
A Novel Placement Algorithm for the Controllers Of the Virtual Networks

(COVN) in SD-WAN with Multiple VNs

Submitted for the Degree of Doctor of Philosophy

At the University of Northampton

2018

Ameer Mosa Al-Sadi

© [Ameer Mosa Al-Sadi] [2018].

This thesis is copyright material and no quotation from it may be published without proper

acknowledgement.

I

DEDICATION

TO MY FATHER

Mosa Thoeny Al-Sadi

For his inspiration and sacrifices .Without his incredible support I could not have
completed my studies.

TO MY MOTHER
Bushraa Sadiq Gaffory

For her ceaseless prayers, encouragement and endless love.

TO MY WIFE
Duaa Hiyder Gaffory

For her endless love and support.

TO MY Family And Friends

May GOD bless you.

II

DECLARATION

I hereby declare that the work described in this thesis is original work undertaken by me

for the degree of Doctor of Philosophy, at the Department of Computer Science and

Immersive Technologies – University of Northampton, United Kingdom. No part of the

material described in this thesis has been submitted for any award of any other degree or

qualification in this or any other University or College of advanced education.

Ameer Mosa Al-Sadi

III

ACKNOWLEDGMENTS

God almighty is worthy all the thankful for empowering me by the motivation, the

ability and the individuals who support the long PhD journey.

First, this work would not have been possible without the financial support of the

Iraqi Ministry of Higher Education and Scientific Research and the University of

Technology in Baghdad.

Immeasurable appreciation and deepest gratitude to my supervisor Dr. Ali Al-Sherbaz

for his incredible support and guidance, with keeping the independence of research

directions and decisions, which improve my research skills and experience. I would also

greatly appreciate his care and concern throughout my PhD study.

Besides my advisor, I would like to express the truly indebted and thankful to the

members of my supervisory team Dr. James Xue and Dr. Scott Turner for their thoughtful

and valuable advice, insightful suggestions in the research work and constant

encouragement. Their feedback and constructive criticism have been a great asset to me.

I am also very grateful to all colleagues and the staff in the Department of Computer

Science and Immersive Technology. Also, it is a great pleasure to thank my sincere

friends Mr. Riyadh Abbas, Mr. Marwan Aldabbagh, Dr. Ahmad Al-Khalil and Miss. Leila

Benseddik for their cooperative work and moral support.

I would like to extend my great thankful for my cousin Dr. Firas Al-saidi for his

continues encouragement and supportive guidance through the PhD study.

I dedicate my thesis to my parents who their love, prayers, blessings, and inspiration

is the true reason behind any success I have realised in my life.

Finally, I should always remember the support and endless wishes of my wife Duaa

and my lovely children Anas and Aseel. I owe sincere and earnest thankfulness to my

dearest Brothers Mr. Anor and Mr. Aeesr, and my sisters Miss. Anoar and Miss. Athar for

their encouragement and support.

IV

PUBLICATIONS

During the 4-years of the research study, the following papers were published within the

Department of Computer Science and Immersive Technologies at The University of

Northampton.

1. Al-Sadi, A., Al-Sherbaz, A., Xue, J. and Turner, S. J. (2018) Developing an

asynchronous technique to evaluate the performance of SDN HP Aruba

switch and OVS. In: IEEE Computing Conference 2018. London: IEEE.

2. Al- Al-Sadi, A., Al-Sherbaz, A., Xue, J. and Turner, S. J. (2016) Routing algorithm

optimization for Software Defined Network WAN. In: Al-Sadeq International

Conference on Multidisciplinary in IT and Communication Science and Applications

(AIC-MITCSA) - IRAQ (9-10) May. Baghdad, Iraq: IEEE.

3. Al-Sadi, A., Al-Sherbaz, A., Turner, S. J. and Xue, J. (2016) The management of

distributed software defined networks in smart cities. Workshop presented

to: School of Science and Technology Annual Research Conference, Newton Building,

The University of Northampton, 02 March 2016.

4. Al-Sadi, A., Al-Sherbaz, A., Xue, J. and Turner, S. J. (2015) The management of the

future internet. In: 8th Manchester Metropolitan University (MMU) Postgraduate

Research Conference 2015: Innovation, Manchester Metropolitan University, 05

November 2015.

5. Al-Sadi, A., Al-Sherbaz, A., Xue, J. and Turner, S. J. (2015) The Management of the

Future Internet. In : Workshop presented to: Annual Research Conference 2015 For

Postgraduate Research Degree Students and Early Career Researchers, The

University of Northampton, 17 June 2015.

V

ABSTRACT

The escalation of communication demands and the emergence of new

telecommunication concepts such as 5G cellular system and smart cities requires the

consolidation of a flexible and manageable backbone network. These requirements

motivated the researcher to come up with a new placement algorithm for the Controller

of Virtual Network (COVN). This is because SDN and network virtualisation techniques

(NFV and NV), are integrated to produce multiple virtual networks running on a single

SD-WAN infrastructure, which serves the new backbone.

One of the significant challenges of SD-WAN is determining the number and the

locations of its controllers to optimise the network latency and reliability. This problem

is fairly investigated and solved by several controller placement algorithms where the

focus is only on physical controllers.

The advent of the sliced SD-WAN produces a new challenge, which necessitates the SD-

WAN controllers (physical controller/hosted server) to run multiple instances of

controllers (virtual controllers). Every virtual network is managed by its virtual

controllers. This calls for an algorithm to determine the number and the positions of

physical and virtual controllers of the multiple virtual SD-WANs. According to the

literature review and to the best of the author knowledge, this problem is neither

examined nor yet solved. To address this issue, the researcher designed a novel COVN

placement algorithm to compute the controller placement of the physical controllers,

then calculate the controller placement of every virtual SD-WAN independently, taking

into consideration the controller placement of other virtual SD-WANs.

COVN placement does not partition the SD-WAN when placing the physical controllers,

unlike all previous placement algorithms. Instead, it identifies the nodes of the optimal

reliability and latency to all switches of the network. Then, it partitions every VN

separately to create its independent controller placement. COVN placement optimises

the reliability and the latency according to the desired weights. It also maintains the load

balancing and the optimal resources utilisation. Moreover, it supports the recovering of

the controller failure.

This novel algorithm is intensively evaluated using the produced COVN simulator and

the developed Mininet emulator. The results indicate that COVN placement achieves the

required optimisations mentioned above. Also, the implementations disclose that COVN

placement can compute the controller placement for a large network (754 switches) in

very small computation time (49.53 s). In addition, COVN placement is compared to

POCO algorithm. The outcome reveals that COVN placement provides better reliability in

about 30.76% and a bit higher latency in about 1.38%. Further, it surpasses POCO by

constructing the balanced clusters according to the switch loads and offering the more

efficient placement to recover controller-failure.

VI

TABLE OF CONTENTS

DEDICATION ... I

DECLARATION .. II

ACKNOWLEDGMENTS .. III

PUBLICATIONS .. IV

ABSTRACT ... V

TABLE OF CONTENTS .. VI

LIST OF FIGURES .. X

LIST OF TABLES .. XIV

LIST OF ABBREVIATIONS ... XVI

CHAPTER ONE: INTRODUCTION .. 1

1.1. Problem Description ... 3

1.2. Research Aim and Objectives ... 3

1.3. Research Methodology .. 4

1.4. Research Contributions .. 9

1.5. Practical Impact of Research Contributions .. 9

1.6. Research Informed Teaching .. 12

1.7. Thesis Structure ... 12

CHAPTER TWO: BACKGROUND AND LITERATURE REVIEW .. 13

2.1. Introduction ... 13

2.2. Network Softwarisation.. 13

2.2.1. Software Defined Network (SDN) .. 14

2.2.2. The Virtualization and Its Relation to SDN.. 15

2.3. SDN Controller Placement Algorithms .. 17

2.3.1. Minimising Network Latency ... 19

2.3.2. Maximising Resilience and Reliability ... 21

2.3.3. Load Balancing .. 22

2.3.4. Decreasing Infrastructure Cost and Energy Consumption... 23

2.3.5. Multi-Objective Approach ... 24

2.3.6. Summary and Conclusion of Controller Placement Algorithm ... 26

2.4. Clustering Algorithms ... 29

2.4.1. Partitioning Relocated Methods .. 29

2.4.2. Hierarchical Methods .. 30

2.4.3. Density-Based Methods ... 31

VII

2.4.4. Grid-Based Methods .. 31

2.4.5. Graph Theory-Based Clustering ... 32

2.4.6. Summary and Conclusion of Clustering Algorithms ... 34

CHAPTER THREE: OPTIMISATION METRICS OF CONTROLLER PLACEMENT 38

3.1. Introduction ... 38

3.2. Routing Algorithm Optimization for SD-WAN... 39

3.2.1. The Motivation and the Objectives of SFOP Algorithm ... 39

3.2.2. The Related Works of the Routing Algorithm ... 41

3.2.3. Statistics of OpenFlow Interface .. 42

3.2.4. The Design of the SFOP Routing Algorithm .. 43

3.2.5. Analysing the Computational Complexity of SFOP Routing Algorithm 46

3.2.6. SFOP Emulation Environment .. 47

3.2.7. Implementation and the Results of the SFOP Algorithm .. 47

3.2.8. The Conclusion of the SFOP Algorithm ... 51

3.3. Developed Asynchronous Technique to Evaluate the Performance of the SDN Switches Using the

Hosts in Data-Plane ... 51

3.3.1. The Related Works of the Measurement Techniques ... 52

3.3.2. Description of the Proposed Asynchronous Latency Measurement Technique 55

3.3.3. Testbeds Description and Methods ... 56

3.3.4. Results Evaluation ... 58

3.3.5. Formulating a New Latency Metrics and Equation for SD-WAN .. 63

3.4. Developed Technique to Measure the Latency of OpenFlow Packets Using the Controller.......... 71

3.4.1. Description of the OpenFlow Latency Measurement Technique 71

3.4.2. The Results of the OpenFlow Latency Measurement Technique 73

3.5. Summary and Conclusion ... 74

CHAPTER FOUR: COVN PLACEMENT ALGORITHM .. 75

4.1. Introduction ... 75

4.2. Problem Statement and Solution .. 75

4.3. Introducing the Objectives and the Requirements of the COVN Placement Algorithm 76

4.3.1. The Objectives of COVN Placement Algorithm ... 76

4.3.2. The Requirements of COVN Placement Algorithm ... 76

4.4. COVN Placement Approach .. 79

4.5. The Usage and the Dynamic Implementation of COVN Placement .. 81

4.5.1. The Usage of the COVN Placement Algorithm .. 81

4.5.2. The Dynamic Implementation of the COVN Placement Algorithm 82

VIII

4.6. The Full Structure of COVN Placement Algorithm ... 83

4.7. The COVN Placement Algorithm Part-One .. 84

4.7.1. Trading-off versus Combining the Multi-Objectives (Latency and Reliability) 85

4.7.2. The Features of Latency and Reliability .. 86

4.7.3. The Design of COVN Placement Algorithm- Part 1.. 86

4.7.4. The Computational Complexity of COVN Placement Algorithm Part-One 90

4.8. The COVN Placement Algorithm Part-Two .. 91

4.8.1. The Motivation to Propose a Novel Clustering Algorithm ... 91

4.8.2. The Design of the Peripheral Clustering Algorithm .. 92

4.8.3. The Design of Assigning the Virtual Controllers .. 97

4.8.4. The Computational Complexity of COVN Placement Algorithm- Part 2............................. 99

4.9. Summary and Conclusion ... 101

CHAPTER FIVE: COVN PLACEMENT TESTBEDS ... 103

5.1. Introduction ... 103

5.2. SDN Test Platforms... 103

5.3. COVN simulator.. 104

5.3.1. First Tab (Placement) ... 105

5.3.2. Second Tab (Clustering) ... 106

5.3.3. Third Tab (Virtual Network Generator) .. 108

5.3.4. Fourth Tab (Topology Generators) ... 109

5.3.5. Fifth Tab (Latency) ... 116

5.3.6. Sixth Tab (Reliability) ... 118

5.3.7. Seventh Tab (Controller-Failure) .. 119

5.4. The Developed Mininet Emulator ... 120

5.4.1. The Mininet Limitation and the Developed Solution in Mininet 121

5.4.2. The Tracking Communication and Traffic Control Tools ... 121

5.4.3. The Applied Traffics Control Mechanism.. 123

5.4.4. The Programmes of Implementing the Mininet Developments 124

5.5. The Assisting Programmes.. 125

5.6. The Implementation Environment .. 126

5.7. Summary and Conclusion ... 126

CHAPTER SIX: RESULTS AND EVALUATION OF COVN PLACEMENT 127

6.1. Introduction ... 127

6.2. SD-WAN test Topologies and Parameters ... 127

IX

6.3. The Results of the COVN Simulator ... 129

6.3.1. The Metrics of COVN simulator ... 129

6.3.2. The weight of Closeness against Reliability .. 138

6.3.3. The Clustering ... 145

6.3.4. The Controller Failure .. 152

6.3.5. The Changes of the Virtual Slices (Topology or Load) ... 161

6.3.6. The size of the network ... 169

6.4. The Results of Mininet Emulator .. 174

6.5. The Comparison with results of POCO algorithm .. 177

6.6. Summary and Conclusion ... 185

CHAPTER SEVEN: CONCLUSION AND FUTURE WORK ... 189

7.1. Novel SFOP Routing Algorithm ... 190

7.2. Two Latency Measurement Technique ... 191

7.3. Novel Peripheral Clustering Algorithm .. 191

7.4. Novel COVN Placement .. 192

7.5. COVN TestBeds .. 193

7.6. Future Work ... 193

REFERENCES ... 194

X

LIST OF FIGURES
Figure 1.1: The outcome of examining the latency optimisation. ... 6

