have rely on the Eclipse IDE

to some extent in the development stage. This is because every modi�cation to the lan-

guage will have to be implemented on Eclipse before being exported to the standalone

tool. Prior to test case generation, it is important to ensure that the requirement models

are validated to prevent errors from being propagated to the tests. As shown in Table

5.9, both tools take di�erent approaches to validating the DSL requirement speci�cations.

While the proposed tool performs the validation checks in real-time as described in section

3.2, this is done by clicking a button on the standalone tool to activate validation methods

implemented in Java. The validation feature in the Eclipse tool customises checks to rep-

resent modelling, language and business rules in XTend for seamless real-time validation

5.5. Chapter Summary 108

and warnings.

The �nal objective of both tools is to generate test cases from the requirement speci�ca-

tions. The standalone Java tool implements the Universal approach while the proposed

Eclipse-based tool employs a di�erent algorithm to achieve MC/DC, as described in Chap-

ter 4. By utilizing model transformation practices to derive the tests in the Eclipse based

tool, the HRML requirement model and its properties are easily accessible to the trans-

formation scripts. This approach supports improved model handling allowing for �exibil-

ity and direct access to the model properties instead of hard coding. The �exibility of

the model handling then provides the opportunity to potentially transform into another

formal or informal general-purpose format e.g. Z-Speci�cation or UML. The approach

undertaken by the Java based tool is however less �exible with limited model handling by

hardcoding. However, it bene�ts from the reduced complexity.

5.5 Chapter Summary

This chapter has presented several approaches to evaluate di�erent aspects of the pro-

posed methodology. In the �rst section of this chapter, the perceived usefulness and ease

of use of the methodology was assessed using feedback from industry experts in the avia-

tion domain. Scalability of model-based approaches is concerned with the practical use of

proposed tools in large-scale industrial contexts. Scalability experiments were conducted

to determine the performance limitations of the tool using variations of logic requirement

speci�cations. Finally, the comparison with the universal MC/DC approach as imple-

mented in a standalone Java program showed that there are advantages when compared

to a standalone tool.

Chapter 6

Conclusion

This chapter concludes this research and presents a summary of the work described in the

thesis. The author highlights the main contributions of this work in relation to the initial

aims and objectives stated in section 6.1. Furthermore, section 6.2 outlines the research

contributions of this thesis. Although the research was conducted in the aviation domain,

section 6.3 describes probable application areas for the proposed methodology. Finally,

the limitations and potential future research directions are discussed in section 6.4.

6.1 Summary of Thesis Achievements

In recent years, models have been used to facilitate the automation of several aspects of

software veri�cation. Although bene�ts of domain modelling have been reported, there

is comparatively less research on its application in automated veri�cation in comparison

with research based on UML techniques. This thesis presents an approach to automate

the generation of test cases from high-level requirements which have been modelled in a

domain speci�c notation. The following relates the original aims and objectives of this

work outlined in section 1.4 with their achievements throughout the thesis:

Development of a domain speci�c modelling notation for requirement spec-

i�cation (Objective 1): The �rst objective is concerned with concise representation

109

6.1. Summary of Thesis Achievements 110

of software requirements. The ambiguity of natural language to describe intended func-

tionality and constraints has its challenges as it can lead to imprecise speci�cations. The

ful�lment of this objective is described in Chapter 3 by proposing and implementing a

domain speci�c notation represent high-level requirements in the aviation domain. The

modelling notation was developed by analysing essential aerospace software certi�cation

standards DO-178C (RTCA Inc. 2011a) and DO-331 (RTCA Inc. 2011b) to identify the

speci�cation types to be incorporated into the language. The process involved analysis

of requirement sets from projects in GE Aviation and also regular consultation with their

system engineers. The results of this analysis were described in section 3.1. One major

advantage of the utilization of domain speci�c modelling is the restriction of what spec-

i�cations can be captured, that is, allowing the capture of only relevant information for

further processing.

The domain users can apply templates of pertinent requirement types with tool support

to ensure correct and consistent model speci�cations for eventual test case generation. In

the proposed approach, requirement validation is done by de�ning constraints to identify

inconsistencies in the speci�cations in real time. This type of requirement validation,

which is di�erent from the overall software validation (Section 3.2), detects contradictions

and ensures only correct models progress to the test case generation phase. For systems

with large number of requirements, it can be challenging to achieve real-time validation

manually if represented in natural language format. The notation is termed domain spe-

ci�c because of the subset of supported speci�cations and the classi�cation of abstraction

levels according to the aviation standards. However, the same idea can be applied and

tailored to other domains by capturing the requirement types peculiar to that domain.

Implementation of model transformation techniques to generate abstract test

cases from the requirement models (Objective 2): After the requirements have been

de�ned and validated in the modelling language, the next step is to derive speci�cation-

based test cases. The realization of this objective is described in Chapter 4. By applying

model transformation techniques, standard testing strategies were employed to the dif-

ferent speci�cation types. The abstraction level of a test case re�ects the proportion of

6.1. Summary of Thesis Achievements 111

details in the speci�cation. This implies that a speci�cation with relatively low details

can derive low detailed tests and consequently, test cases with a relatively high degree of

details can be generated from more detailed speci�cations. In Chapter 4, the implementa-

tion of the proposed approach to automatically generate test cases from the requirements

modelled in HRML is presented.

As each requirement type often calls for a di�erent test strategy, model-to-text transfor-

mation script is run to apply the appropriate technique to each individual requirement.

For speci�cations with logic statements, the coverage criteria implemented is the Modi�ed

Condition/ Decision Coverage (MC/DC) criteria. The test case generated as a result of the

application of MC/DC algorithm is intended to be more e�ective compared to exhaustive

testing. Test cases are also generated from HRML pseudo requirements which combine

conditional and logic statements to de�ne system functionality at di�erent depths. In

cases where the speci�cations have acceptable range of values, black box testing tech-

niques such as equivalence partitioning and boundary value analysis are applied as an

extension to the algorithm. The inclusion of temporal constructs in timing requirements

increases the complexity of the speci�cation which have not been considered in existing

MC/DC approaches. However, the proposed requirement-based testing approach is able

to generate MC/DC, equivalence partitioning, boundary value analysis and temporal con-

struct test cases from a speci�cation that incorporates one or more of the aforementioned

components.

Empirical evaluation of the proposed methodology (Objective 3): Chapter 5

presents the results of how the third research objective is addressed. Four evaluations

with emphasis on the assessment of di�erent aspects of the proposed methodology were

conducted. The �rst evaluation described was a case study conducted to investigate the

adaptability and practicality of the test case generation approach in an industrial con-

text using factors from the Technology Acceptance Model. The domain expert feedback

acquired from this exercise provided insights on how the proposed tool could �t into soft-

ware development processes. It is bene�cial to take into account the ease of learning a

tool by users with limited experience as it can determine the eventual adoption and use

6.2. Research Contributions 112

of such a tool. Therefore, the tool was made available to non-domain experts (computing

students) to conduct an evaluation exercise to investigate the learnability of the approach.

The students were able to successfully generate test cases using the automated approach

provided by the proposed tool. Although the automated approach took more time overall

compared to the manual tests carried out, there were less mistakes made by the students

using the automated tool. This is because of the time taken to model the requirements

before the test case generation. The e�ort is concentrated on de�ning correct and valid

requirement models to minimise the errors propagated to the corresponding test cases.

Regarding performance, section 5.3 presents the results of experiments conducted to in-

vestigate the scalability of the tool with requirements of increasing complexities on a

relatively large scale. This is done by measuring and comparing the time taken to gen-

erate test cases from logic speci�cations with single and multiple logic operators. The

results showed that test cases for 1000 complex multiple-operator requirements with 8

conditions can be generated in 60.925ms. Lastly, the proposed MC/DC algorithm is com-

pared with a standalone Java implementation of the universal MC/DC approach. The

result of the comparison showed that both approaches have bene�ts and limitations. In

terms of usability, the standalone tool is lightweight in that it does not require a bulky

Eclipse installation. On the other hand, the proposed approach bene�ts from the usabil-

ity features of an Eclipse workspace, including syntax, highlighting and user templates.

Furthermore, the validation feature of the Eclipse-based proposed tool is in real-time

and has been extended to support more requirement types such as pseudo and timing

requirements.

6.2 Research Contributions

The research contributions can be listed as follows:

• The use of Domain Speci�c Modelling for the representation of high-level require-

ments (described in Chapter 3).

6.3. Applications 113

• The proposal of a novel MC/DC algorithm that extends existing approaches to au-

tomatically generate test cases for logic-based descriptions as illustrated in section

4.2. Tests were successfully generated from speci�cations with single logical opera-

tors with multiple conditions as well as more complex speci�cations with multiple

operators.

• A test case generation approach for testing requirement speci�cations with features

that combine multiple levels of conditional statements and logic statements. This

novel approach described in section 4.3, generates MC/DC test cases in addition to

tackling the complexities of conditional constraints with up to a depth level of 3.

• An extension of the test case generation approach (section 4.4) to perform boundary

value analysis and equivalence partitioning to tests cases derived to satisfy MC/DC.

Robust testing strategies are applied to the Boolean expressions in each logic state-

ments for valid and invalid test inputs.

• The results of empirical evaluation conducted with industry experts. The proposed

tool received positive feedback with recommendations to improve the maturity of

the tool.

• Investigation of the learnability of the proposed tool by non-experts. The results of

a study conducted showed that students with limited experience and training were

able to successfully complete testing tasks using the tool. It was also shown that,

although it took more time to use the automated tool for testing when compared

to the manual approach, there were less errors made using the proposed tool.