Figure 1.2: Research methodology of this thesis. ... 8

Figure 1.3: Examples of dynamic implantation for the controller placement algorithms. 10

Figure 2.1: Comparison of the traditional and SDN Network structure. ... 14

Figure 2.2: The optimisation and the new capabilities of the network after the move from
traditional network to SDN. .. 15

Figure 2.3: The relationship between SDN, NV and NFV(Cox et al., 2017). ... 16

Figure 2.4: The integration of SDN, NFV and NV, which improves the network capability for
recovering the failure, disaster and big events by enhancing the virtual resources. 17

Figure 2.5: The proposed classification of the controller placement algorithms according to the
optimised criteria. .. 18

Figure 2.6: The hierarchical classification of commonly used clustering methods. .. 29

Figure 3.1: The pseudo code for creating adjacency matrix of bandwidth. .. 45

Figure 3.2:The pseudo code of algorithm 1 (computing the widest path). .. 45

Figure 3.3: The pseudo code for finding and using the best available bandwidth. .. 46

Figure 3.4: The pseudo code of Algorithm 2 (compute the shortest path). .. 46

Figure 3.5: The paths of the different routing algorithms in SD-WAN (Note: 10,100 and 1000
represent the link bandwidth in Mbit). ... 48

Figure 3.6: The latencies for different routing algorithms. .. 49

Figure 3.7: Several paths of SFOP algorithm with the dynamic changes of the bandwidths............................ 50

Figure 3.8: The latency of the dynamic routing in different states of SD-WAN. ... 50

Figure 3.9: The proposed asynchronous latency measurement technique.. 56

Figure 3.10: The used topologies in the tests of evaluating the performance metrics. 57

Figure 3.11: Two-Way Latency measurement comparison between Mininet (OVS) and Physical
testbed (HP Aruba) in three different techniques. .. 59

Figure 3.12: Flow setup Latency measurement comparison between Mininet (OVS) and Physical
testbed (HP Aruba) in two different techniques. ... 60

Figure 3.13: Throughput measurement comparison between Mininet (OVS) and Physical testbed
(HP Aruba) for TCP and UDP traffic using Iperf. .. 60

Figure 3.14: Jitter and loss packet rate measurement comparison between Mininet (OVS) and
Physical testbed (HP Aruba) for UDP traffic using Iperf. .. 61

Figure 3.15: Two-Way Latency measurement comparison between Mininet (OVS) and Physical
testbed (HP Aruba) in three different techniques. .. 62

Figure 3.16: Flow setup Latency measurement comparison between Mininet (OVS) and Physical
testbed (HP Aruba) in two different techniques. ... 62

Figure 3.17: The steps of connection flow-setup latency. .. 64

Figure 3.18: The outcome of examining the latency optimisation. ... 65

Figure 3.19: An example of SDN to demonstrate the connection control-path latency and
connection flow-setup latency. .. 66

Figure 3.20: The formula of calculating the controller delay. ... 70

file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-116.docx%23_Toc526246974
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-116.docx%23_Toc526246975
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115449
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115450
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115450
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115451
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115452
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115452
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115453
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115453
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115454
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115647
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115648
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115649
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115650
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115651
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115651
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115652
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115653
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115654
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115655
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115656
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115657
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115657
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115658
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115658
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115659
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115659
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115660
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115660
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115661
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115661
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115662
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115662
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115663
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115664
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115665
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115665
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115666

XI

Figure 3.21: The testbed of implementing the OpenFlow latency measurement technique............................ 72

Figure 4.1: The SD-WAN with multiple virtual networks. .. 77

Figure 4.2: The difference in the outcome of the existing placement and the COVN placement
algorithms. .. 78

Figure 4.3: Placing the physical controllers using the COVN placement algorithm to optimise
controller placement of virtual networks. ... 80

Figure 4.4: The structure of the COVN placement algorithm. ... 84

Figure 4.5: The controller placement according to the reliability alone, latency alone and
Combining both of them. .. 85

Figure 4.6: The graph theorem to find the count of paths between two nodes in the graph. 88

Figure 4.7: The Pseudocode of part 1 of COVN placement algorithm. ... 90

Figure 4.8: The structure of the peripheral clustering algorithm. ... 92

Figure 4.9: Example of the four diagonal edges, which are extracted from node coordinates. 93

Figure 4.10: The pseudocode of left side in the third stage of the peripheral clustering algorithm.............. 96

Figure 4.11: An example to explain the process of assigning the virtual controllers to clusters.................... 98

Figure 4.12: The flowchart of introducing the COVN placement algorithm in this chapter.102

Figure 5.1: The eight tabs of COVN simulator...105

Figure 5.2: The first tab of COVN simulator (part-one of COVN placement). ..105

Figure 5.3: The second tab of COVN simulator (part-two of COVN placement, clustering base on
nodes number). ...107

Figure 5.4: The second tab of COVN simulator (part-two of COVN placement, clustering base on
nodes load)..108

Figure 5.5: The third tab of COVN simulator (Virtual Network Generator). ..109

Figure 5.6: The fourth tab of COVN simulator (Topology Generator, Generator-one).110

Figure 5.7: The fourth tab of COVN simulator (Topology Generator, Generator-two).111

Figure 5.8: The fourth tab of COVN simulator (Topology Generator, Creating distance matrix).113

Figure 5.9:The fourth tab of COVN simulator (Topology Generator, Creating bandwidth matrix)..............114

Figure 5.10: The fourth tab of COVN simulator (Topology Generator, Creating load matrix).115

Figure 5.11: The fifth tab of COVN simulator (Latency). ..116

Figure 5.12: The sixth tab of COVN simulator (Reliability). ..118

Figure 5.13: The seventh tab of COVN simulator (Controller-Failure). ...119

Figure 5.14: The seventh tab of COVN simulator (Results Summary). ..120

Figure 5.15: SD-WAN in Mininet that demonstrates the difference between the virtual control path
and data path. ...123

Figure 6.1: The six topologies used for testing the COVN placement algorithm...128

Figure 6.2: The placement of physical controllers for Generated-1 topology. ..130

Figure 6.3: The placement of virtual controllers for Generated-1 topology. ...131

Figure 6.4: The node-controller latency for all switches of Generated-1 topology. ..131

file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526115667
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116134
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116135
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116135
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116136
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116136
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116137
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116138
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116138
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116139
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116140
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116141
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116142
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116143
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116144
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116145
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116146
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116147
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116148
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116148
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116149
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116149
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116150
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116151
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116152
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116153
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116154
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116155
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116156
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116157
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116158
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116159
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116160
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116160
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116161
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116162
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116163
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116164

XII

Figure 6.5: The maximum inter-controller latency for every controller to all other controllers of
Generated-1 topology. ...132

Figure 6.6: Connection control-path latency metric versus connection flow-setup latency metric to
nearest node of Generated-1 topology. ...133

Figure 6.7: Connection control-path latency metric versus connection flow-setup latency metric to
the farthest node of Generated-1 topology. ...133

Figure 6.8: The metric for the number of links/nodes to cut the node-controller connection of
Generated-1 topology. ...134

Figure 6.9: The ratio of the nodes connectivity for Generated-1 topology. ..135

Figure 6.10: The ratio of the controller connectivity metric of Generated-1 topology.136

Figure 6.11: The metric for the minimum number of hops to the farthest node of Generated-1
topology. ..137

Figure 6.12: The implementation of controller-failure on Generated-1 topology. ..137

Figure 6.13: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the closeness-reliability tests of Generated-1 topology.139

Figure 6.14: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the closeness-reliability tests of Generated-1 topology.139

Figure 6.15: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the closeness-reliability tests of Internet2 topology.141

Figure 6.16: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the closeness-reliability tests of Internet2 topology.141

Figure 6.17 : The comparison of the minimum, average and maximum values of the resulted
latency metrics for the closeness-reliability tests of India topology. ..143

Figure 6.18: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the closeness-reliability tests of India topology. ...143

Figure 6.19: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the clusters tests of Generated-1 topology. ...147

Figure 6.20: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the clusters tests of Generated-1 topology. ..147

Figure 6.21: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the clusters tests of Internet2 topology. ...149

Figure 6.22: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the clusters tests of Internet2 topology. ..149

Figure 6.23: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the clusters tests of India topology. ..151

Figure 6.24: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the clusters test of India topology. ...151

Figure 6.25: The active and backup physical controllers of Generated-1 topology. ...153

Figure 6.26: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the controller-failure tests of Generated-1 topology.155

Figure 6.27: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the controller-failure tests Generated-1 topology.155

Figure 6.28: The active and backup physical controllers of Intrent2 topology. ...156

Figure 6.29: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the controller-failure tests of Internet2 topology. ...157

Figure 6.30: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the controller-failure tests of Internet2 topology.157

file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116165
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116165
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116166
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116166
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116167
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116167
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116168
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116168
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116169
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116170
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116171
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116171
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116172
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116173
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116173
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116174
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116174
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116175
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116175
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116176
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116176
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116177
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116177
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116178
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116178
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116179
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116179
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116180
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116180
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116181
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116181
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116182
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116182
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116183
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116183
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116184
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116184
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116185
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116186
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116186
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116187
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116187
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116188
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116189
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116189
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116190
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116190

XIII

Figure 6.31: The active and backup physical controllers of India topology...158

Figure 6.32: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the controller-failure tests of India topology. ...160

Figure 6.33: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the controller-failure tests of India topology. ..160

Figure 6.34: The possible changes with the reaction of COVN algorithm for two different VN's of
Generated-1 topology. ...163

Figure 6.35: The comparisons of some latency and reliability metrics for the eight different
statuses of two VNs of Generated-1 topology. ..164

Figure 6.36: The possible changes with the reaction of COVN algorithm for two different VN's of
Internet2 topology..165

Figure 6.37: The comparisons of some latency and reliability metrics for the eight different
statuses of the VNs of Internet2 topology. ...166

Figure 6.38: The possible changes with the reaction of COVN algorithm for two different VN's of
India topology. ...167

Figure 6.39: The comparisons of some latency and reliability metrics for the eight different
statuses of the VNs of India topology. ..168

Figure 6.40: The implementation of the COVN placement algorithm on three different size
topologies. ...171

Figure 6.41: The comparison of the minimum, average and maximum values of the resulted
latency metrics for three different topologies. ...172

Figure 6.42: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for three different topologies. ..172

Figure 6.43: The Generated-1 topology in the HP VAN SDN controller interface after executing it
on Mininet emulator. ...174

Figure 6.44: The six controller placements which are applied in Mininet tests. ..175

Figure 6.45: All controller placements, which are produced by the COVN and POCO placement
algorithms to be compared together. ...179

Figure 6.46: The comparison of latency metrics between the COVN and POCO placements on the
real distances of Internet2 for the failure-free of the controller. ...180

Figure 6.47: The comparison of latency metrics between the COVN and POCO placements on the
real distances of Internet2 for the different failures of the controller. ..180

Figure 6.48: The comparison of latency metrics between the COVN and POCO placements on the
minimised distances of Internet2 for the failure-free of the controller. ..183

Figure 6.49: The comparison of latency metrics between the COVN and POCO placements on the
minimised distances of Internet2 for the different failures of the controller.183

Figure 6.50: The comparison of reliability metrics between the COVN and POCO placements on the
real distances of Internet2 for the failure-free of the controller. ...184

Figure 6.51: The comparison of reliability metrics between the COVN and POCO placements on the
real distances of Internet2 for the different failures of the controller. ..185

file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116191
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116192
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116192
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116193
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116193
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116194
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116194
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116195
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116195
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116196
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116196
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116197
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116197
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116198
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116198
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116199
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116199
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116200
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116200
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116201
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116201
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116202
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116202
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116203
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116203
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116204
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116205
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116205
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116206
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116206
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116207
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116207
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116208
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116208
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116209
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116209
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116210
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116210
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116211
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116211

XIV

LIST OF TABLES
Table 2.1: The sub-classes of the publications that place the controllers to minimise the SD-WAN

latency... 19

Table 2.2: The sub-classes of the publications that place the controllers to maximising resilience
and reliability of SD-WAN. .. 21

Table 2.3: The sub-classes of the publications that create balanced controller placement by
distributing the load on controllers according to their capacity. ... 23

Table 2.4: The sub-classes of the publications that create controller placement which reduces the
cost and power consumption of SD-WAN. ... 24

Table 2.5: The sub-classes of the publications that consider multi-objectives to find the optimal
controller placement of SD-WAN. ... 25

Table 2.6: Some interesting findings from other works that support the outcomes of the thesis. 28

Table 2.7: Computational complexity of clustering methods. ... 35

Table 2.8: Summary of the pros and cons of each type of clustering algorithms. .. 36

Table 2.9: Summary of most clustering algorithms exploited for SD-WAN. .. 37

Table 3.1: Latency performance of different routing algorithms. ... 49

Table 4.1: The differences between the requirements of the placement algorithms of SD-WAN and
CONV placement algorithm. .. 79

Table 4.2: The summary of all the status of applying the COVN placement algorithm. 81

Table 4.3: An example of sorting the average shortest path (average number of hops) between clusters and

controllers (the values in table belongs to the SD-WAN in Figure 4.11 below). .. 98

Table 4.4: The second step of assigning the controller to cluster. ... 99

Table 5.1: The disadvantages of the test platforms which prevent the implementation of COVN
Placement algorithm. ...104

Table 6.1: The specifications of the six topologies used for testing the COVN placement algorithm.128

Table 6.2: The parameters that could be changed when implementing the COVN placement
algorithm. ..129

Table 6.3: The weights of closeness and reliability for the second tests category. ..138

Table 6.4: The optimal weights of closeness and reliability for every topology. ..145

Table 6.5: The implantation of the COVN placement with a different number of clusters on
Generate-1 topology. ...146

Table 6.6: The implementation of the COVN placement with a different number of clusters on
Internet2 topology. ...148

Table 6.7: The implementation of the COVN placement with a different number of clusters on India
topology. ..150

Table 6.8: The optimal weights of closeness and reliability for every topology. ..153

Table 6.9: The sequence of the controller-failure and recovery process of the five tests on
Generate-1 topology. ...154

Table 6.10: The sequence of the controller-failure and recovery process of the five tests on
Internet2 topology. ...156

file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116087
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116087
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116088
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116088
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116089
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116089
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116090
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116090
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116091
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116091
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116092
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116093
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116094
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116095
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116277
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116096
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116096
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116097
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116098
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116098
file:///E:\0-D\corrections%20After%20viva-2\Ameer%20Mosa%20Al-Sadi%20Thesis%202018-112.docx%23_Toc526116099

XV

Table 6.11: The sequence of the controller-failure and recovery process of the five tests on India
topology. ..159

Table 6.12: The optimal weights of closeness and reliability for every topology. ...162

Table 6.13: The execution time of the COVN placement algorithm for six different topologies and a
different number of controllers. ..173

Table 6.14: The comparison between the connection flow-setup latency of Mininet and COVN
simulator. ...176

Table 6.15: The six objectives of the POCO placement algorithm. ..178

Table 6.16: Summary of the findings for the tests of all the sections presented in chapter seven.187

XVI

LIST OF ABBREVIATIONS

5G 5th generation mobile networks or 5th generation wireless

systems

API Application Programming Interface

ARP Address Resolution Protocol

BGP Border Gateway Protocol

CAPEX Capital Expenditure

CLI Command Line Interface

COVN Controllers Of the Virtual Networks

CSP Communication Service Providers

ETSI European Telecommunications Standards Institute

FCNC Farthest-Cluster to Nearest-Controller

FIB Forwarding Information Base

GUI Graphical User Interface

HPE VAN HPE Virtual Application Networks

ICN Information Centric Networking

IDS Intrusion Detection System

IoT Internet of Things

IP Internet Protocol

JVM Java Virtual Machine

MAC Media Access Control

NAT Network Address Translation

NFV Network Functions Virtualization

NOS Network Operating System

NV Network Functions Virtualization

ONF Open Network Foundation

OPEX Operating Expense

OS Operating System

OVS Open vSwitch

QoS Quality of Service

REST Representation State Transfer

RTT Round Trip Time

XVII

SDN Software-Defined Networking

SD-WAN Software-Defined Wide Area Network

SFOP Shortest-Feasible OpenFlow Path

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TE Traffic Engineering

TLS Transport Layer Security

UDP User Datagram Protocol

VLAN-ID Virtual Local Area Network-Identifier

VM Virtual Machine

VPC Virtual Privet Cloud

VPN Virtual Private Network

Page | 1

CHAPTER ONE
INTRODUCTION

Today Internet is based on the developed model of the traditional network, which began

in the early 1970s (Leiner et al., 2009). It grew gradually to connect the whole world. Its

services are always evolving to meet the technical needs of society. Previously, the

Internet was used to communicate and transfer files between computers (Leiner et al.,

2009). Currently, it is used for almost every activity, which can be performed by people

and machines. For instance, it displays video and audio, makes telephone calls, collects

data and remotely controls devices. In the near future, it will be used as infrastructure

for the Internet of Things (IoT), smart cities and 5G cellular technology, which serve a

wider platform of application, such as automated cars and smart houses (Tadinada,

2014). Traffic engineering (TE) develops some protocols and mechanisms to optimise

the performance of this network, however, it does not have any essential change on its

design and structure (Awduche et al., 2002). TE developments cannot fully satisfy the

current and the approaching requirements of telecommunication because it cannot

provide the dynamic utilisation of network resources. One case reveals that, the

Communication Service Providers (CSP), presently leaves about 50 percent of network

bandwidth unutilized due to its inability to use it dynamically (ACG RESEARCH, 2014).

For example, CSP of North America reveals that they could provide a periodic bandwidth

between data-centres for 1500 small to medium companies and 9000 enterprises if they

can utilise the unused bandwidth (ACG RESEARCH, 2014). Another case discloses that,

57 network enterprises suffered a huge increment in the number of middleboxes, which

approximately equals the number of routers in these networks. This because these

enterprises increase the number of middleboxes in ordered to improve security,

optimise the Quality of Service (QoS) and deliver new services, it is possible to avoid this

problem if network devices could change their functionality (Kreutz et al., 2015a).

The mentioned escalated of the communication demands, and the emergence of these

new telecommunication concepts increases the needs for updating the abilities of the

traditional networks (Loffreda, 2015). The forthcoming network requires updating its

CHAPTER ONE INTRODUCTION

Page | 2

topology and services dynamically using management software that facilitates and

automates this operation. Also, it needs to run multiple logical networks over a single

network infrastructure, similar to data centres nowadays. "The automation of dynamic

behaviour is achieved by using a novel paradigm of the network that contains

forwarding devices, which have central management, called Software-Define Network

(SDN)" (Al-Sadi et al., 2016). SDN provides faster, cheaper and more flexible

management for a network. In addition, it strongly supports Network Function

Virtualization (NFV), which enables the network functions to be executed using the

software components instead of physical devices (Al-Sadi et al., 2016). Therefore, NFV

allows multiple logical networks to be run on the single physical network. Moreover, it

allows faster deployment of new services or updates for the old ones.

Over the past few years, SDN has received great attention from the network industry

and academia, for example, it is deployed by 72 percent of enterprises and 81 percent of

universities in the US. However, it still in the establishing stage and the expected

investment of this new-generation of the network will exceed 105 Billion Dollars per

annum by 2020 (Cox et al., 2017). This leads researchers to investigate the problems of

SDN in order to solve them. One of the significant challenges of the SDN is called

Controller Placement. SDN has a group of central management units called controllers,

which instruct the network switches to forward the data flow from the sender to

receiver. The controller placement is concerned with determining the optimal number

and the distribution of these controllers over the network to optimise its latency and

reliability (Heller et al., 2012). The controller placement problem has been fairly

investigated for SDN model, however, there is no single solution which could meet the

requisites of all implementations.

Recently, the developers emphasised the necessity of combining the SDN with the NFV

to create more flexible and powerful management and enable multi-tenancy over single

SD-WAN (Fekih Ahmed et al., 2015). The need for such a network to be the backbone of

the forthcoming 5G network, is pushing them to combine SDN, NFV, and Network

virtualisation (NV) into a 5G cellular system to design a complete framework of this

model (Cox et al., 2017). One example of this framework is the SoftAir (Akyildiz et al.,

2015). This evolution of the SDN framework should be addressed and reflected in the

development of the controller placement algorithm to improve its optimisation.

CHAPTER ONE INTRODUCTION

Page | 3

1.1. Problem Description

With the emergence of SD-WAN, the research of controller placement algorithms has

been arisen. This algorithm optimises the number and the location of the controllers as

trade-off between or to combine the improvement of several objectives, such as latency,

reliability load balancing and resources utilisation (Hock, Gebert, et al., 2014). Lately,

SD-WAN has been extended by the virtualisation technology to amplify its management

flexibility and construct multiple VNs over its physical infrastructure (Zilong Ye et al.,

2013). The evolution of SD-WAN from operating as a single physical slice to act as

multiple virtual slices running over a single infrastructure, motivates the author to

rethink the validity of the algorithms, which were developed recently to handle the

controller placement problem of a single slice of SD-WAN. The author found that the

existing placement algorithms cannot optimise the controller placement of the multiple

virtual SD-WAN. The reason is that, in SD-WAN of the multiple VNs, every slice has the

virtual equipment, which needs to swap dynamically and independent from the other

slices. Therefore, its controller placement should be optimised, either independently or

in some method that does not degrade the controller placement of other slices.

Therefore, a novel algorithm of controller placement should be established for this new

model of the multiple VNs.

The proposed novel algorithm to solve this challenge relates to the existing SDN

controller placement algorithms (Zhang et al., 2011), but it has different requirements

and solves the problem of the evolved SD-WAN model. The existing controller placement

algorithms place the physical controllers in the single physical SDN network, whereas

the proposed novel algorithm places a different type of controllers (physical and virtual

controllers) in multiple virtual SD-WAN.

1.2. Research Aim and Objectives

The advent of multiple VNs to SD-WAN in 2013 (Zilong Ye et al., 2013) motivates the

author to design a new algorithm to determine the number and positions of the physical

and virtual controllers of multiple virtual SD-WANs. To the best of the author knowledge

and from the conducted literature review, it is found that there is no study, yet which is

concerned with addressing this untapped niche. Therefore, this thesis aims to design a

novel algorithm for the controllers of the virtual networks (COVN) placement in SD-

CHAPTER ONE INTRODUCTION

Page | 4

WAN with multiple VNs to optimise its reliability, latency, load balancing and

resources utilisation.

COVN placement algorithm intends to achieve the optimal controller placement for the

SD-WAN, which can be a backbone of smart cities and 5G cellular network.