• Evaluation of the scalability of the tool (section 5.3).

6.3 Applications

A majority of the utilization of tailored languages have been concentrated on capturing

domain concepts using textual or visual modelling notation. The methodology proposed

6.4. Limitations and Future Directions 114

in this thesis goes a step further to combine the representation of requirement types sug-

gested by the aviation domain standards with the application of appropriate veri�cation

strategies for each type. By employing strategies recommended by the aviation certi�-

cation standard, a tailored tool has been presented to seamlessly integrate/migrate the

requirement phase and the testing phase of the development lifecycle. Although the ap-

proach was implemented using aerospace standards, the requirement types and testing

strategies may be applied to other safety-critical domains.

6.4 Limitations and Future Directions

This section discusses some limitations of the proposed framework and suggest directions

for future work.

Graphical modelling integration: The inclusion of graphical elements can be com-

bined with textual descriptions to support the requirement de�nition process. Graphical

modelling languages have been used to describe domain speci�c functionalities and pro-

viding such features to HRML could be bene�cial. Although there are tools that support

bi-directional transformation from graphical models (Dori, Reinhartz-Berger, and Sturm

2003)(Stevens 2010), speci�cations can have images that cannot be translated to text.

Object Process CASE Tool (OPCAT) (Dori, Reinhartz-Berger, and Sturm 2003) the

supporting tool for the development of systems using the Object Process Methodology

(OPM) allows for bi-directional transformation from graphical models to equivalent tex-

tual representation. The resulting text from the transformation using OPCAT in a subset

of natural language, Object Process Language (OPL). At the requirement speci�cation

phase, graphical images can also be used for pictorial, illustrative purposes and not only

for description of system functionality or design models. Therefore by supporting such

images, the HRML requirements can then be used to generate other development artifacts

in addition to complete high-level speci�cation documentation including both text and

images without reducing the level of abstraction.

6.4. Limitations and Future Directions 115

Extensibility: The e�ort required for the extension of the modelling notation can be

a limitation. As previously mentioned in Chapter 3, the requirement types are based

on sample speci�cations. This implies that if new requirement formats are introduced,

the grammar of the modelling language will have to be modi�ed as well as the test case

generation algorithm. The results of the scalability experiments described in section 5.3

also shows the limitation of the testing tool with regards to logic speci�cations with more

than eight conditions. This is an example of an increase in complexity of tests, but

the complexity can manifest in several other forms including performance improvement

for already supported test strategies. Another direction in which the testing framework

can be upgraded is to provide a feature to generate corresponding formal models from

the HRML requirements. Therefore, the additional bene�ts of formal analysis can be

harnessed. This would then require a language/modelling/formal expert to maintain the

tool whenever the need for new speci�cation formats arises.

Requirement traceability: In the requirement engineering phase, a higher-level re-

quirement is often broken down into smaller requirements. Commercial-o�-the-shelf tools

such as Rational DOORS, make provisions for linking several related requirements to-

gether. An advantage of traceability in speci�cations for particularly large software sys-

tems is that a trail can be identi�ed from derived requirements to the originating speci�-

cations and vice versa. The design of the HRML metamodel currently does not support

both the de�nition of relationships and links between requirement models. The result of

this is that for a system with di�erent components, it will have to be either de�ned as one

large speci�cation model or broken down into several unlinked HRML models. It would

be useful to have a feature that distinguishes between source and derived requirements

and links them together. Furthermore, the implementation of this feature would enhance

the HRML notation and its capability as a requirement management tool.

Eclipse Platform Independence: The achievement of the objectives of this research

as illustrated throughout the thesis is dependent on tools that are based on the Eclipse

Modelling Framework. This framework provides several bene�cial features such as dedi-

cated tools for HRML and the connectivity with other modelling languages as described

6.4. Limitations and Future Directions 116

in Chapter 3 and Chapter 4. This dependence can however be regarded as a limitation in

terms of the usability of the proposed methodology. However, a browser based approach

(Eclipse 2017c), for example, which supports the modelling language and required plugins

could potentially enhance the usability.

Extended Learnability: Another future direction could be to extend the learnability

study. The evaluation presented in section 5.2, could be augmented to encompass ad-

ditional characteristics and factors of learnability as suggested by (Ra�que et al. 2012).

Furthermore, the change in the performance of novice users of the proposed approach

could be measured over time to investigate their extended learning of the tool (Grossman,

Fitzmaurice, and Attar 2009).

References

Abbasi, Naeem, Osman Hasan, and So�ene Tahar (2013). �Formal Analysis of Soft Errors

using Theorem Proving�. In: Electronic Proceedings in Theoretical Computer Science

122, pp. 75�84.

Abernethy, Ken, John Kelly, Ann Sobel, James D Kiper, and John Powell (2000). �Tech-

nology transfer issues for formal methods of software speci�cation�. In: Software En-

gineering Education Conference, Proceedings, pp. 23�31.

Aichernig, Bernhard K, Dejan Nickovic, and Stefan Tiran (2015). �Scalable Incremental

Test-case Generation from Large Behavior Models�. In: Tests and Proofs: 9th Interna-

tional Conference, TAP 2015, Held as Part of STAF 2015, L'Aquila, Italy, July 22-24,

2015. Proceedings. Springer International Publishing, pp. 1�18.

Akman, Suha, Mert Ozmut, Burak Ayd�n, and Serhat Gokturk (2016). �Experience re-

port: implementing requirement traceability throughout the software development life

cycle�. In: Journal of Software: Evolution and Process 28.11, pp. 950�954.

Ali, S, H Hemmati, NE Holt, E Arisholm, and LC Briand (2010). Model transformations

as a strategy to automate model-based testing-A tool and industrial case studies. Tech.

rep., pp. 1�28.

Ali, Shaukat, Lionel C Briand, and Hadi Hemmati (2012). �Modeling robustness behavior

using aspect-oriented modeling to support robustness testing of industrial systems�.

In: Software and Systems Modeling, pp. 1�38.

Ali, Shaukat, Tao Yue, Xiang Qiu, and Hong Lu (2016). �Generating boundary values

from OCL constraints using constraints rewriting and search algorithms�. In: 2016

IEEE Congress on Evolutionary Computation (CEC). IEEE, pp. 379�386.

117

REFERENCES 118

Allen, Jace L (2016). �An Overview of Model-Based Development Veri�cation/Valida-

tion Processes and Technologies in the Aerospace Industry�. In: AIAA Modeling and

Simulation Technologies Conference, pp. 19 �22.

Almeida, Mateus Andrade, Juliana de Melo Bezerra, and Celso Massaki Hirata (2013).

�Automatic generation of test cases for critical systems based on MC/DC criteria�. In:

IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC). IEEE.

Anand, Saswat, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen, Wolf-

gang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil McMinn (Aug. 2013).

�An orchestrated survey of methodologies for automated software test case generation�.

In: Journal of Systems and Software 86.8.

Aziz, MuhammadWaqar and Muhammad Rashid (2016). �Domain Speci�c Modeling Lan-

guage for Cyber Physical Systems�. In: 2016 International Conference on Information

Systems Engineering (ICISE), pp. 29�33.

Badreddin, Omar, Arnon Sturm, and Timothy C Lethbridge (2014). �Requirement trace-

ability: A model-based approach�. In: Proceedings of the 4th International Workshop

on Model-Driven Requirements Engineering (MoDRE). IEEE, pp. 87�91.

Baker, Paul, Shiou Loh, and Frank Weil (2005). �Model-Driven engineering in a large

industrial context: motorola case study�. In: International Conference on Model Driven

Engineering Languages and Systems. Springer, pp. 476�491.

Baresi, Luciano and Mauro Pezze (Feb. 2006). �An Introduction to Software Testing�. In:

Electronic Notes in Theoretical Computer Science 148.1, pp. 89�111.

Basili, Victor R and Richard W Selby (1987). �Comparing the e�ectiveness of software

testing strategies�. In: IEEE transactions on software engineering 12, pp. 1278�1296.

Batory, Don, Bernie Lofaso, and Yannis Smaragdakis (1998). �JTS: tools for implement-

ing domain-speci�c languages�. In: Fifth International Conference on Software Reuse,

pp. 143�153.

Bettini, Lorenzo (2016). Implementing domain-speci�c languages with Xtext and Xtend.

Packt Publishing Ltd.

REFERENCES 119

Bézivin, Jean and Olivier Gerbé (2001). �Towards a precise de�nition of the OMG/MDA

framework�. In: Automated Software Engineering, 2001.(ASE). Proceedings. 16th An-

nual International Conference on. IEEE, pp. 273�280.

Biehl, Matthias (2010). �Literature study on model transformations�. In: Royal Institute

of Technology, Technical Report. ISRN/KTH/MMK, pp. 1�28.

Bjarnason, Elizabeth, Krzysztof Wnuk, and Bjorn Regnell (2011). �Requirements are slip-

ping through the gaps: A case study on causes & e�ects of communication gaps in

large-scale software development�. In: 19th IEEE International Requirements Engi-

neering Conference (RE), pp. 37�46.

Blackburn, Mark, Robert Busser, and Aaron Nauman (2004). �Why model-based test

automation is di�erent and what you should know to get started�. In: International

conference on practical software quality and testing, pp. 212�232.

Boddu, R., S. Mukhopadhyay, and B. Cukic (2004). �RETNA: from requirements to test-

ing in a natural way�. In: Proceedings. 12th IEEE International Requirements Engi-

neering Conference, pp. 244�253.

Boehm, Barry W (1984). Software engineering economics. 1. IEEE, pp. 4�21.

Born, Marc, Ina Schieferdecker, Hans-Gerhard Gross, and Pedro Santos (2004). �Model-

driven development and testing-a case study�. In: First European Workshop on MDA

with Emphasis on Industrial Application, pp. 97�104.

Briand, Lionel and Yvan Labiche (2004). �Empirical studies of software testing techniques:

Challenges, practical strategies, and future research�. In: ACM SIGSOFT Software

Engineering Notes 29.5, pp. 1�3.

Carvalho, Gustavo, Diogo Falcao, Flavia Barros, Augusto Sampaio, Alexandre Mota,

Leonardo Motta, and Mark Blackburn (2014). �NAT2TESTSCR: Test case genera-

tion from natural language requirements based on SCR speci�cations�. In: Science of

Computer Programming 95, pp. 275�297.

Chen, Ruifeng and Huaikou Miao (2013). �A Selenium based approach to automatic test

script generation for refactoring JavaScript code�. In: 2013 IEEE/ACIS 12th Interna-

tional Conference on Computer and Information Science, pp. 341�346.

REFERENCES 120

Chilenski, John Joseph and Steven P. Miller (1994). �Applicability of modi�ed condi-

tion/decision coverage to software testing�. In: Software Engineering Journal 9.5,

pp. 193�200.

Crapo, Andrew and Abha Moitra (2013). �Toward a Uni�ed English-Like Representa-

tion of Semantic Models, Data, and Graph Patterns for Subject Matter Experts�. In:

International Journal of Semantic Computing 07.03, pp. 215�236.

Dalal, SR, A Jain, N Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton, and B.M.

Horowitz (1999). �Model-based testing in practice�. In: Proceedings of the 1999 In-

ternational Conference on Software Engineering, pp. 285�294.

De Castro, Marcelo Moreira Holanda, Juliana De Melo Bezerra, and Celso Massaki Hirata

(2015). �A CNL for requirements as the basis to automate tasks of critical system

development�. In: AIAA/IEEE Digital Avionics Systems Conference - Proceedings,

pp. 21�8.

Devasena, M.S Geetha and M.L. Valarmathi (2012). �Multi Agent Based Framework

for Structural and Model Based Test Case Generation�. In: Procedia Engineering 38,

pp. 3840�3845.

Dezani, Henrique, Norian Marranghello, Aledir S Pereira, Alexandre CR Da Silva, and

Marek Wegrzyn (2011). �Automatic Code Generation for Microcontrollers from Place-

Transition Petri Net Models�. In: vol. 44. 1. Elsevier, pp. 7873�7878.

Dias Neto, Arilo C, Rajesh Subramanyan, Marlon Vieira, and Guilherme H Travassos

(2007). �A survey on model-based testing approaches: a systematic review�. In: Pro-

ceedings of the 1st ACM international workshop on Empirical assessment of software

engineering languages and technologies: held in conjunction with the 22nd IEEE/ACM

International Conference on Automated Software Engineering (ASE) 2007. ACM,

pp. 31�36.

Dori, Dov and Iris Reinhartz-Berger (2003). �An OPM-based metamodel of system de-

velopment process�. In: International Conference on Conceptual Modeling. Springer,

pp. 105�117.

REFERENCES 121

Dori, Dov, Iris Reinhartz-Berger, and Arnon Sturm (2003). �Developing complex sys-

tems with object-process methodology using OPCAT�. In: International Conference

on Conceptual Modeling. Springer, pp. 570�572.

Dupuy, Arnaud and Nancy Leveson (2000). �An empirical evaluation of the MC/DC

coverage criterion on the HETE-2 satellite software�. In: The 19th Conferences on

Digital Avionics Systems. DASC.

Easterbrook, Steve, Robyn Lutz, Richard Covington, John Kelly, Yoko Ampo, and David

Hamilton (1998). �Experiences using lightweight formal methods for requirements

modeling�. In: IEEE Transactions on Software Engineering 24.1.

Eclipse (2017a). Eclipse Subversive - Subversion (SVN) Team Provider. url: http://

www.eclipse.org/subversive/ (visited on 09/09/2017).

Eclipse (2017b). Egit. url: http://www.eclipse.org/egit/ (visited on 09/09/2017).

Eclipse (2017c). XText Web Editor Support. url: https://www.eclipse.org/Xtext/

documentation/ (visited on 09/09/2017).

Esteve, Marie-Aude, Joost-Pieter Katoen, Viet Yen Nguyen, Bart Postma, and Yuri

Yushtein (2012). �Formal correctness, safety, dependability, and performance analysis

of a satellite�. In: Software Engineering (ICSE), 2012 34th International Conference

on. IEEE, pp. 1022�1031.

Falessi, Davide, Natalia Juristo, Claes Wohlin, Burak Turhan, Jürgen Münch, Andreas

Jedlitschka, and Markku Oivo (2018). �Empirical software engineering experts on the

use of students and professionals in experiments�. In: Empirical Software Engineering

23.1, pp. 452�489.

Faulk, Stuart, John Brackett, Paul Ward, and James Kirby (1992). �The CoRE method

for real-time requirements�. In: IEEE Software 9.5, pp. 22�33.

Faulk, Stuart, Lisa Finneran, James Kirby, Sudhir Shah, and James Sutton (1994). �Ex-

perience applying the CoRE method to the Lockheed C-130J software requirements�.

In: Proceedings of the Ninth Annual Conference on Computer Assurance, Safety, Re-

liability, Fault Tolerance, Concurrency and Real Time, Security.COMPASS'94. IEEE,

pp. 3�8.

REFERENCES 122

Fockel, Markus and Jorg Holtmann (2014). �A requirements engineering methodology

combining models and controlled natural language�. In: 4th IEEE International Work-

shop Model-Driven Requirements Engineering (MoDRE), pp. 67�76.

Fockel, Markus and Jorg Holtmann (2015). �ReqPat: E�cient documentation of high-

quality requirements using controlled natural language�. In: Requirements Engineering

Conference (RE), 2015 IEEE 23rd International, pp. 280�281.

Fouad, Ali, Keith Phalp, John Mathenge Kanyaru, and Sheridan Jeary (Dec. 2010). �Em-

bedding requirements within Model-Driven Architecture�. In: Software Quality Journal

19.2, pp. 411�430.

France, Robert and Bernhard Rumpe (2007). �Model-driven development of complex soft-

ware: A research roadmap�. In: 2007 Future of Software Engineering. IEEE Computer

Society, pp. 37�54.

Fuchs, Norbert E and Rolf Schwitter (1995). �Attempto controlled natural language for

requirements speci�cations�. In: Proc. Seventh Intl. Logic Programming Symp. Work-

shop Logic Programming Environments. Citeseer.

Funke, Holger (2011). �Model based test speci�cations developing of test speci�cations in a

semi automatic model based way�. In: Proceedings - 4th IEEE International Conference

on Software Testing, Veri�cation, and Validation Workshops, ICSTW 2011, pp. 496�

500.

Génova, Gonzalo, José M Fuentes, Juan Llorens, Omar Hurtado, and Valentín Moreno

(2013). �A framework to measure and improve the quality of textual requirements�.

In: Requirements engineering 18.1, pp. 25�41.

George, Neethu and J Selvakumar (2013). �Model Based Test Case Generation From Nat-

ural Language Requirements And Inconsistency , Incompleteness Detection in Natural

Language Using Model-Checking Approach�. In: 2.4, pp. 1565�1573.

Gerking, Christopher, Wilhelm Schafer, Stefan Dziwok, and Christian Heinzemann (2015).

�Domain-Speci�c Model Checking for Cyber-Physical Systems.� In: Model Driven En-

gineering, Veri�cation and Validation AT MoDELS, pp. 18�27.

REFERENCES 123

Gervasi, Vincenzo and Bashar Nuseibeh (2002). �Lightweight validation of natural lan-

guage requirements�. In: Software - Practice and Experience 32.2, pp. 113�133.

Ghani, Kamran and John A Clark (2009). �Automatic test data generation for multiple

condition and MCDC coverage�. In: Software Engineering Advances, 2009. (ICSEA).

Fourth International Conference on. IEEE, pp. 152�157.

Gilb, Thomas (1997). �Towards the engineering of requirements�. In: Requirements engi-

neering 2.3, pp. 165�169.

Gilb, Tom (2005). Competitive engineering: a handbook for systems engineering, require-

ments engineering, and software engineering using Planguage. Butterworth-Heinemann.

Gilb, Tom (2006). �How to quantify quality: �nding scales of measure�. In: International

Conference on Software and Data Technologies, pp. 27�36.

Glinz, Martin (2007). �On non-functional requirements�. In: Requirements Engineering

Conference, 2007. RE'07. 15th IEEE International. IEEE, pp. 21�26.

Goknil, Arda and Marie Agnes Peraldi Frati (2012). �A DSL for specifying timing re-

quirements�. In: Model-Driven Requirements Engineering Workshop (MoDRE). IEEE,

pp. 49�57.

Grossman, Tovi, George Fitzmaurice, and Ramtin Attar (2009). �A Survey of Software

Learnability: Metrics, Methodologies and Guidelines�. In: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. CHI '09. ACM, pp. 649�658.

Gruzitis, Normunds and Dana Dannells (2017). �A multilingual FrameNet-based grammar

and lexicon for controlled natural language�. In: Language Resources and Evaluation

51.1, pp. 37�66.

Guerra, Esther, Juan de Lara, Dimitrios S. Kolovos, Richard F. Paige, and Osmar Marchi

dos Santos (Sept. 2011). �Engineering model transformations with transML�. In: Soft-

ware & Systems Modeling 12.3, pp. 555�577.