Simultaneously, it can obtain an acceptable controller placement for wider SD-WANs.

Also, COVN placement can be applied on flow hypervisors (such as Flowvisor), if the SD-

WAN uses the flow hypervisors to connect the VNs to the physical controllers. It is

noteworthy that, the hypervisor is a software enables communication between the

physical machines and virtual machines.

Finally, the objectives of this research are as follows:

1. To evaluate the bandwidth usage of the controller packets.

2. To measure the latency metrics of the data and control planes.

3. To evaluate the effect of the controller placement on the SD-WAN latency metrics.

4. To examine the performance of COVN placement algorithm for different:

topologies; number of clusters; number of failure controllers and load of VN.

5. To evaluate the resulted latency and reliability metrics after applying COVN

placement algorithm.

1.3. Research Methodology

This research has been chosen to consolidate the author knowledge about the latest

network technologies such as SDN and NV, as well as to contribute to the filling in of the

gap of this undergoing subject. Through the process of this research, the author focuses

on learning and following the standards of these new inventions. Also, the author keeps

in touch with the research communities, such as academic conferences and workshops,

as well as industrial events and webinars.

The research methodology can be summarised in five processes, which are as follows:

1) Identifying the Research the Gap (Process 1)

A comprehensive investigation and literature review of the SDN and NV is conducted to

identify an unsolved problem, the solution of which could be the contribution of this

research. The outcome of this process is the necessity of a novel algorithm for placing

the controllers in SD-WAN with multiple virtual networks.

CHAPTER ONE INTRODUCTION

Page | 5

2) Examining the Effectiveness of Controller placement on Optimising the Desired

Objectives (Process 2)

This examination was carried out to answer the following questions; how and to what

extent the controller placement could affect the resources utilisation and the latency

optimisation. The focus of this research is to not only introduce a placement algorithm

which optimises several objectives, but also prioritise these objectives according to the

level of the objective's refinement which could be gained from improving the controller

placement. Therefore, an intensive examination and evaluation is undertaken to

discover the effectiveness of controller placements on: (A) the resources utilisation and

(B) the latency optimisation, as explained below.

A) Resources utilisation: one common way to employ the controller placement for

optimising the resources utilisation is by dynamically modifying the active resources

according to the requirements of SD-WAN. Interestingly, the present research suggests

another method which could be used to utilise the bandwidth of the network by

connecting the switches to the controller through the path of the most feasible

bandwidth instead of the shortest path. This has led the researcher to produce and

publish a novel routing algorithm, called Shortest-Feasible OpenFlow path (SFOP). SFOP

routing algorithm uses the controller statistics to compute the path of shortest-feasible

bandwidth. Therefore, it does not require any extra data collection, however, it has a

slightly higher computation complexity than the shortest path routing algorithm. The

finding of this process was that the control packets do not hugely affect the network

bandwidth because of its small size. Therefore, the researcher keeps using the shortest

path between the switch and controller to maintain the smallest latency since the

bandwidth is not highly degraded by switch-controller communication (see chapter 4).

B) Latency optimisation: another significant finding of this research is determining the

ratio of reducing connection control-path latency versus the connection flow-setup

latency due to optimising the controller placement. Both of these latency metrics are

defined by this research (see chapter four-section 4.3.5). The connection flow-setup

latency is defined as the time that is required to create a connection between the source

and destination nodes and to pass the first packet between them. This latency includes

both latencies of the control and the data paths. While, the connection control-path

latency consists only of the latencies of the control paths for the control packets, which

are required to install the flow-rules on the switches. This ratio shows to what extent the

controller placement is important for optimising the connection flow-setup latency.

CHAPTER ONE INTRODUCTION

Page | 6

Surprisingly, previous researchers only compared the improved features of latency

before and after optimising the placement such as switch-controller latency, inter-

controller latency or the flow-setup latency (see chapter three section 3.3). However,

they should have compared the results of optimisation to its final target which is the

connection flow-setup latency. To perform this task, it was necessary to measure and

analyse all features of the connection flow-setup latency on hardware and emulated

equipment. The features of the connection flow-setup latency were extracted from two

detected tests as follows:

 First test was performed to find the propagation delay of Data-Path Link (DPL),

Data-Path Switch (DPS) delay and Controller Delay (CD) (see Figure 1.1).

 Second test was performed to compute the propagation delay of Control-Path

Link (CPL) and Control-Path Switch (CPS) delay (see Figure 1.1).

It is noteworthy that , the delay is only the portion of time that is consumed at the link,

switch or controller. The outcome of these two tests shows that the DPS produces a long

delay (≈27 ms) due to the time needed to install and apply the forwarding rules at the

first packet of a flow. Also, the controller wastes a massive delay which is about 172 ms.

Whereas, the control path always spends a small delay in microseconds.

Finally, these tests assist in the formulation of the equation for computing the

connection flow-setup delay for the single controller as shown above in Figure 1.1 (see

chapter 4). The findings of these tests demonstrate prominent issues as follows:

Figure 1.1: The outcome of examining the latency
optimisation.

CHAPTER ONE INTRODUCTION

Page | 7

 The controller placement has a tiny improvement in a connection flow-setup time

if it is focused only on optimising the latency of control path because it is always a

small latency in comparison to the value of the connection flow-setup time.

 In the control path, the propagation latency (CPL) is almost smaller than the

switch latency (CPS) for the network of a small and medium geographical

expansion (campuses, cities and countries) and for networks which have most of

their links being less than or equal to 20Km in length. Therefore, it is possible to

find the shortest path according to the hop count rather than the distance, which

reduces the computation complexity of placement algorithm tremendously, as

will be explained in the design of the COVN placement.

 Even for a network with long links, it is possible to use the hop count to find the

shortest path because it does not cause a noticeable deterioration to the

optimisation of placement algorithm when the network links have a similar

length, this will be illustrated in chapter 7.

3) Design of COVN Placement (Process 3): this process exploits the findings of process

2 to create the complete placement algorithm, as will be explained later in chapter 5.

4) Implementation Testbed (Process 4): in this stage, the COVN placement needs to

be tested on SD-WAN of different sizes and scales, therefore, a new simulator was built

using the Matlab to simulate the COVN algorithm. In addition, it can generate a topology,

modify the virtual networks and calculate the connection flow-setup time for SD-WAN

with multiple controllers in normal and failure status and find the statistic of latency and

reliability when implementing the novel algorithm. After that, the Mininet emulator was

adapted through this work to emulate samples of networks in order to validate the

results of the simulator.

5) Placement Tests and Results (Process 5): The COVN placement was applied

intensively to find the several placements on each one of the six test topologies, which

were selected from real networks of the internet zoo topology database (Knight et al.,

2011). These tests revealed that the COVN algorithm could achieve a good placement in

terms of reliability, latency and load balance on different scale and size of topology in a

very short time. After that, a comparison was performed with the results of the POCO

placement algorithm to show that the COVN placement algorithm produces better

placement decisions.

CHAPTER ONE INTRODUCTION

Page | 8

Start

SDN, NV, Controller placement and Clustering algorithms

(B) Flow-setup latency

(1) Identifying the research Gap

 (2) Examining the Effectiveness of Controller placement
on Optimising the Desired Objectives

(A) Resources utilisation Shortest path does not
degrade the bandwidth

SFOP
Routing

algorithm

DPL
DPS
CD

Test1

Test2 CPL
CPS

Design

 Tiny improvement.
 Using hope count.

 (3) Design of COVN Placement

Design the novel algorithm called COVN placement based on the

findings of previous process

Build new Simulator in Matlab

 (4) Implementation Testbed

Modify Mininet emulator to validate results

 (5) Placement Tests and results

Several tests on every one of the six topologies

Comparison with POCO placement for evaluation

End

Two
Contributions

They are the
focus of this

thesis
 (explained in

chapter 5)

Three
Contributions

Explained in
chapter 4

Explained in
Chapters 2

and 3

Explained in
chapter 7

Design the novel Peripheral Clustering Algorithm (part of COVN
placement algorithm)

Findings

Findings

Producing novel Routing algorithm

Developing two measurement techniques

Two
Contributions

Explained in
chapter 6

Figure 1.2: Research methodology of this thesis.

CHAPTER ONE INTRODUCTION

Page | 9

1.4. Research Contributions

This research contributes to innovate COVN placement algorithm to optimise multi-

objectives simultaneously, which are: the reliability; the latency; the load balance; and

the resources utilisation. The latency and the reliability are improved by the COVN

placement algorithm according to the service requirements using a specific weight for

every one of them.

To satisfy the requirements of this research, it was necessary to investigate, examine,

and evaluate, the affected metrics before and after applying the optimisation of the

controller placement on the multiple virtual SD-WANs. Accomplishing the above steps

led to the following contributions (see Figure 1.2):

1. Designed and implemented a novel controller placement algorithm for multiple

virtual SD-WANs, named COVN placement, to optimise their controller

placement.

2. Developed a novel routing algorithm for SDN, called SFOP, to optimise the

bandwidth utilisation. This published research has been impacted by several

works such as "WAN Optimization to Speed up Data Transfer" (Soewito et al.,

2017) and optimise routing algorithm of SDN (Huddiniah et al., 2018).

3. Designed and implemented the novel Peripheral Clustering Algorithm, for fast

and balanced portioning of the VNs, and it is part of the COVN placement.

4. Developed two measurement techniques to measure the latencies of the data and

control plan of SD-WAN.

5. Modified the Mininet emulator to implement the decision of the controller

placement.

6. Built COVN simulator to:

a) Generate the physical and virtual topology and their matrixes.

b) Compute the COVN placement.

c) Calculate evaluation statistic after applying the controller placement.

CHAPTER ONE INTRODUCTION

Page | 10

1.5. Practical Impact of Research Contributions

 To demonstrate the impact of the research contributions, two different examples are

presented in Figure 1.3. Example 1, displays the implementation of the existing

controller placement algorithms on the physical SD-WAN during the day-load and night

load. Example 2, shows the contribution of this research, which is the placement of

physical and virtual controllers on the sliced SD-WAN. Example 2, is performed by

applying the novel COVN placement algorithm on the sliced-SD-WAN in day and night

loads. However, this work is the first research which provides a specific placement

algorithm for the sliced SD-WAN. It is important to compare its dynamic implementation

with the existing placement algorithms to clarify the differences between there

outcomes.

Figure 1.3: Examples of dynamic implantation for the controller placement algorithms.

The existing placement algorithms are designed only for the placement of the physical

controllers, as shown in Example 1. These algorithms partition the physical SD-WAN

and find the locations of the physical controllers in relation to their clusters. In this

CHAPTER ONE INTRODUCTION

Page | 11

example, two clusters are produced when the network has a heavy load during the

daytime (see Figure A1). While, only one cluster is created when the load of the network

goes down during the night time (see Figure B1). From Figures A1 and B1, it is

noticeable that, the existing placement algorithms need to change the locations of

the physical controllers when changing the controller placement because they locate

the physical controllers in the centre of every cluster. This means implementing the

existing placement algorithm on the multiple VNs will lead to creating a different

location of physical controllers for every VNs, which is not an applicable solution.

Example 2, presents two VNs run over a physical SD-WAN. Every VN creates two

different topologies, one at day load (see Figure A2) and second at night load (see Figure

B2). VN-1 has two controllers in the day load, while it has only one controller in the

night load due to the reduction of virtual switches number. VN-2 has an opposite

statuses of VN-1. The second example shows that, COVN placement does not partition

the physical SD-WAN when calculating the placement of the physical controllers. Instead

of that, it determines the locations (nodes) which have the optimal connectivity and

closeness according to the entire SD-WAN to place the physical controllers. After that,

the COVN algorithm partitions every virtual network individually into clusters. Then, it

finds the optimal physical controller which can host the virtual controller for every

cluster. Separating the placement of the physical controllers from the placement of

the virtual controllers in COVN placement algorithm enables it to optimise the

placement of the virtual controllers for every VN dynamically without changing the

locations of the physical controllers (see Figures A2 and B2).