Haralambous, Yannis, Julie Sauvage-Vincent, and John Puentes (2017). �A hybrid (visu-

al/natural) controlled language�. In: Language Resources and Evaluation 51.1, pp. 93�

129.

Harry, Andrew (1996). Formal Methods Fact File : VDM and Z. John Wiley & Sons.

REFERENCES 124

Hayhurst, Kelly J and Dan S Veerhusen (2001). �A practical approach to modi�ed con-

dition/decision coverage�. In: 20th Digital Avionics Systems Conference 1, pp. 1�10.

Heitmeyer, Constance (1998). �SCR: A practical method for requirements speci�cation�.

In: Proceedings of the 17th Digital Avionics Systems Conference. Vol. 1. IEEE, pp. C44�

1.

Heitmeyer, Constance and Ramesh Bharadwaj (2000). �Applying the SCR requirements

method to the light control case study�. In: Journal of Universal Computer Science

6.7, pp. 650�678.

Heitmeyer, Constance, James Kirby, and Bruce Labaw (1997). �The SCR method for for-

mally specifying, verifying, and validating requirements: tool support�. In: Proceedings

of the 19th international conference on Software engineering. ACM, pp. 610�611.

Helke, Ste�en, Thomas Neustupny, and Thomas Santen (1997). �Automating test case

generation from Z speci�cations with Isabelle�. In: International conference of Z users.

Springer, pp. 52�71.

Helming, Jonas, Maximilian Koegel, Florian Schneider, Michael Haeger, Christine Kamin-

ski, Bernd Bruegge, and Brian Berenbach (2010). �Towards a uni�ed requirements

modeling language�. In: Requirements Engineering Visualization (REV), 2010 Fifth

International Workshop on. IEEE, pp. 53�57.

Hierons, Robert M., Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Der-

rick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul Krause,

Gerald Lüttgen, Anthony J. H. Simons, Sergiy Vilkomir, Martin R. Woodward, and

Hussein Zedan (2009). �Using Formal Speci�cations to Support Testing�. In: ACM

Computing Surveys (CSUR) 41.2, 9:1�9:76.

Holloway, C Michael (2012). �Towards understanding the DO-178C/ED-12C assurance

case�. In: System Safety, incorporating the Cyber Security, 7th IET International Con-

ference on. IET, pp. 1�6.

Holt, Jon, Simon Perry, Richard Payne, Jeremy Bryans, Stefan Hallerstede, and Finn

Overgaard Hansen (2015). �A model-based approach for requirements engineering for

systems of systems�. In: IEEE Systems Journal 9.1, pp. 252�262.

REFERENCES 125

Holtmann, Jörg, Jan Meyer, and Markus von Detten (2011). �Automatic validation and

correction of formalized, textual requirements�. In: Software Testing, Veri�cation and

Validation Workshops (ICSTW), 2011 IEEE Fourth International Conference on.

IEEE, pp. 486�495.

Hu, Meiqi, Ying Huang, Changlu Zhao, Xiang Di, Bolan Liu, and Huan Li (2014). �Model-

based development and automatic code generation of powertrain control system�. In:

Transportation Electri�cation Asia-Paci�c (ITEC Asia-Paci�c), 2014 IEEE Confer-

ence and Expo. IEEE, pp. 1�4.

Huang, Wen-ling and Jan Peleska (2016). �Complete model-based equivalence class test-

ing�. In: International Journal on Software Tools for Technology Transfer 18.3, pp. 265�

283.

Huang, Wen-ling and Jan Peleska (2017). �Complete model-based equivalence class testing

for nondeterministic systems�. In: Formal Aspects of Computing 29.2, pp. 335�364.

Hubner, Felix, Wen-ling Huang, and Jan Peleska (2015). �Experimental evaluation of a

novel equivalence class partition testing strategy�. In: International Conference on

Tests and Proofs. Springer, pp. 155�172.

Hutchinson, John, Mark Rounce�eld, and Jon Whittle (2011). �Model-Driven Engineering

Practices in Industry�. In: 33rd International Conference on Software Engineering

(ICSE 2011), pp. 633�642.

IBM (2017). IBM- Rational DOORS. url: http : / / www - 03 . ibm . com / software /

products/en/ratidoor (visited on 09/09/2017).

Im, Kyungsoo, Tacksoo Im, and John D McGregor (2008). �Automating test case de�ni-

tion using a domain speci�c language�. In: Proceedings of the 46th Annual Southeast

Regional Conference on XX (ACM-SE 46), pp. 180�185.

Institute of Electrical and Electronics Engineers (IEEE) Standards Board (1994). �IEEE

Recommended Practice for Software Requirements Speci�cations�. In: IEEE Std 830-

1993.

REFERENCES 126

Institute of Electrical and Electronics Engineers (IEEE) Standards Board (1998a). �IEEE

Recommended Practice for Software Requirements Speci�cations�. In: IEEE Std 830-

1998, pp. 1�40.

Institute of Electrical and Electronics Engineers (IEEE) Standards Board (1998b). IEEE

Std. 1233 1998: IEEE Guide for Developing System Requirements Speci�cations.Standard.

Standard.

Institute of Electrical and Electronics Engineers (IEEE) Standards Board (2017). IEEE

Standard for System, Software, and Hardware Veri�cation and Validation (1012-2016).

IEEE, pp. 1�260.

Itemis (2014). Xtext - Language Development Made Easy! url: http://www.eclipse.

org/Xtext/index.html.

Jackson, Michael (2012). �Aspects of abstraction in software development�. In: Software

and Systems Modeling 11.4, pp. 495�511.

Jacobs, Shmuela, Niva Wengrowicz, and Dov Dori (2014). �Exporting Object-Process

Methodology System Models to the Semantic Web�. In: Systems, Man and Cybernetics

(SMC), 2014 IEEE International Conference on. IEEE, pp. 1014�1019.

Jacquel, Melanie, Karim Berkani, David Delahaye, and Catherine Dubois (2013). �Verify-

ing B proof rules using deep embedding and automated theorem proving�. In: Software

and Systems Modeling 14.1, pp. 101�119.

James, Phillip and Markus Roggenbach (2011). �Designing Domain Speci�c Languages

for Veri�cation: First Steps.� In: ATE, pp. 1�6.

James, Phillip and Markus Roggenbach (Apr. 2014). �Encapsulating Formal Methods

within Domain Speci�c Languages: A Solution for Verifying Railway Scheme Plans�.

In: Mathematics in Computer Science 8.1, pp. 11�38.

James, Phillip, Alexander Knapp, Till Mossakowski, and Markus Roggenbach (2012). �De-

signing domain speci�c languages-a craftsman's approach for the railway domain us-

ing Casl�. In: International Workshop on Algebraic Development Techniques. Springer,

pp. 178�194.

REFERENCES 127

Jiménez-Pastor, Antonio, Antonio Garmendia, and Juan de Lara (2017). �Scalable model

exploration for model-driven engineering�. In: Journal of Systems and Software 132,

pp. 204�225.

John, Hutchinson, Whittle Jon, and Rounce�eld Mark (2014). �Model-driven engineering

practices in industry: Social, organizational and managerial factors that lead to success

or failure�. In: Science of Computer Programming 89.PART B, pp. 144�161.

Jouault, Frédéric, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev (2008). �ATL: A model

transformation tool�. In: Science of computer programming 72.1-2, pp. 31�39.

Kamma, Damodaram and Sasi Kumar (2014). �E�ect of Model Based Software Devel-

opment on Productivity of Enhancement Tasks�An Industrial Study�. In: Software

Engineering Conference (APSEC), 2014 21st Asia-Paci�c. Vol. 1. IEEE, pp. 71�77.

Kangoye, Sekou, Alexis Todosko�, and Mihaela Barreau (2015). �Practical methods for au-

tomatic MC/DC test case generation of Boolean expressions�. In: IEEE AUTOTEST-

CON, 2015. IEEE, pp. 203�212.

Kanstrén, Teemu and Olli-Pekka Puolitaival (2012). �Using Built-In Domain-Speci�c

Modeling Support to Guide Model-Based Test Generation�. In: Electronic Proceed-

ings in Theoretical Computer Science 80, pp. 58�72.

Kellner, A, M Ahrens, M Friedl, P Hehenberger, LWeingartner, K Zeman, K Kernschmidt,

S Feldmann, and B Vogel-Heuser (2016). �Challenges in integrating requirements in

model based development processes in the machinery and plant building industry�. In:

2016 IEEE International Symposium on Systems Engineering (ISSE). IEEE, pp. 1�6.

Kelly J, Hayhurst, Veerhusen Dan S, Chilenski John J, and Rierson Leanna K (2001). A

practical tutorial on modi�ed condition/decision coverage. NASA Langley Technical

Report Server.

Kolovos, Dimitrios S, Richard F Paige, and Fiona A C Polack (2008). �The epsilon trans-

formation language�. In: Theory and Practice of Model Transformations. Springer,

pp. 46�60.

REFERENCES 128

Kosmatov, N., B. Legeard, F. Peureux, and M. Utting (2004). �Boundary coverage criteria

for test generation from formal models�. In: 15th International Symposium on Software

Reliability Engineering.

Kotonya, Gerald and Ian Sommerville (1992). �Viewpoints for requirements de�nition�.

In: Software Engineering Journal 7.6, pp. 375�387.

Kruse, Peter M., Nelly Condori-Fernandez, Tanja Vos, Alessandra Bagnato, and Etienne

Brosse (2013). �Combinatorial testing tool learnability in an industrial environment�.

In: International Symposium on Empirical Software Engineering and Measurement,

pp. 304�312.