In addition, the COVN placement locates the physical controllers near to each other (see

Figures A2 and B2), which reduces the used number of the switches and the links when

exchanging control traffic and converging the control information. While, the existing

placement algorithms locate the controllers in scattered locations (see Figures A1 and

B1), which increase the used resources of inter-controller’s communication.

Furthermore, considering the network virtualisation in this research improves the SD-

WAN scalability by increasing the number of virtual resources when required. For

instance, the number of the physical switches is approximately duplicated when two

VNs are created in Example 2. Also, the example shows that, VN-2 increases its number

of virtual switches when required at night load. At the same time, the network

CHAPTER ONE INTRODUCTION

Page | 12

virtualisation provides complete isolation for every VN which enables it to have different

topologies and policies as shown in Figures A2 and B2.

From the comparison above, the practical impacts of the research contributions is

creating a specified placement algorithm for the sliced SD-WAN. Also, considering

the VNs in this research improves the scalability, the management flexibility and the

isolation of the shared resources of the SD-WAN.

 Finally, the other differences of the resulted reliability and latency metrics will be

illustrated in Chapter Six.

1.6. Research Informed Teaching:

The author has had the opportunity to work alongside his supervisor Dr. Ali Al-Sherbaz

to produce the SDN learning material for MSc and the final year module. This module is

designed based on the theoretical and practical implementation of SDN and the outcome

of this research/thesis. This SDN module is successfully running for two years.

1.7. Thesis Structure

This thesis is constructed in seven chapters. Chapter one provides the introduction to

the research subject along with its aim, methodology and contributions. Chapter two

briefly reports the essential concepts and background of SDN and NV, which are

considered as the standard of this research. Especially as, SDN and VN are still open-

ended innovations and keep up with their progress through the research journey. Also,

Chapter two presents the intensive literature review of the controller placement

algorithms and the clustering algorithms. This literature review clarifies the necessity

for producing the new algorithms and demonstrates the disparity of the thesis

contributions from the related works. Then, chapter three shows to which extent the

controller placement could affect the SD-WAN bandwidth and latencies by examining

and measuring them before and after applying the controller placement. This chapter

illustrates the answer to the mentioned question by presenting three detected

experiments. After that, the design of the COVN placement algorithm is explained in

chapter four. While, chapter five demonstrates the two testbeds, which are built to

implement and evaluate the COVN placement. Chapter six discusses the results of six

different categories of test. Then it exposes two different methods for evaluating the

COVN placement algorithm, which are: using the Mininet emulator, and comparing the

results with the POCO placement algorithm. Finally, the seventh chapter concludes the

findings of this research and suggests probable future work.

Page | 13

CHAPTER TWO
BACKGROUND AND LITERATURE REVIEW

2.1. Introduction:

This chapter presents the background of SDN, NFV and NV. It also shows the related

work of controller placement algorithms and clustering algorithms. The first part

defines SDN and virtualisation technology, then it demonstrates the necessity of

combining them to create the multiple VNs.

The focus of this research is discussed in the second part of this chapter, which presents

the literature review of the controller placement problem. The studies which dealt with

solving the placement problem are investigated in Section 2.3 to give an understanding

of the strengths and weaknesses of the performed works. Aiming at addressing the gap

and highlighting the contribution of the present work, this part does not only showcase

the apparent gap in this filed, but it also demonstrates the problems related to the

existing placement algorithms. The latters are addressed through the novel placement

algorithm of SD-WAN with multiple virtual networks contributes to solving them.

Another vital part of the literature review is the clustering algorithm. Section 2.4

summarises the existing clustering methods and their characteristics. This review shows

the necessity for developing a novel clustering algorithm as an essential part of the novel

placement algorithm.

At the end of every section, the summary and the conclusion are presented to

demonstrate the purposes of each part.

2.2. Network Softwarisation

The increasing number of the deployed devices and services of the network has led to

the escalation of the complexity of network deployment and management. This has

resulted in the necessity for the future network to be more flexible and dynamic than the

current network (Alasadi and Al-raweshidy, 2018). Meeting these requirements has

given birth to the novel technologies needed to automate the network configuration,

management, and maintenance. These technologies have tended to replace hardware

devices with software equivalents. The network softwarisation promotes the more

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 14

 flexible management, deployment, and development of network components (Lara,

2015).

2.2.1. Software Defined Network (SDN)

SDN is an emerging programmable network which has a logically centralised controller

that administrates the network switches in cooperation with the management

applications. This happens through a new interface between the control and data layers,

namely OpenFlow protocol (Cox et al., 2017).

The main reason for the emergence of SDN is that the traditional IP network has a

vertical integration between the control plan (which decides how to manage the traffic)

and data-plan (which forwards the traffic according to the decision of the control plan).

That means both plans are bundled inside network devices (Foundation,

2015)(SDxCentral, 2015), as shown in Figure 2.1 (A). This vertical integration increases

the management complexity and produces a very distributed control mechanism which

lacks the global view of the network when creating the control decision.

Fortunately, SDN decouples the control and data plans and migrates the controlling

functionality to the central software known as a controller, (Stallings, 2013) see Figure

2.1(B). The purpose of that is breaking the vertical integration and moves the complexity

away from the hardware to software. This promises for more innovation and flexibility

in the software while the hardware becomes a simple device that focuses only on

Figure 2.1: Comparison of the traditional and SDN Network
structure.

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 15

forwarding traffic. Also, SDN controller provides the management applications with a

real-time abstraction of network devices. That enables the management applications to

configure the network devices automatically and dynamically. So, the controller

simplifies the network configuration, reduces the configuration time and minimises

configuration errors. In another words, the application programs can change and

manage anything for the SDN to produce a programmable network.

Both the central control and the programmability of SDN allow implementing the

network NV and NFV to create the overly multiple virtual networks over the physical

infrastructure.

Finally, SDN optimises some capabilities that exist in the traditional network such as the

cost, performance, reliability, scalability, centralised monitoring, visualisation and

security. Meanwhile, the centric-architecture of SDN creates new capabilities for the

network like network programmability and network virtualisation (Cox et al., 2017).

2.2.2. The Virtualization and Its Relation to SDN

The virtualisation is defined as the capability of emulating hardware components like

storage, computing machines and network resources, using the software (Ibn-Khedher

et al., 2015). Virtualisation creates a virtualised (software) entity mimicking the exact

functionality of the original hardware. Meanwhile, virtualisation decouples these entities

from the underlay hardware by executing them as isolated instances of software over

the Operating System (OS) of these devices. Then, it is possible to create or destroy these

Figure 2.2: The optimisation and the new capabilities of the network after the move from
traditional network to SDN.

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 16

entities dynamically according to the needs of the system. Also, it could duplicate or

migrate these virtualised entities to recover the failure, load balancing or deploy the

services dynamically (Ibn-Khedher et al., 2015).

To support the flexibility and to extend the softwarisation abilities of SDN, it should be

integrated with the virtualisation. Virtualisation and SDN are different concepts, but

they are closely related. This correlation is a consequence of aiding the SDN to the

growth and the standardisation of the Network Operating System (NOS), which is the

basic ground to run the virtualisation. Furthermore, SDN feeds the centralised control,

which makes the management of virtualised equipment much easier and efficient. Vice

versa, virtualisation supports SDN programmability and provides powerful tools to

simulate and test SDN network innovation (Nakao and Yamada, 2016).

It could categorise the virtualisation in the network into two parts, the Network

Function Virtualisation (NFV) and Network Virtualisation (NV). NFV is the virtualisation

technology, which allows any network device to be emulated, as a software component

and is accommodated over the NOS of the hardware devices (Chiosi et al., 2012). NV is

the ability to abstract the connectivity of the logical network (network services or

virtual components) to create the overlay network and decoupling it from the underlay

hardware network (Rao, 2014). Therefore, NFV creates the virtual components, while

the NV responsible for connecting these components to construct the logical slice of the

network (Cox et al., 2017). In another words, both are required to construct a fully

virtualised (logical) SDN network, see Figure 2.3.

 Figure 2.3: The relationship between SDN, NV and NFV(Cox et al., 2017).

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 17

They enable SDN to: 1) Share a resource; 2) Isolate the shared resource; 3) Aggregate

multiple virtualised resources; 4) Dynamically create and destroy the resources; and 5)

Extend the management capabilities like migrating a resource (Jain and Paul, 2013). The

combination of SDN, NFV and NV are exploited to serve many implementations of the

future internet such Information-Centric Networking (ICN), Internet of things (IoT) and

the backbone of the 5G mobile network (Service Providers, 2017).

For example, NV and NFV provide multi-tenancy in the data centre (Fekih Ahmed et al.,

2015). Furthermore, SDN enables NV to connect (chaining) network services (NFV)

according to the requirement of network applications (Mijumbi et al., 2016). Finally,

attaching the SDN and NFV to NV improves its limitation for recovering the failure,

disaster and big events (Rao, 2014), see Figure 2.4.

Figure 2.4 presents three VN’s which serve three different sectors. Part (A) displays the

VN under normal traffic, while part (B) illustrates how the network could respond to

recover the troubles and keep a reliable performance by adding the required virtual

nodes and links. These capabilities lead vendors and network operators to apply this

integration to SD-WAN.

2.3. SDN Controller Placement Algorithms

Optimizing the controller placement of SD-WAN for multiple virtual networks is the

main aim of this research. Therefore, a comprehensive literature review of the controller

placement problem is performed in order to: 1) Identify the gap and show the studies

(B) VN's after events and recovering the shortages. (A) VN's in normal status and before any trouble.

Physical Network
Physical Network

Virtual Networks Virtual Networks

Figure 2.4: The integration of SDN, NFV and NV, which improves the network capability for
recovering the failure, disaster and big events by enhancing the virtual resources.

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 18

which have been conducted in relation to this problem; 2) Use the findings of the

previous work as a starting point after the practical and analytical evaluation; 3) Prove

the experimental findings of the present research by highlighting the findings of other

studies.

This research has classified the controller placement algorithms according to the

optimised criteria. The optimised criteria could be arranged into five groups as follows:

a) Minimizing network latency; b) Maximizing resilience and reliability; c) Load

balancing; d) Decreasing infrastructure cost and energy consumption; and e) Multi-

objectives approach, as demonstrated in Figure 2.5.

The following subsections present the related works of the placement algorithms

regarding their optimised criteria. It also highlights the findings which serve the

direction of this thesis. The highlighted outcomes are summarised as a Table 2.6 at the

end of Section 2.3.6. summary and conclusion.

Figure 2.5: The proposed classification of the controller placement algorithms according to the
optimised criteria.

 The figure presents each class as three layers of rectangles: (1) The main rectangle represents
the optimised criteria, (2) Sub-rectangles display the branches of optimised criteria and (3) The
Internal rectangles show the optimisation methods used in each sub-class.

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 19

2.3.1. Minimising Network Latency
The controller placement in the network does not influence the latency of all packets of

the flow; it impacts only the latency of its first packet, which is called the end-to-end

flow-setup time. The end-to-end flow-setup time is defined as the time consumed since

sending the first packet from the source until it is received at the destination. It involves

all the time required to request and install the rules into all the switches on the path

from the source to the destination, added to it the latencies for forwarding the packet on

that path such as propagation, transmission and queuing latencies (Zeng et al., 2015)

(Guodong Wang et al., 2017) (He et al., 2017).

The researchers that optimise the controller placement, based on the latency as a

primary objective can be sorted as three groups, namely: 1) switch-controller

propagation delay; 2) end-to-end delay; and 3) inter-controller delay, see Table 2.1. In

the following, the evolution of these groups over time will be traced.

The first group of researchers assume that the optimal controller placement is the one

that reduces the propagation delay between the switches and the controllers.

Investigating the effect of switch-controller delay on the flow-setup time starts by Heller

Class
No.

Sub-optimization
criteria

Publication
No.

Reference Method

1
Switch-controller
propagation delay

1 (Heller et al., 2012) Facility location problem

2 (Bari et al., 2013) ILP

3 (Penna et al., 2014) Modifies k-clustering

4
5

(Tuncer et al., 2015a)
(Tuncer et al., 2015b)

Clustering
𝑃𝑐𝑙𝑢𝑠𝑡𝑒𝑟 and 𝑃𝑤𝑒𝑖𝑔 𝑕𝑡

6 (Guodong Wang et al.,
2016)

Improved K-Means

7 (Zhao et al., 2017) Exemplar-clustering

8 (Sahoo et al., 2017) Particle Swarm Optimization
and Firefly algorithms

2 End-to-end delay

9 (Zeng et al., 2015) ILP

10 (Guodong Wang et al.,
2017)

Optimized K-Mean algorithm

11 (He et al., 2017) Spectral clustering and MIP

12 (Sood and Xiang, 2017) Analytical model

3 Inter-controller delay

13 (Nagano and
Shinomiya, 2015)

Clustering

14 (Zhang et al., 2016) Analytical model.

15 (Han et al., 2016) Exhaustive search algorithm

16 (Zhu et al., 2017) Adapted K-Mean

17 (Li et al., 2018) Approximation algorithm

 Table 2.1: The sub-classes of the publications that place the controllers to minimise the SD-WAN
latency.

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 20

et al. (2012). Heller uses the exhaustive search for all possibilities to find the optimal

solution, which produces high computational complexity. The critical finding stated by

Heller is that one controller provides sufficient reaction-time but cannot satisfy fault

tolerance requirements. Heller is followed by similar works such as (Bari et al., 2013)

and (Penna et al., 2014). Two other works, propose to minimise the hop count from the

controller to the managed switches (Tuncer et al., 2015a) (Tuncer et al., 2015b). Also,

some research used the clustering to keep minimal propagation latency (Guodong Wang

et al., 2016).

Finally, the authors in (Sahoo et al., 2017) develops a heuristic frameworks to optimise

the switch-controller latency in smaller computational complexity. The first group's

research missed the other components of latency in the process of installing the flow

rules from the controllers to the switches.

The second group aims to minimise the end-to-end delay between the switch and the

controller to find the optimal controller placement. The end-to-end delay is composed of

many latencies like, link propagation, switch transmission, controller processing and

queuing latency (Wang et al., 2018). The studies in (Zeng et al., 2015) (Wang et al., 2018)

and (He et al., 2017) optimise a different composition of latencies, which formulate the

end-to-end delay. Subsequently, another piece of research (Sood and Xiang, 2017),

suggests changing the controller placement problem into controller selection problem.

Also, it infer to an important fact, which states, that it is vital to adapt the logical

controllers dynamically using a topology-independent and a low complexity

placement algorithm. The second group presents a good placement for multi dedicated

domains but demonstrates a poor placement for a logically centralised control layer due

to missing the inter-controller latency.

The third group creates a wider view of end-to-end delay. They take into account the

inter-controller delay in addition to the switch-controller delays. For example, Nagano

and Shinomiya (2015) prove that the controllers' inter-domain communication

negatively affects the network performance. Also, Zhang et al., (2016) states two

important facts which are: 1) The reaction time of controller is affected by the

consistency algorithm applied between the controllers such as Raft or anti-entropy

consensus and the level of consistency; 2) The inter-controller delay should be added

to the end-to-end delays. This is followed by three algorithms mitigate the controller-

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 21

controller delay and the switches-controller delay in (Han et al., 2016) (Zhu et al., 2017)

and (Li et al., 2018). The studies in the third group provide more realistic results, which

demonstrate a better controller placement according to the latency.

2.3.2. Maximising Resilience and Reliability

Failing in the installation of the flow rules into the switches results in halting the

network traffic, which is worse than delaying the installation of these rules (Liu et al.,

2016). Therefore, the controller placement problem is established for maximising the

resilience against any failure in the control layer as well as increasing its reliability

(Zhang et al., 2011).

Different studies have been done on the optimisation of the controller placement

according to the resilience and the reliability of SD-WAN, these studies can be

categorised into two types. The first type focuses on the maximisation of the resilience

against connection failure between switches and controllers, whereas the emphasis of

the second type is on increasing the reliability versus control failures including the

controller failure, see Table 2.2.

In the former, many researches explore the possibility of using the clustering methods to

produce homogenous domains. Initially, Zhang et al. (2011) explore the effect of

controller placement on the resilience of link failure between the switches and the

Table 2.2: The sub-classes of the publications that place the controllers to maximising resilience and
reliability of SD-WAN.

Class
No.

Sub-optimization
criteria

Publication
No.

Reference Method

1
Maximize

Resilience against
path failure

1 (Zhang et al., 2011) Minicut clustering

2
3

(Xiao et al., 2014)
(Xiao et al., 2016)

Spectral clustering
K-self-adaptive clustering

4 (Aoki and Shinomiya, 2016) Clustering

5
6

(Jimenez et al., 2013)
(Jimenez et al., 2014)

Robust tree
(K-Critical algorithm)

7 (Guo and Bhattacharya,
2013)

Robust tree (clustering)

8
9

(Hu et al., 2013)
(Hu et al., 2014)

Percentage of loss control
path (Simulated Annealing)

10 (Liu et al., 2016) Reliability Factor (K-Mean)

2
Maximize

Resilience against
Controller failure

11 (Muller et al., 2014) Redundant controllers (ILP)

12 (Perrot and Reynaud, 2016) Redundant controllers (ILP)

13

(Tanha et al., 2016) Redundant controllers
(Exhaustive search)

14
15

(Killi and Rao, 2016)
(Killi and Rao, 2017)

Redundant controllers
(MILP)(Simulated Annealing)

16 (Abdelaziz et al., 2017) Capacitated clustering

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 22

controllers. Following that, the concept of clustering the network into resilient domains

is optimised in (Xiao et al., 2014) and (Xiao et al., 2016). An interesting outcome of last

two researches is that, expanding the SD-WAN pointedly amplifies the inter-

controller broadcast storm, however they did not intend to solve this problem. On

this line of thought, the works in (Nagano and Shinomiya, 2015) and (Aoki and

Shinomiya, 2016) optimises the network resilience using the partitioning. The

disadvantage of resilient clustering placements is not ideally balanced with all

clusters. There is another method to tolerate the path failure that suggests a model of

robust control tree, which is presented in (Jimenez et al., 2013), (Jimenez et al., 2014)

and (Guo and Bhattacharya, 2013). The last three methods may not probably work for

nested networks owing to the high computational complexity of searching the optimal

tree. The other researchers of path failure in (Hu et al., 2013) and (Hu et al., 2014)

propose a new metric, which is the percentage of loss control path, to maximise the

reliability of the control layer. Hu et al. (2014) infer that the controller placement

could improve the reliability without creating unsatisfactory latencies between

switches and controllers. The last method identified to overcome links outage is

proposed in (Liu et al., 2016). Liu uses the average distance of multi-paths between the

switches and controllers as a Reliability Factor (RF). All of the mentioned studies

consider only the links and nodes failure and miss the controller failures.

The second type of reliable controller placement dealt with recovering most failures of

the control layer including the controller failure. The algorithms in (Muller et al., 2014),

(Perrot and Reynaud, 2016) (Tanha et al., 2016) (Killi and Rao, 2016) and (Killi and

Rao, 2017) employ a single backup controller. While, The authors in (Abdelaziz et al.,

2017), exploit a group of three controllers, which are assigned for every cluster to

recover the controller-failure. The second type of resilient controller placement is more

immune to network failures.

2.3.3. Load Balancing

Stabilising the controller's load is the key to maintaining acceptable network

performance. Therefore, researchers are interested in the network of unstable load aim

to dynamically balance the controller's load. Balancing the load could be achieved by

distributing the load according to the controllers' capacity or minimising it in the

overloaded controller, by migrating the switch to another controller, see Table 2.3.

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 23

Rath et al. (2014) exploit the non-zero game theory algorithm to dynamically change the

controller placement. The researchers in (Yao et al., 2014) (Aoki et al., 2015) (Aoki and

Shinomiya, 2015) and (Sanner et al., 2016), study graph partitioning methods to create

balanced clusters. The clustering algorithms which were investigated in the previous

publications may accomplish the load balancing of the controller with the static

status of the network (load and topology). Although, it is difficult to achieve load

balancing for the dynamic status of network due to the high computational

complexity of these algorithms.

Another pair of related works in (Yao et al., 2015) and (Hegde et al., 2017), prefer to set

the controllers in fixed locations while migrating the switches among them to load their

balance. The idea of fixing the controllers locations and offloading the switch from

the overloaded controller to the relaxed one, is efficient in the case of limited

changes in network load. However, it is not sufficient to recover the big changes in

network load or network topology. Specifically, in the last two works where the

locations of controllers are assigned according to the shape of clusters which could

vary with different statuses of the network.

2.3.4. Decreasing Infrastructure Cost and Energy Consumption

To help in deploying and operating the SDN, its CAPEX and OPEX should be reduced as

much as possible to make it applicable from the economical point of view. Maximizing

Table 2.3: The sub-classes of the publications that create balanced controller placement by
distributing the load on controllers according to their capacity.

Class
No.

Sub-optimization
criteria

Publication
No.

Reference Method

1
Distribute load

equally

1 (Rath et al., 2014) Non-zero game theory

2 (Yao et al., 2014) Capacitated K-center

3 (Aoki et al., 2015)

Minimum cut clustering
Conductance clustering
Distance-k cliques clustering

4 (Aoki and
Shinomiya,2015)

Conductance clustering,
Spectral clustering,
Betweenness centrality clustering
Repeated bisection clustering

5 (Sanner et al., 2016) Adapted the K-Mean
Hierarchical clustering

2

Minimize the load
of the overloaded

controller
(Switch migration)

6

(Yao et al., 2015) k-way clustering and
dynamic balancing algorithms

7 (Hegde et al., 2017) Exhaustive search and
dynamic balancing algorithms

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 24

the utilisation of the network resources with avoiding the degrading of its performance

led to reducing the constricting and operating cost as well as the energy consumption.

Therefore, several researchers inspect the possibility of inspiring a cost aware controller

placement, which maximises the controller utilisation and reduces the active controllers,

see Table 2.4.

The authors in (Sallahi and St-Hilaire, 2015) and (Sallahi and St-Hilaire, 2017),

formulate a mathematical model to find the cost-effective controller placement for a

newly constructed or the updated network. It efficiently improves network cost;

however, it does not take into account the effect of inter-controller delay when placing

the controllers and suffers from a very high computational complexity.

Further, several placement algorithms manage the minimisation of the consumed power

by minifying the active controllers (Auroux et al., 2014) (Auroux et al., 2015) (Ruiz-

Rivera et al., 2015) (Hu et al., 2017). They are also causing a higher latency, in addition,

they ignore the inter-controller latency.

2.3.5. Multi-Objective Approach

The last category of scholars believes that one objective (latency, reliability, load, energy

or cost) cannot achieve optimal placement. Therefore, they regard multi-objectives in

two ways: the first one is by trading-off between objectives; and the second is by

combining multi-objectives in single placement with adaptable weights, see Table 2.5.

The trading-off between objectives is started by Hock et al. (2013). Hock investigates

controller placements regarding different metrics namely, the latency between switch

and controller, Inter-controller latency, resilience against path failure, resilience against

Table 2.4: The sub-classes of the publications that create controller placement which reduces the
cost and power consumption of SD-WAN.

Class
No.

Sub-optimization
criteria

Publication
No.

Reference Method

1 Decreasing cost

1
2

(Sallahi and St-Hilaire,
2015)
(Sallahi and St-Hilaire,
2017)

Exhaustive search
algorithms.

2
Decreasing energy

consumption

3
4

(Auroux et al., 2014)
(Auroux et al., 2015)

Minimize active controllers
(Select optimal placement
among limited locations)

5 (Ruiz-Rivera et al., 2015) Minimize active Links (BiP)

6 (Hu et al., 2017) Minimize active Links
(genetic heuristic algorithm)

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 25

controller failure and load balancing. He infers that there is no single optimal solution,

but trading-off between them is required to satisfy different purposes.