Kuhn, Tobias (2014). �A survey and classi�cation of controlled natural languages�. In:

Computational Linguistics 40.1, pp. 121�170.

Kuhn, Tobias and Alexandre Bergel (2014). �Veri�able source code documentation in

controlled natural language�. In: Science of Computer Programming. Vol. 96. Elsevier

B.V., pp. 121�140.

Kundu, Debasish and Debasis Samanta (2009). �A Novel Approach to Generate Test

Cases from UML Activity Diagrams.� In: The Journal of Object Technology 8.3, p. 65.

Kurtev, Ivan (2008). �State of the Art of QVT : A Model Transformation Language

Standard�. In: Data Engineering, pp. 377�393.

Langlois, Benoît, Consuela-Elena Jitia, and Eric Jouenne (2007). �DSL classi�cation�. In:

OOPSLA 7th Workshop on Domain Speci�c Modeling.

Lee, Chien-Chang and Jon Friedman (2013). �Requirements modeling and automated

requirements-based test generation�. In: SAE International Journal of Aerospace 6.2013-

01-2237, pp. 607�615.

Lepuschitz, Wilfried, Alvaro Lobato-Jimenez, Andreas Grün, Timon Höbert, and Munir

Merdan (2017). �Model-Based Development and Application Generation for the Batch

Process Industry�. In: Manufacturing Letters.

Liu, Jian, Gilles Dowek, Kailiang Ji, and Ying Jiang (2016). �SCTL: Towards Combining

Model Checking and Proof Checking�. In: arXiv preprint arXiv:1606.08668.

REFERENCES 129

Liu, Shaoying and Shin Nakajima (2010). �A Decompositional Approach to Automatic

Test Case Generation Based on Formal Speci�cations�. In: 2010 Fourth International

Conference on Secure Software Integration and Reliability Improvement, pp. 147�155.

Lúcio, Levi, Salman Rahman, Chih-Hong Cheng, and Alistair Mavin (2017). �Just for-

mal enough? automated analysis of EARS requirements�. In: NASA Formal Methods

Symposium. Springer, pp. 427�434.

Madeyski, Lech and Marcin Kawalerowicz (2018). �Continuous Test-Driven Development:

A Preliminary Empirical Evaluation Using Agile Experimentation in Industrial Set-

tings�. In: Towards a Synergistic Combination of Research and Practice in Software

Engineering. Springer, pp. 105�118.

Martínez, Yulkeidi, Cristina Cachero, and Santiago Meliá (2013). �MDD vs . traditional

software development : A practitioner's subjective perspective�. In: 55, pp. 189�200.

Mavin, Alistair and Philip Wilkinson (2010). �Big EARS (the return of" easy approach

to requirements engineering")�. In: Requirements Engineering Conference (RE), 18th

IEEE International. IEEE, pp. 277�282.

Mavin, Alistair, Philip Wilkinson, Adrian Harwood, and Mark Novak (2009). �Easy ap-

proach to requirements syntax (EARS)�. In: Requirements Engineering Conference.

17th IEEE International. IEEE, pp. 317�322.

Miller, Steven, Steven Miller, Mats P. Heimdahl, and Mats P. Heimdahl (2004). �Early

Validation of Requirements�. In: Building the Information Society, pp. 521�526.

Mingsong, Chen, Qiu Xiaokang, and Li Xuandong (2006). �Automatic test case generation

for UML activity diagrams�. In: Proceedings of the 2006 international workshop on

Automation of software test - AST '06, pp. 2�8.

Mitra, Porshia, Shreya Chatterjee, and Nikita Ali (2011). �Graphical analysis of MC/DC

using automated software testing�. In: International Conference on Electronics Com-

puter Technology, pp. 145�149.

Mohagheghi, Parastoo, Wasif Gilani, Alin Stefanescu, and Miguel a. Fernandez (Jan.

2012). �An empirical study of the state of the practice and acceptance of model-driven

REFERENCES 130

engineering in four industrial cases�. In: Empirical Software Engineering 18.1, pp. 89�

116.

Mohalik, Swarup, Ambar A Gadkari, Anand Yeolekar, K C Shashidhar, and S Ramesh

(2014). �Automatic test case generation from Simulink/State�ow models using model

checking�. In: Software Testing, Veri�cation and Reliability 24.2, pp. 155�180.

Morin, Brice, Nicolas Harrand, and Franck Fleurey (2017). �Model-Based Software Engi-

neering to Tame the IoT Jungle�. In: IEEE Software 34.1, pp. 30�36.

Moy, Yannick, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels, and Benjamin Monate

(2013). �Testing or formal veri�cation: Do-178c alternatives and industrial experience�.

In: IEEE software 30.3, pp. 50�57.

Mullery, Geo� P (1979). �CORE-a method for controlled requirement speci�cation�. In:

Proceedings of the 4th international conference on Software engineering. IEEE Press,

pp. 126�135.

Murray, Leesa, David Carrington, I. MacColl, and Paul Strooper (1999). �TinMan-a test

derivation and management tool for speci�cation-based class testing�. In: Proceedings

Technology of Object-Oriented Languages and Systems. TOOLS 32.

Nguyen, Viet-Cuong (2015). �Model Driven Testing of Web Applications Using Domain

Speci�c Language�. In: International Journal of Advanced Computer Science and Ap-

plications (IJACSA) 6.1.

Nuseibeh, Bashar, Je� Kramer, and Anthony Finkelstein (1994). �A framework for ex-

pressing the relationships between multiple views in requirements speci�cation�. In:

IEEE Transactions on software engineering 20.10, pp. 760�773.

Object Management Group (2018a). Object Management Group. url: http://www.omg.

org/ (visited on 05/05/2018).

Object Management Group (2018b). OMG Meta Object Facility (MOF) Core Speci�ca-

tion. url: https://www.omg.org/spec/MOF/2.5.1/ (visited on 05/05/2018).

Oldevik, Jon, Tor Neple, Roy Gronmo, Jan Aagedal, and Arne-J. Berre (2005). �Toward

Standardised Model to Text Transformations�. In: Model Driven Architecture � Foun-

dations and Applications. Springer Berlin Heidelberg, pp. 239�253.

REFERENCES 131

Oracle. Oracle Technology Network for Java Developers. url: http://www.oracle.com/

technetwork/java/index.html (visited on 09/09/2017).

Ostrand, T. J. and M. J. Balcer (1988). �The category-partition method for specifying

and generating fuctional tests�. In: Communications of the ACM 31.6, pp. 676�686.

Panach, Jose Ignacio, Sergio Espana, Oscar Dieste, Óscar Pastor, and Natalia Juristo

(2015). �In search of evidence for model-driven development claims: An experiment on

quality, e�ort, productivity and satisfaction�. In: Information and Software Technology

62, pp. 164�186.

Pastor, Óscar, Sergio España, and Jose Ignacio Panach (2016). �Learning Pros and Cons

of Model-Driven Development in a Practical Teaching Experience�. In: Advances in

Conceptual Modeling. Ed. by Sebastian Link and Juan C Trujillo. Springer Interna-

tional Publishing, pp. 218�227.

Polak, Wolfgang (2002). �Formal methods in practice�. In: Science of Computer Program-

ming 42.1, pp. 75�85.

Puolitaival, Olli-Pekka, Teemu Kanstren, Veli-Matti Rytky, and Asmo Saarela (2011).

�Utilizing domain-speci�c modelling for software testing�. In: 3rd International Con-

ference on Advances in System Testing and Validation Lifecycle. Citeseer.

Ra�, Dudekula Mohammad, Katam Reddy Kiran Moses, Kai Petersen, and Mika V

Mantyla (2012). �Bene�ts and limitations of automated software testing: Systematic

literature review and practitioner survey�. In: Proceedings of the 7th International

Workshop on Automation of Software Test. IEEE Press, pp. 36�42.

Ra�que, Irfan, Jingnong Weng, Yunhong Wang, Maissom Qanber Abbasi, Philip Lew,

and Xinran Wang (2012). �Evaluating software learnability: A learnability attributes

model�. In: 2012 International Conference on Systems and Informatics, (ICSAI),

pp. 2443�2447.

Rayadurgam, Sanjai and Mats P.E. Heimdahl (2003). �Generating MC / DC Adequate

Test Sequences Through Model Checking�. In: Proceedings of the 28th Annual IEEE/-

NASA Software Engineering Workshop � (SEW)-03.

REFERENCES 132

Reinhartz-Berger, Iris, Dov Dori, and Shmuel Katz (2002). �OPM/Web - Object-Process

Methodology for Developing Web Applications�. In: Ann. Software Eng. 13, pp. 141�

161.

Robinson-Mallett, Christopher L. (Sept. 2012). �An approach on integrating models and

textual speci�cations�. In: 2012 Second IEEE International Workshop on Model-Driven

Requirements Engineering (MoDRE), pp. 92�96.

Rose, Louis M, Richard F Paige, Dimitrios S Kolovos, and Fiona A C Polack (2008).

�The epsilon generation language�. In: Lecture Notes in Computer Science (including

subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioinformatics).

Vol. 5095, pp. 1�16.

Rosenberg, Linda, Theodore F Hammer, and Lenore L Hu�man (1998). �Requirements,

testing and metrics�. In: 15th Annual Paci�c Northwest Software Quality Conference.

Citeseer.

RTCA Inc. (2011a). DO-178C: Software considerations in airbone systems and equipment

certi�cation. Tech. rep.

RTCA Inc. (2011b). DO-331: Model-Based Development and Veri�cation Supplement to

DO-178C and DO-278A. Tech. rep.

RTCA Inc. (2011c). DO-333: Formal Methods Supplement to DO-178C and DO-278A.