Hock solves all types of placement using the Brute-force search, which has NP-hard

complexity. Furthermore, Hock introduces Pareto-based Optimal COntroller placement

(POCO) tool. POCO Matlab framework is extended to have a Graphical User Interface

(GUI) to simplify presenting the results of placement in the dynamic condition in (Hock,

Gebert, et al., 2014). Subsequently, (Hock, Hartmann, et al., 2014) in their study, combine

POCO tool with PLanteLab to improve the adapted placement of controller in a dynamic

environment. Furthermore, a project in (Lange, Gebert, Zinner, et al., 2015) provides a

heuristic approach for the placement of POCO tool. POCO algorithm could be considered

as a feasible solution for small and medium networks (less than fifty switches and seven

controllers). While, it is not applicable for large networks or dynamic implementations

due to the high resources and time usage. The proposed heuristic method reduces the

complexity of POCO placement with less accurate but acceptable results (Lange, Gebert,

Zinner, et al., 2015). Consequently, when using the heuristic algorithm, a larger number

Table 2.5: The sub-classes of the publications that consider multi-objectives to find the optimal
controller placement of SD-WAN.

Class
No.

Sub-
optimization

criteria

Publicatio
n No.

Reference Method

1
Trading-off

between multi-
solutions

1
2
3

(Hock et al., 2013)
(Hock, Gebert, et al., 2014)
(Hock, Hartmann, et al.,
2014)

k-centres and k-median
algorithms

4 (Lange, Gebert, Zinner, et
al., 2015)

Heuristic approach

5 (Lange, Gebert, Spoerhase,
et al., 2015)

Pareto capacitated k-
Medoids

6 (Naning et al., 2016) Analytical model

7 (Hollinghurst et al., 2016) Adapted k-means++
 Local search
 Linear programming
Full search algorithms

2
Associate multi-

objective in single
solution

8 (Jalili et al., 2015) MOCO

9 (Borcoci et al., 2015) MCDA

10 (Hu Bo et al., 2016) MOGA

11 (Liao et al., 2017) Density-based clustering

12 (Bannour et al., 2017) (NSGA-II) and (PAM)

13 (Zhang et al., 2018) MOCP

14 (Kuang et al., 2018) Hierarchical K-Means

15 (Tanha et al., 2018) Heuristic approach

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 26

of controllers could be placed in a larger size of networks (about fifty switches and

fifteen controllers). In a further study by Lange, Gebert, Spoerhase, et al., (2015), the

previous heuristic algorithm is evolved to gain more accurate placement. However, the

size of networks and the number of controllers in the conducted test is similar to the

tests of the POCO tools, which does not really present a large network. Also, the work in

(Naning et al., 2016) presents an analytical study using the POCO algorithm. It concludes

that placing the controllers according to resilience satisfies the system requirements like

reliability, latency and load balance. The last research in trading-off approach

(Hollinghurst et al., 2016) shows that the local search and k-means++ methods are more

scalable for large network. In general, the disadvantages in the above works are as

follows: trading-off between many placements is not the applicable solution, the

controller overload is not considered when reassigning the switches to the closest

controller in failure case, and finally, the latency between the switch and controller is

represented only by the propagation latency.

Moving on to the second approach which associates multi-objectives. For example the

studies in (Jalili et al., 2015) (Borcoci et al., 2015) and (Hu Bo et al., 2016) apply the

multi-objective placement using the weight (threshold) of objectives to adjust the

administration preferences. A different method is presented in (Liao et al., 2017). Liao

innovates a new density based clustering method to place the controllers according

multi-objectives such as the latency, balance and reliability. However, it considers only

propagation latency and does not really reduce the inter-controller latency. Also,

implementing a capacity aware clustering produces some clusters with disjoint

nodes. One of the latest conference papers (Bannour et al., 2017), illustrates that

modelling the traffic among controllers is essential for a consistent controller

placement. Finally, several studies emphasize on the importance of optimising the

reliability, the load-balance and the low switch-controller latency (Zhang et al.,

2018)(Kuang et al., 2018)(Tanha et al., 2018).

2.3.6. Summary and Conclusion of Controller Placement Algorithm

The literature review disclosed the gaps and their proposed solutions in controller

placement problem up to the present. Consequently, it contributes to declare an

unobserved niche, which is detected and solved in the present thesis. Another additional

purpose is highlighting the findings of some interesting research to be evaluated and

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 27

considered in this work and support the outcome of the thesis. The presented research

shows that, the controller placement has been developed to optimise the latency,

reliability, load balance, cost and energy consumption of SD-WAN. The optimisation of

flow-setup latency starts by minimising the propagation delay, then the end-to-end

delay and ends by investigating the effect of inter-controller delay. However, minimising

the inter-controller delay is poorly investigated in several research studies. Similarly,

the reliability receives a good interest because it is an essential factor to maintain the

work of the network. Maximizing the reliability is developed against the path and

controller failure, though, the path failure has more interest than the controllers one. In

addition, many studies intend to place the controller to optimise the load balancing to

stabilise the network performance and enhance QoS. A few Other works consider the

network cost and power consumption, which are vital to economic aspects. Finally,

much research optimised the controller placement problem in the light of multi-

objectives, either trading-off among them or associating them together in a different

ratio of impact (different weight).

It is clear from the above summary that the controller placement problem is fairly

investigated for SD-WAN. However, there is no single placement which could provide an

ultimate solution for all implementations. In addition, most placement studies either

have an algorithm with NP-hard computational complexity or use a heuristic

approach with approximated results. Also, it is noticeable that no single placement

research gave attention to an inevitable deployment of SD-WAN with multiple virtual

networks. This means there is no placement model designed to place the controllers

in this type of network. Therefore, the present thesis identifies this gap and aims to

design a novel placement algorithm to optimise the controller placement for SD-

WAN with multiple virtual networks, in term of maximising the network reliability

and minimising its latency, as the main goal of this research.

Finally, it is worth mentioning that while conducting the present research around 2014,

some secondary gaps were not yet considered by controller placement researchers such

as the effect of inter-controller delay and switch transmission delay. Therefore, this

thesis investigates these gaps and includes them in the proposed novel placement

algorithm. This thesis uses the findings from other studies, which have been undertaken

during the time of this research, to confirm and consolidate the thesis findings, as

summarised below in Table 2.6.

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 28

No. Finding References Section

1 The majority of SD-WAN has a logically centralised control
layer.

(Kreutz et al., 2015)
(ONF, 2016)
(Perrot and Reynaud, 2016)
(He et al., 2017)

2.3.1.

2 The end-to-end delay is composed of many latencies like,
link propagation, switch transmission, controller
processing and queuing latency.

 (Zeng et al., 2015)
(Guodong Wang et al., 2017)
(He et al., 2017)

2.3.1.

3 The logically centralised control layer should consider the
inter-controller communication delay (contribution in
install flow rules along the path).

(Zhang et al., 2016)
 (Zhu et al., 2017)

2.3.1.

(Liao et al., 2017)
(Bannour et al., 2017)

2.3.5.

4 The controllers' inter-domain communication negatively
affects the network performance (achieve consistency).

(Nagano and Shinomiya, 2015)
(Zhang et al., 2016)
(Han et al., 2016)

2.3.1.

(Bannour et al., 2017) 2.3.5.

5 The exhaustive search for all possibilities produces high
computational complexity.

(Heller et al., 2012)
(Bari et al. 2013)
(Sahoo et al., 2017)

2.3.1.

6 One controller provides sufficient reaction-time, but
cannot satisfy fault tolerance requirements

(Heller et al., 2012) 2.3.1.

7 Some research represents the path latency as hope count
(without justifying the reasons).

(Tuncer et al., 2015a) (Tuncer
et al., 2015b)

2.3.1.

8 The closer controllers provide a lower end-to-end delay

(Zhang et al., 2016) 2.3.1.

9 Expanding the SD-WAN pointedly amplifies the inter-
controller broadcast storm.

(Xiao et al., 2014) 2.3.2.

10 Resilient controller placement could improve the
reliability without creating unsatisfactory latencies
between switches and controllers.

 (Hu et al. ,2014) 2.3.2.

11 The presented clustering algorithm may accomplish the
load balancing of the controller with the static status of the
network, but it is difficult to achieve it for the dynamic
status of network due to the high computational
complexity.

This thesis 2.3.2.

12 The idea of fixing the controllers locations and offload the
switch from the overloaded controller to the relaxed one,
is efficient in the case of a limited change in network load.
However, it is not sufficient to recover the big changes in
network load or network topology. Especially, in the
placement which assigns the locations of controllers
according to the shape of clusters, which could vary with
different status of the network.

This thesis 2.3.2.

13 The proposed heuristic method reduces the complexity of
POCO placement with less accurate but acceptable results.

(Lange, Gebert, Zinner, et al.,
2015)
(Lange, Gebert, Spoerhase, et
al., 2015)
(Hu et al., 2017)

2.3.5.

Table 2.6: Some interesting findings from other works that support the outcomes of the thesis.

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 29

2.4. Clustering Algorithms

The proposed placement algorithm to optimise the controller placement for SD-WAN

with multiple virtual networks has a novel clustering algorithm as a second part of the

algorithm procedure. The new clustering aims to improve the regional distribution of

the switches, load balancing among all clusters and low computational complexity.

These aims are not achieved by the existing clustering algorithms. To demonstrate the

necessity of the novel clustering method, a comprehensive literature review is

performed to show the existing clustering algorithms and to illustrate their

incompatibility with the objectives of the required clustering in this research.

Clustering is an unsupervised learning method which groups the objects into reasonable

clusters. The objects within a cluster are more similar to each other than the objects in

other clusters, according to a certain measure (Tseng and Yang, 2001).

This research classified the clustering algorithms into five methods (See Figure 2.6):

partitioning, hierarchical, density-based, grid-based (Lu, 2003) and graph-based (Xu and

WunschII, 2005) methods. The literature review of clustering lists the commonly used

methods and shows their mismatching with the requirements of the proposed

placement algorithm.

2.4.1. Partitioning Relocated Methods

The partitioning relocated methods, groups the objects into subsets (clusters) based on

gravity (distance) from certain centres (centroids). First, the algorithm randomly

initiates the clusters. Second, the algorithm uses an iterative optimisation to improve

Figure 2.6: The hierarchical classification of commonly used clustering methods.

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 30

the clusters by revising all objects in order to relocate them to the new centres

(Berkhin, 2006) (Saraee et al., 2007). It is possible to categorise the partitioning

relocated methods into k-medoids, k-means and probabilistic methods (Berkhin, 2006)

(Saraee et al., 2007).

A) k-Medoids methods: The earliest two version of K-Mediods methods is PAM

(Partitioning Around Medoids) and CLARA (Clustering LARge Applications) (Kaufman

and Rousseeuw, 2009). Followed by, CLARANS (Clustering Large Applications based

upon RANdomized Search) Which is directed towards clustering in spatial databases

(Ng and Han, 1994). The k-Medoids methods are low-sensitive to outliers objects and

convent for all attribute types (Berkhin, 2006) (Saraee et al., 2007).

B) k-Mean method: The K-mean has adapted in many ways to cluster the SD-WAN

regarding different objectives, but it always suffers from a high computational

complexity. It is also highly-sensitive and negatively affected by an outlier (Saraee et al.,

2007). Another considered con for K-Means is that the method lacks stability and

produces unbalanced clusters (Lu, 2003)(Berkhin, 2006).

C) Probabilistic method: Log-likelihood used as an objective function in the

Expectation-Maximization (EM) method (Dempster et al., 1977), which is the most

popular version of the probabilistic method. This clustering method lacks high

computational complexity and is similar to K-mean in creating unbalanced clusters.

2.4.2. Hierarchical Methods

Hierarchical clustering methods construct a cluster hierarchy as a tree of clusters, which

is called a dendrogram. Hierarchical methods could be categorised in general into

agglomerative (bottom-up) and divisive (top-down) (Dempster et al., 1977).

A) Agglomerative (bottom-up): Many techniques have been developed in

agglomerative clustering. It starts by the Linkage Metrics (Xu and WunschII, 2005).

Then, BIRCH (Zhang et al., 1996) is developed to minimise computational complexity

and reduce the effect of the noise (outlier). Finally, CURE (Guha et al., 1998), ROCK

(Guha et al., 2000) and CHAMELEON (Karypis et al., 1999) are evolved to create the

arbitrary shape of clusters. The performance of static clustering methods can be

degraded if the selected parameters are incorrect. In addition, the agglomerative

clustering could not be enforced to generate a specific number of balanced clusters.