Tech. rep.

Ryan, Kevin (1993). �The role of natural language in requirements engineering�. In: Pro-

ceedings of the IEEE International Symposium on Requirements Engineering, pp. 240�

242.

Salman, Yasir Dawood and Nor Laily Hashim (2016). �Automatic Test Case Generation

from UML State Chart Diagram: A Survey�. In: Advanced Computer and Communi-

cation Engineering Technology: Proceedings of ICOCOE 2015, pp. 123�134.

Sanchez, Jesus, Javier Luis, and Canovas Izquierdo (2014). �Applying model-driven en-

gineering in small software enterprises�. In: Science of Computer Programming 89,

pp. 176�198.

REFERENCES 133

Santiago, Dionny, Adam Cando, Cody Mack, Gabriel Nunez, Troy Thomas, and Tariq M

King (2013). �Towards Domain-Speci�c Testing Languages for Software-as-a-Service.�

In: MDHPCL@ MoDELS. Citeseer, pp. 43�52.

Santiago Junior, Valdivino Alexandre De and Nandamudi Lankalapalli Vijaykumar (July

2011). �Generating model-based test cases from natural language requirements for

space application software�. In: Software Quality Journal 20.1, pp. 77�143.

Sarma, M., D. Kundu, and R. Mall (2007). �Automatic Test Case Generation from UML

Sequence Diagram�. In: 15th International Conference on Advanced Computing and

Communications (ADCOM 2007), pp. 60�65.

Sarmiento, Edgar, Julio Cesar Sampaio Do Prado Leite, and Eduardo Almentero (2014).

�C&L: Generating model based test cases from natural language requirements descrip-

tions�. In: Proceedings on 2014 IEEE 1st International Workshop on Requirements

Engineering and Testing, RET 2014, pp. 32�38.

Schätz, Bernhard, Andreas Fleischmann, Eva Geisberger, Markus Pister, et al. (2005).

�Model-Based Requirements Engineering with AutoRAID.� In: GI Jahrestagung (2),

pp. 511�515.

Schnelte, Matthias (2009). �Generating Test Cases for Timed Systems from Controlled

Natural Language Speci�cations�. In: International Conference on Secure Software

Integration and Reliability Improvement, pp. 348�353.

Schwitter, Rolf (2011). �Specifying events and their e�ects in controlled natural language�.

In: Procedia - Social and Behavioral Sciences. Vol. 27. Pacling, pp. 12�21.

Seidewitz, Ed (2003). �What models mean�. In: IEEE Software 20.5, pp. 26�32. issn:

07407459.

Semerath, Oszkar, Agnes Barta, Akos Horvath, Zoltan Szatmari, and Daniel Varros (2015).

�Formal validation of domain-speci�c languages with derived features and well-formedness

constraints�. In: Software and Systems Modeling 1, pp. 1�36.

Sendall, Shane and Wojtek Kozaczynski (2003). �Model transformation: The heart and

soul of model-driven software development�. In: Software, IEEE 20.5, pp. 42�45.

REFERENCES 134

Shamsoddin-Motlagh, E (2005). �A Review of Automatic Test Cases Generation.� In:

International Journal of Computer Applications 57.13, pp. 25�29.

Shein, Esther (2015). �Python for beginners�. In: Communications of the ACM 58.3,

pp. 19�21. issn: 0001-0782.

Sikora, Ernst, Bastian Tenbergen, and Klaus Pohl (2012). �Industry needs and research

directions in requirements engineering for embedded systems�. In: Requirements Engi-

neering 17.1, pp. 57�78.

Sinlapakun, Sakon and Yachai Limpiyakorn (2013). �Domain speci�c language for col-

laborative determination of separation minima between aircrafts�. In: International

Journal of Software Engineering and its Applications 7.3, pp. 399�414.

Sneed, Harry M (2007). �Testing against natural language requirements�. In: Quality Soft-

ware, 2007. QSIC'07. Seventh International Conference on. IEEE, pp. 380�387.

Sommerville, Ian (2011). Software engineering 9th Edition.

Spivey, J. M. (1992). �The Z notation: A reference manual�. In: Science of Computer

Programming 15, pp. 253�255.

Staron, Miroslaw (2009). �Transitioning from code-centric to model-driven industrial

projects: empirical studies in industry and academia�. In: Model-Driven Software De-

velopment: Integrating Quality Assurance. IGI Global, pp. 236�262.

Steinberg, Dave, Frank Budinsky, Ed Merks, and Marcelo Paternostro (2008). EMF:

Eclipse Modeling Framework. Pearson Education.

Stevens, Perdita (2010). �Bidirectional model transformations in QVT: semantic issues

and open questions�. In: Software & Systems Modeling 9.1, p. 7.

Teixeira, Sergio, Bruno Alves Agrizzi, Jo E Goncalves, Pereira Filho, Silvana Rossetto,

Roquemar De, and Lima Baldam (2017). �Modeling and automatic code generation

for Wireless Sensor Network Applications using Model-Driven or Business Process

approaches: A systematic mapping study�. In: The Journal of Systems and Software

132, pp. 50�71.

Tesoriero, Ricardo and Abdulrahman H. Altalhi (2017). �Model-based development of

distributable user interfaces�. In: Universal Access in the Information Society.

REFERENCES 135

The Reuse Company (2014). Requirements Quality Analyzer (RQA). url: https://www.

reusecompany.com/requirements-quality-analyzer (visited on 07/02/2018).

Tolvanen, Juha-Pekka (2006). �MetaEdit+: integrated modeling and metamodeling envi-

ronment for domain-speci�c languages�. In: Companion to the 21st ACM SIGPLAN

symposium on Object-oriented programming systems, languages, and applications. ACM,

pp. 690�691.

Torchiano, Marco, Federico Tomassetti, Filippo Ricca, Alessandro Tiso, and Gianna Reg-

gio (2013). �Relevance, bene�ts, and problems of software modelling and model driven

techniques - A survey in the Italian industry�. In: Journal of Systems and Software

86.8, pp. 2110�2126.

Tretmans, Jan and Axel Belinfante (1999). Automatic testing with formal methods. Tech.

rep. Centre for Telematics and Information Technology, University of Twente.

Tse, Man-Chie and Ravinder Singh Kahlon (2013). �How Planguage Measurement Met-

rics: Shapes System Quality�. In: European Conference on Innovation and Entrepreneur-

ship. Vol. 2, p. 597.

Umber, Ashfa and Imran Sarwar Bajwa (2011). �Minimizing ambiguity in natural lan-

guage software requirements speci�cation�. In: 2011 Sixth International Conference on

Digital Information Management (ICDIM), pp. 102�107.

Urbieta, Matias, Maria Jose Escalona, Esteban Robles Luna, and Gustavo Rossi (2012).

�Detecting con�icts and inconsistencies in web application requirements�. In: Lecture

Notes in Computer Science 7059, pp. 278�288.

Van Deursen, Arie, Paul Klint, and Joost Visser (2000). �Domain-speci�c languages: An

annotated bibliography�. In: ACM Sigplan Notices 35.6, pp. 26�36.

Vasudevan, Naveneetha and Laurence Tratt (2011). �Comparative study of DSL tools�.

In: Electronic Notes in Theoretical Computer Science 264.5, pp. 103�121.

Venkatesh, Viswanath and Fred D Davis (2000). �A theoretical extension of the technol-

ogy acceptance model: Four longitudinal �eld studies�. In: Management science 46.2,

pp. 186�204.

REFERENCES 136

Viswanathan, Sunitha Edacheril and Philip Samuel (2016). �Automatic code generation

using uni�ed modeling language activity and sequence models�. In: IET Software 10,

pp. 164�172.

Volter, Markus, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon Helsen (2013).Model-

driven software development: technology, engineering, management. John Wiley &

Sons.

Weisleder, Stephan and Bernd-Holger Schlinglo� (2007). �Deriving input partitions from

UML models for automatic test generation�. In: International Conference on Model

Driven Engineering Languages and Systems. Springer, pp. 151�163.

Whittle, Jon, John Hutchinson, and Mark Rounce�eld (2014). �The state of practice in

model-driven engineering�. In: IEEE software 31.3, pp. 79�85.

Whittle, Jon, John Hutchinson, Mark Rounce�eld, Haakan Burden, and Rogardt Hel-

dal (2017). �A taxonomy of tool-related issues a�ecting the adoption of model-driven

engineering�. In: Software and Systems Modeling 16.2, pp. 313�331.

Wu, Guoqing, Xiang Liu, Shi Ying, and Tamai Tetsuo (1999). �Automated analysis of the

SCR-style requirements speci�cations�. In: Journal of Computer Science and Technol-

ogy 14.4, pp. 401�407.

Wu, Tingting, Yunwei Dong, and Ning Hu (2015). �Formal speci�cation and transforma-

tion method of system requirements from B method to AADL model�. In: Proceedings

- 17th IEEE International Conference on Computational Science and Engineering,

pp. 1621�1628.

Wyner, Adam, Krasimir Angelov, Guntis Barzdins, Danica Damljanovic, Brian Davis,

Norbert Fuchs, Stefan Hoe�er, Ken Jones, Kaarel Kaljurand, Tobias Kuhn, Martin

Luts, Jonathan Pool, Mike Rosner, Rolf Schwitter, and John Sowa (2010). �On con-

trolled natural languages: Properties and prospects�. In: Lecture Notes in Computer

Science (including subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes

in Bioinformatics) 5972 (LNAI), pp. 281�289.

Xsemantics (2014). An Expression Language. url: http://xsemantics.sourceforge.

net/xsemantics-documentation/Expressions-example.html (visited on 09/09/2014).

REFERENCES 137

Yang, Hui, Anne de Roeck, Vincenzo Gervasi, Alistair Willis, and Bashar Nuseibeh (2011).

�Analysing anaphoric ambiguity in natural language requirements�. In: Requirements

Engineering 16.3, pp. 163�169.

Zafar, Nazir Ahmad (2016). �Formal speci�cation and analysis of take-o� procedure using

VDM-SL�. In: Complex Adaptive Systems Modeling 4.1, p. 4.

Zalila, Faiez, Xavier Cregut, and Marc Pantel (2016). �A DSL to Feedback Formal Veri-

�cation Results.� In: MoDeVVa@ MoDELS, pp. 30�39.

Zheng, Yongjie and Richard N. Taylor (June 2013). �A classi�cation and rationalization of

model-based software development�. In: Software & Systems Modeling 12.4, pp. 669�

678.

Zou, Wei Mei and Xin Liu (2014). �Researches on Automatic Software Testing Tech-

niques�. In: Applied Mechanics and Materials 687-691, pp. 1958�1961.

Appendix A

Metamodel

138

High- level Requirement Modelling Language (HRML) Metamodel

139

Appendix B

Requirement Speci�cation Walkthrough

140

Requirement Specification Walkthrough

A traffic light example reported in the student project is used to demonstrate a walkthrough

of requirement specification process in the proposed example.

Student project example

141

HRML specification in Eclipse

1. Select File -> New -> Project

2. Choose General -> Project

3. Give the project a name and click Finish.

142

4. To create the requirement model, right-click on the project ->New -> File

5. Select the project folder, enter a name for the specification with .rsl extension and

Click Finish. Also click Yes in the popup about adding XText features to the project.

6. By pressing Shift+ Enter, several suggestions from predefined language templates.

Select New Model to create template.

143

7. Placeholders are then generated for a new requirement model

8. To create input parameters, click in the Input section, pressing Shift + Enter also

suggests templates suitable for the context. Select New Input Parameter.

144

9. Many Input parameters can be defined in this section using the template and renamed

10. The same concept applies to the Output section where multiple parameters can be

defined.

11. In the example below, multiple output parameters have been defined in the Output

section.

145

12. In the context of the Definition Section, the user can create several definition

requirements with new features and states.

13. The definition requirements of the traffic light example are outlined in the figure

below.

14. In the Behaviour section, the user can select any of the available suggested behaviour

requirements. Select New Logic Requirement to create specifications with conditions

and logic operators.

146

15. The logic requirements in the traffic light example are defined as shown below.

147

Appendix C

Walkthrough of test case generation

process

148

Walkthrough of test case generation process

1. To commence the test case generation process from the traffic light requirement

model, the transformation scripts would have to be copied into the project folder.

2. The main.egx directs the model transformation and is run to select which of the EGL

files in the scripts folder is to be used for test derivation. To proceed, right-click on

the main.egx file -> Select Run As -> Click Run Configurations…

3. In the dialog box, click on EGL template on the left side of the panel and create a

new launch configuration.

149

4. In the first tab (Template), give a name to the configuration and click Browse

Workspace… to select the main template of the transformation.

5. Search for main file and select the appropriate folder and click OK.

150

6. In the second tab of the configuration (Models), Click Add…

7. In the pop-up box, select EMF Model as the type of model and click OK.

151

8. To configure the model, give it a name and click Browse Workspace…

9. Search the workspace for the requirement model, indicate which folder and Click OK

152

10. To derive more details about the transformation including the time taken, go to the

fourth tab (Profiling), enable profiling and click Run.

11. The test cases are generated into their respective folders as shown in the left side of

the workspace.

153

Appendix D

GE Evaluation Exercises

154

GE Evaluation Exercises

This document can be used as a guide to review the model-based test cases generated

automatically. For this exercise, the updated demoExample.rsl file can be used to replace

(SampleProject-> requirementModels-> demoExample.rsl) then run the EGL

transformation again (Run->demoExample).

Demo.rsl

Input

//define input signals in this section

in^ inputSignal1;

in^ inputSignal2;

in^ inputSignal3;

in^ inputSignal4;

in^ inputSignal5;

in^ inputSignal6;

in^ inputSignal7;

in^ inputSignal8;

in^ inputSignal9;

in^ inputSignal10;

in^ inputSignal11;

in^ inputSignal12;

in^ inputSignal13;

in^ inputSignal14;

in^ inputSignal15;

in^ inputSignal16;

in^ inputSignal17;

end

Output

//define output signals in this section

out^ outputSignal1 [Int:"this is an output signal"];

out^ outputSignal2 ;

out^ outputSignal3 ;

out^ outputSignal4 ;

end

155

Definition

//Define system components/elements and assign features and states in this section

REQ1: The outputSignal3 can be in true state false state.

REQ2: The inputSignal8 can be in open state closed state.

REQ3: The inputSignal5 can be in visible state invisible state.

REQ4: inputSignal1 can be in On state Off state.

REQ5: The outputSignal1 can be in high state low state.

REQ6: The System can have a systemComponent.

REQ7: The System can have anotherComponent.

REQ8: The System can have a subComponent.

REQ9: The System can have a systemDisplay.

REQ10: inputSignal12 can be in visible state invisible state.

REQ11: anotherComponent can be in open state closed state.

REQ12: systemDisplay can have a greenFlag yellowFlag redFlag.

REQ13: The System shall have a temperature 'value' .

REQ14: The System shall have a pressure 'value' .

REQ15: The unit can be degrees knots kilograms.

REQ16: The System shall have an overload_warning .

REQ16: The System shall have an weight.

REQ17: The overload_warning can be visible invisible state.

REQ18: The temperature shall range between 0.0 and 50.0 degrees.

REQ19: The pressure shall range between 20.0 and 40.0 with a margin of 0.20.

end

Behaviour

//Specify behaviour constraints in this section

BREQ1: outputSignal4 := inputSignal15 * 400 + inputSignal16 / inputSignal17.

BREQ2: The outputSignal1 shall be set to high when inputSignal1 = On.

BREQ3: The outputSignal1 shall be set to low when inputSignal1 = On and inputSignal2 =

true and inputSignal3 =false.

156

BREQ4: The outputSignal1 shall be set to high when inputSignal1 = Off and inputSignal2 =

true or

 inputSignal3 =false and inputSignal4 = true or inputSignal5 = invisible.

BREQ6: The logic for the systemComponent follows

[

 if {inputSignal9 >10 and inputSignal10 <= inputSignal11 or inputSignal12 = visible}

then

 {anotherComponent = closed}

else

 {subComponent := 12 * inputSignal13 +200}

endif

]

.

BREQ7 : The logic for systemDisplay is as follows

[

 if {inputSignal12 = invisible}

 then

 { display greenFlag }

 else

 [

 if {anotherComponent = open}

 then

 { display yellowFlag and inputSignal14 := 60* 30000 }

 else

 { display redFlag }

 endif

]

 endif

]

.

BREQ8 : The logic for systemDisplay is as follows

157

[

 if {inputSignal12 = visible or inputSignal11 = visible}

 then

 { display greenFlag }

 else

 [

 if {anotherComponent = open or inputSignal13 >10}

 then

 { display yellowFlag and inputSignal14 := 60* 30000 }

 else

 [

 if {inputSignal9 > 10 and inputSignal10 <= inputSignal11 and

inputSignal12 = visible}

 then

 {anotherComponent = closed}

 else

 {subComponent := 12 * inputSignal13 +200}

 endif

]

 endif

]

 endif

]

.

BREQ1BVA: overload_warning is visible when temperature > 100 degrees and pressure <

30 .

BREQ2BVA: overload_warning is visible when weight > 100 kilograms.

BREQ3BVA: overload_warning is invisible when temperature >= 130 degrees or pressure <

30.

end

158

The test cases for logic-based requirements are generated to satisfy the MCDC criteria and

can be found in the folder SampleProject->testCases-gen->demoExample->logic. The test

cases for pseudo requirements are generated in phases based on the level of nested ifs in

the specification SampleProject->testCases-gen->demoExample->pseudo. The test cases

for boundary value analysis can also be found in SampleProject->testCases-gen-

>demoExample->logic while the range boundary tests are generated in SampleProject-

>testCases-gen->demoExample->range.

For each category, there are tasks to review the quality of the generated tests.

1. Logic Requirements Examples

a. Specification with single Condition

Task 1: Review test cases generated for this requirement in SampleProject-

>testCases-gen->demoExample->logic->BREQ2

BREQ2: The outputSignal1 shall be set to high when inputSignal1 = On.

b. Specification with a single logic operator

Task 2: Review test cases generated for this requirement in SampleProject-

>testCases-gen->demoExample->logic->BREQ3

BREQ3: The outputSignal1 shall be set to low when inputSignal1 = On and

inputSignal2 = true and inputSignal3 =false.

c. Specification with multiple logic operators

Task 3: Review test cases generated for this requirement in SampleProject-

>testCases-gen->demoExample->logic->BREQ4

BREQ4: The outputSignal1 shall be set to high when inputSignal1 = Off and

inputSignal2 = true or inputSignal3 =false and inputSignal4 = true or

inputSignal5 = invisible.

159

2. Pseudo Requirement Examples

a. Specification with 1 level of If-then-else-endif

Task 4: Review test cases generated for this requirement in SampleProject->testCases-

gen->demoExample->pseudo->BREQ6

BREQ6: The logic for the systemComponent follows

[

 if {inputSignal9 >10 and inputSignal10 <= inputSignal11 or

inputSignal12 = visible}

then

 {anotherComponent = closed}

else

 {subcomponent := 12 * inputSignal13 +200}

endif

]

.

b. Specification with 2 levels of If-then-else-endif

Task 5: Review test cases generated for this requirement in SampleProject->testCases-

gen->demoExample->pseudo->BREQ7

BREQ7: The logic for systemDisplay is as follows

[

 if {inputSignal12 = invisible}

 then

 { display greenFlag }

 else

 [

 if {anotherComponent = open}

 then

 { display yellowFlag and inputSignal14 := 60* 30000 }

 else

 { display redFlag }

 endif

]

 endif

]

.

160

c. Specification with 3 levels of If-then-else-endif

Task 6: Review test cases generated for this requirement in SampleProject->testCases-

gen->demoExample->pseudo->BREQ8

BREQ8: The logic for systemDisplay is as follows

[

 if {inputSignal12 = visible or inputSignal11 = visible}

 then

 { display greenFlag }

 else

 [

 if {anotherComponent = open or inputSignal13 >10}

 then

 { display yellowFlag and inputSignal14 := 60* 30000 }

 else

 [

 if {inputSignal9 > 10 and inputSignal10 <=

inputSignal11 and inputSignal12 = visible}

 then

 {anotherComponent = closed}

 else

 {subcomponent := 12 * inputSignal13 +200}

 endif

]

 endif

]

 endif

]

.

161

3. Range value specifications

Task 7: Review test cases generated for this requirement in SampleProject->testCases-

gen->demoExample->range->REQ18

Task 8: Review test cases generated for this requirement in SampleProject->testCases-

gen->demoExample->range->REQ19

REQ18: The temperature shall range between 0.0 and 50.0 degrees.

REQ19: The pressure shall range between 20.0 and 40.0 with a margin of

0.20.

4. Boundary Value Analysis

a. Specifications with values within defined range

Task 9: Review test cases generated for this requirement in SampleProject-

>testCases-gen->demoExample->logic->BREQ1BVA

BREQ1BVA: overload_warning is visible when temperature > 100 degrees and

pressure < 30.

b. iSpecifications with undefined range values

Task 10: Review test cases generated for this requirement in SampleProject-

>testCases-gen->demoExample->logic->BREQ2BVA

BREQ2BVA: overload_warning is visible when weight > 100 kilograms.

c. Specifications with values out of defined range

Task 11: Review test cases generated for this requirement in SampleProject-

>testCases-gen->demoExample->logic->BREQ3BVA

BREQ3BVA: overload_warning is invisible when temperature >= 130 degrees or

pressure < 30.

162

GE Evaluation Feedback Form

Participant Name:

Demographics

1. What is your position/role at the company?

2. Do you have experience using model based tools?

3. If yes, in what context do you use model based tools?

Requirement Specification (Domain Specific Language)

4. Are you involved in the requirement specification process?

5. If no, go to question 8.

6. If yes, can you describe the requirement specification process?

7. What challenges do you face?

8. Do you have prior experience with the use of Domain Specific languages (DSLs)?

9. If no, go to question 11.

10. If yes, in what context have you used a DSL?

11. Did you face any challenges while using the provided requirement specification

language?

12. If no, go to question 14.

13. If yes, what were the challenges faced?

14. Did you see any benefits of using this approach for requirement specification?

15. If no, go to question 17.

16. If yes, what were the benefits?

17. On a scale of 1 to 5, how useful is the tool used?

18. On a scale of 1 to 5, how would you describe the ease of use of the provided tool?

19. Would you like to make further comments/feedback on the use of the DSL for

requirement modelling?

163

Test case generation tool

20. How is traceability ensured between requirement specifications and test cases

derived manually?

21. If there is a change in requirement specifications, how is it ensured that the

changes are reflected in the tests cases and how much effort is required?

Logic Based Tests

22. Can you describe the manual process to writing test cases to satisfy the MC/DC

criteria for logic based requirement specifications?

23. In your experience, how long does it take to develop these test cases?

24. Can you describe the quality of the automatically generated Model-based tests in

terms of accuracy?

25. On a scale of 1 to 5 (1= Not accurate; 5=Very accurate), how correct/accurate were

the automatically generated test cases using the tool provided?

26. Would you like to further comment on the test cases generated?

27. On a scale of 1 to 5 (1= Not useful; 5=Very useful), how useful is the tool provided

in generating tests?

28. Would you like to further comment on this?

29. On a scale of 1 to 5(1= Not easy to use; 5=Very easy to use), how would you

describe the ease of use of the tool provided?

30. What challenges did you face using the tool for this type of test cases?

164

Pseudo Based Tests

31. Please can you describe the manual process for writing test cases for requirement

specifications with pseudo code?

32. In your experience, how long does it take to develop these test cases?

33. Can you describe the quality of the automatically generated Model-based tests in

terms of accuracy?

34. On a scale of 1 to 5 (1= Not accurate; 5=Very accurate), how correct/accurate were

the automatically generated test cases using the tool provided?

35. Will you like to further comment on the test cases generated for the pseudo requirements?

36. On a scale of 1 to 5 (1= Not useful; 5=Very useful), how useful is the tool provided in

generating tests for these types of requirements?

37. Would you like to further comment on this?

38. On a scale of 1 to 5(1= Not easy to use; 5=Very easy to use), how would you describe the

ease of use of the tool provided?

39. What challenges did you face using the tool for this type of test cases?

Boundary Value Analysis

40. Can you describe the manual process for writing test cases for requirement

specifications with boundary value analysis?

41. In your experience, how long does it take to perform this analysis for a specification?

42. Can you describe the quality of the Model-based tests in terms of accuracy?

43. On a scale of 1 to 5 (1= Not accurate; 5=Very accurate), how accurate were the

automated test cases using the tool provided?

165

44. Would you like to further comment on the boundary value analysis test cases?

45. On a scale of 1 to 5 (1= Not useful; 5=Very useful), how useful is the tool for generating

tests for these types of requirements?

46. Would you like to further comment on this?

47. On a scale of 1 to 5 (1= Not easy to use; 5=Very easy to use), how would you describe

the ease of use of the tool provided?

48. What challenges did you face using the tool for this type of test cases?

Thank you for your cooperation.

166

Appendix E

Learnability Evaluation Results

167

Learnability evaluation exercises and results

Manual testing exercises Exercise Guide – Manual Testing

Single OR operator specifications

1. A or B or C

Time take to write tests for this specification:

Start time:

Finish time:

2. J or K or L or M or N

Time take to write tests for this specification:

Start time:

Finish time:

Single AND operator specifications

3. D and E and F and G

Time take to write tests for this specification:

Start time:

Finish time:

4. P and Q and R and S and T and U

Time take to write tests for this specification:

Start time:

Finish time:

Multiple operator specifications

5. V or W and X and Y or Z

Time take to write tests for this specification:

Start time:

Finish time:

168

6. F and G or H and I

Time take to write tests for this specification:

Start time:

Finish time:

169

Manual Testing Questionnaire Results

Participant 1

Pre-Evaluation Exercise

170

Post-Evaluation Exercise

171

Participant 2

Pre-Evaluation Exercise

172

Post-Evaluation Exercise

173

Participant 3

Pre-Evaluation Exercise

174

Post-Evaluation Exercise

175

Participant 4

Pre-Evaluation Exercise

176

Post-Evaluation Exercise

177

Participant 5

Pre-Evaluation Exercise

178

Post-Evaluation Exercise

179

Participant 6

Pre-Evaluation Exercise

180

Post-Evaluation Exercise

181

Participant 7

Pre-Evaluation Exercise

182

Post-Evaluation Exercise

183

Participant 8

Pre-Evaluation Exercise

184

Post-Evaluation Exercise

185

Participant 9

Pre-Evaluation Exercise

186

Post-Evaluation Exercise

187

Participant 10

Pre-Evaluation Exercise

188

Post-Evaluation Exercise

189

Participant 11

Pre-Evaluation Exercise

190

Post-Evaluation Exercise

191

Participant 12

Pre-Evaluation Exercise

192

Post-Evaluation Exercise

193

Participant 13

Pre-Evaluation Exercise

194

Post-Evaluation Exercise

195

Participant 14

Pre-Evaluation Exercise

196

Post-Evaluation Exercise

197

Automated Questionnaire Results

Participant 1

Pre-Evaluation Exercise

198

Post-Evaluation Exercise

199

Participant 2.

Pre-Evaluation Exercise

200

Post-Evaluation Exercise

201

Participant 3

Pre-Evaluation Exercise

202

Post-Evaluation Exercise

203

Participant 4

Pre-Evaluation Exercise

204

Post-Evaluation Exercise

205

206

Participant 5

Pre-Evaluation Exercise

207

Post-Evaluation Exercise

208

Participant 6

Pre-Evaluation Exercise

209

Post-Evaluation Exercise

210

Participant 7

Pre-Evaluation Exercise

211

Post-Evaluation Exercise

212

Participant 8

Pre-Evaluation Exercise

213

Post-Evaluation Exercise

214

Participant 9

Pre-Evaluation Exercise

215

Post-Evaluation Exercise

216

Participant 10

Pre-Evaluation Exercise

217

Post-Evaluation Exercise

218

219

Participant 11.

Pre-Evaluation Exercise

220

Post-Evaluation Exercise

221

Participant 12

Pre-Evaluation Exercise

222

Post-Evaluation Exercise

223

Participant 13

Pre-Evaluation Exercise

224

Post-Evaluation Exercise

225

Participant 14

Pre-Evaluation Exercise

226

Post-Evaluation Exercise

227

Participant 15

Pre-Evaluation Exercise

228

Post-Evaluation Exercise

229