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 31

B) Divisive (top-down): One of the well-known divisive methods is DIANA (DIvisive

ANAlysis Clustering) (Everitt et al., 2011). Another Divisive clustering is MONA

(MONothetic Analysis) method (Kaufman and Rousseeuw, 2009). Both are not

supporting the multi-objective clustering, in addition, they are not popular in

practice due to thier expensive computational complexity.

2.4.4. Grid-Based Methods

A grid-based approach built on space partitioning instead of objects partitioning.

Most Grid-based approaches provide a high quality of clustering (arbitrary shapes

and resist to outliers) and relatively low complexity of computation O(N), but it does

not serve this thesis because of its clustering, which is based on the density of objects

rather than their connectivity. Also, this approach produces unbalanced clusters.

Many algorithms are applying the grid-based approach; this section abstracts them as

follows: The algorithm STING (STatistical INformation Grid-based method) suits the

numerical attributes (spatial data) (Wang et al., 1997). Also, WaveCluster method, which

2.4.3. Density-Based Methods

The Density-Based methods construct the cluster according to the spatial density,

where the cluster always extends towards the direction of densely distributed objects.

Consequently, these methods are more suitable to investigate the cluster of arbitrary

shapes, they are more immune against the outliers and have good scalability (Berkhin,

2006) (Saraee et al., 2007). Density-based clustering can be classified into density-based

connectivity and density functions. The first algorithm in density-based connectivity is

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) (Han et al., 2001).

The good performance of DBSCAN depends on the good estimation of its input

parameters. Therefore, a new approach called OPTICS (Ordering Points To Identify the

Clustering Structure) develops the DBSCAN to compute the clustering parameters

(Ankerst et al., 1999). Finally, one of the most popular density functions methods is

DENCLUE (DENsity based CLUstEring) (Hinneburg and Keim, 1998), which also

influence by input parameters. Finally, it is clear that clustering according to the

density needs to carefully identify some parameters basing on the characteristic of

clustered objects, which require the predefining of these parameters or doing an

additional computation to extract them. Also, this approach has been criticised for

not being fully informative, and creating unbalanced clusters (Han et al., 2001).

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 32

has low complexity O(N), although its complexity exponentially increases with the

rising size of the dimensions (Sheikholeslami et al., 1998). Lastly, more complicated

grid-based methods are developed to cluster high-dimensional objects, such as CLIQUE

(CLustering in QUEst) (Agrawal et al., 1998) and MAFIA (Merging of Adaptive Finite

Intervals) (Goil et al., 1999).

2.4.5. Graph Theory-Based Clustering

Graph theory-based clustering could be classified into graph-growing, flows, spectral-

partitioning, recursive-graph-bisection, geometric-partitioning and gene-

expression-data clustering methods (Buluç et al., 2015). In addition to the previous six

methods there are some other graph theory-based approaches categorised under

different types such as Linkage Metrics (Xu and WunschII, 2005) and CHAMELEON

(Karypis et al., 1999) (see Section 2.4.2.,(A) Agglomerative (bottom-up)). Both Linkage

Metrics and CHAMELEON are agglomerative clustering methods, but they use the

distances between the graph nodes to describe the objects similarity (Xu and WunschII,

2005). The aforementioned six classes of graph theory-based clustering are summarised

below:

A) Graph-Growing Methods: A graph-growing method using the BFS (Breadth-First

Search) algorithm as a base for most of its versions (Buluç et al., 2015). Then, the graph-

growing method is developed to a newer version which called Bubble Framework

(Walshaw et al., 1995). Bubble Framework is an iterative method it splits the graph into

more than two clusters (k > 2). The drawback of the Bubble Framework according to

this work is that the beginning K nodes should be well distributed over the graph,

while controllers' positions are constrained in the centre of graph. In addition, it has

a high complexity due to the iterative optimisation of the method.

B) Flows Method: Flows Method or HCS (Highly Connected Sub-graphs), uses the

popular max-flow min-cut algorithm (Ford and Fulkerson, 2009) to divide the graph into

unbalanced clusters, which have minimum cut edges (links) between them. This

approach almost used as a subroutine inside another algorithm because it generates

unbalance clusters (Buluç et al., 2015).

C) Spectral Partitioning Methods: The earliest model of the spectral partitioning

method is spectral bisection. It is optimised many times by (Donath and Hoffman,

1972), (Fiedler, 1975) and others. The spectral method is extended by Hendrickson

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 33

and Leland, (1995) to slice the graph into more than two clusters by applying multiple

eigenvectors. However, this method does not require a high computational

complexity to obtain the multiple eigenvectors; it can only partition the graph into

four or eight clusters. The spectral clustering is used in many controller placement

studies like (Xiao et al., 2014) (He et al., 2017) (see Sections 2.3.1 Minimizing network

latency and 2.3.2 Maximizing resilience and reliability), and demonstrates the high

computational complexity and unguaranteed balanced clusters.

D) Recursive Graph bisection (RGB) Method: The RGB method uses the distance of

shortest-path that connects the graph nodes instead of Euclidean distance (Simon,

1991). The algorithm needs to find the two furthest nodes for every cluster which

require a high computational complexity, therefore, it uses some heuristic method to

simplify this issue such as SPARSPAK (George and Liu, 1984). The drawback of the RGB

method is that it can only create 𝟐𝒌 balanced clusters, where k=1,2,3...etc.

E) Geometric-Partitioning Methods: In geometric-partitioning, the graph is divided

into regions (clusters) according to the nodes (objects) coordinates, which indicate the

nodes similarity. The simplest method in this approach is Recursive Coordinate

Bisection (RCB) (Buluç et al., 2015)(Simon, 1991). There are several improvements to

RCB such as inertial partitioning method (Williams, 1991) and the random spheres

algorithm (Miller et al., 1991). The weaknesses of RCB is producing skinny and long

clusters. Also, it can only cluster the graph into 𝟐𝒌 balanced clusters (Simon, 1991).

A further, geometric-partitioning method is the Space-Filling Curves (Zumbusch, 2000)

(Castro et al., 2005). The Space-Filling Curves partitioning is a mixture of the grid-

partitioning and the Space-Filling Curves techniques. The drawback of this method is

determining the adequate density of grid-cells. Also, it is used to cluster the large-

scale system with a proximate clustering and acceptable computation complexity

but does not serve the present work which requires exact clustering. Finally, it does

not consider the connectivity of the graph nodes which is the basic attribute in the

wired network.

F) Gene Expression Data Clustering: One of the algorithms which is established to

group similar gene expression patterns in the cluster is CLICK (CLuster Identification via

Connectivity Kernels) (Sharan and Shamir, 2000). The major disadvantages of CLICK

are the fixed state of cluster threshold and the use of a heuristic technique which

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 34

reduce clustering quality (Sharan and Shamir, 2000). Another graph theory algorithm

developed to cluster gene expression data, is CAST (Cluster Affinity Search Technique)

(Zhang, 2006) (Berrar et al., 2003). The downsides of CAST are summarised by the

needs for defining the affinity threshold (ᵼ) and final clearing step (Bellaachia et al.,

2002).

2.4.6. Summary and Conclusion of Clustering Algorithms

The literature review of the clustering algorithm is written to simplify and summarise

the investigation and research that has been done in the area of clustering algorithms,

while the actual research includes more examinations and modifications in an attempt

to employ the existing clustering methods to serve the proposed placement algorithm

(see Section "5.8.2. The Design of the Peripheral Clustering Algorithm"). This review of

the literature shows only an abstract of most common methods in every clustering

direction and focuses on showing why the existing clustering algorithms are excluded.

The conclusion summarises the literature review with adding some comparison tables

for all methods. Initially, the review describes the requirements of the clustering

approach which serves the proposed placement algorithm. Then, the main body of

literature review displays the clustering methods as five classes (partitioning,

hierarchical, density-based, grid-based (Lu, 2003) and graph-based (Xu and

WunschII, 2005) methods). On the one hand, the first four classes are reasonably

studied, however they are not useful for the proposed placement algorithm due to its

intention to cluster the objects according to their similarities with the difficulty of

embedding the geometrical position and balancing the clusters. On the other hand, the

fifth class is intensively investigated because it relates more to the network and

supports the requirements of the proposed placement algorithm. However, it does not

provide the complete solution. In addition to the pre-mentioned characteristics of the

presented clustering methods, it is essential to present their computation complexity

which plays an important role in nominating them to be utilised in a specific

implementation. Therefore, the computation complexity of most common clustering

algorithms is summarised in Table 2.7:

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 35

Finally, From the pre-mentioned information, it is possible to summarise a general

comparison of advantages and disadvantages of clustering methods as shown in Table

2.8.

Clustering Method Computational Complexity References

Partitioning Relocation (K-Means) 𝑂(𝑁𝐾𝑑𝐼) (Xu and WunschII,
2005)

Partitioning Relocation (CLARA) 𝑂(𝐾 40 + 𝐾 2 + 𝐾(𝑁 − 𝐾))+ (Xu and WunschII,
2005)

Partitioning Relocation (CLARANS) 𝑂(𝐾𝑁2) (Xu and WunschII,
2005)(Wang et al.,

1997)
Partitioning Relocation (EM) Vary widely according

implantation of E- and M-step.

(Dempster et al.,
1977)

Hierarchical clustering (Linkage) 𝑂(𝑁2) (Xu and WunschII,

2005)(Olson, 1995)
Hierarchical clustering (BRICH) 𝑂(𝑁) (Xu and WunschII,

2005)
Hierarchical clustering (CURE) 𝑂(𝑁𝑠𝑎𝑚𝑝𝑙𝑒

2 . 𝑙𝑜𝑔𝑁𝑠𝑎𝑚𝑝𝑙𝑒) (Xu and WunschII,
2005)

Hierarchical clustering (ROCK) O(𝑁2 + N 𝑚𝑚𝑚𝑎 + 𝑁2 𝑙𝑜𝑔𝑁)
Where 𝑚𝑚 : maximum number of neighbour.

 𝑚𝑎 : average number of neighbour.

(Guha et al., 2000)

Hierarchical clustering (CHAMELEON) 𝑂(𝑁𝐾 + 𝑁 𝑙𝑜𝑔𝑁 + 𝐾2𝑙𝑜𝑔𝐾) (Karypis et al.,
1999)

Density-Based (DBSCAN) 𝑂(𝑁 𝑙𝑜𝑔𝑁) (Xu and WunschII,

2005)
Density-Based (OPTICS) 𝑂(𝑁 𝑙𝑜𝑔𝑁) (Patwary et al.,

2013)
Density-Based (DENCLUE) 𝑂(𝑁 𝑙𝑜𝑔𝑁) (Xu and WunschII,

2005)

Grid-Based (STING) 𝑂(𝐺𝑐) Where 𝐺𝑐 :Grid cells (Wang et al., 1997)
Grid-Based (WaveCluster) 𝑂(𝑁) (Xu and WunschII,

2005)
Grid-Based (CLIQUE) Linear with number of objects,

Quadratic with the number of
dimensions

(Xu and WunschII,
2005)

Graph-Based (BUBBLE
FRAMEWORK)

𝑂(𝐾𝐼𝑁𝐸)
Where O(NE): BFS computational complexity

(Buluç et al., 2015)

Graph-Based (Spectral Clustering) 𝑂(𝑁3) (Liu et al., 2013)
Graph-Based (Space-Filling Curves) 𝑂(𝑁 𝑙𝑜𝑔𝑁) (Luitjens et al.,

2006)
Graph-Based (CLICK) 𝑂(𝑁𝐸2/3) (Sharan and

Shamir, 2000)
Graph-Based (CAST) 𝑂(𝑁2) (Bellaachia et al.,

2002)
General Notations:
N : Number of objects.
E : Edges (weight/ similarity) .
K : Number of clusters.
d : dimensions of attributes.
I : Iterations of process.
 Table 2.7: Computational complexity of clustering methods.

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 36

Table 2.8: Summary of the pros and cons of each type of clustering algorithms.

Clustering Method

Advantages Disadvantages

Partitioning Relocation 1) Easy to modify and

implement.

1) Lacks stability and unbalanced clustering.

2) Identify a number of clusters before

clustering (bad for dynamic clustering).

3) Weak against outlier and arbitrary

shapes.

Hierarchical clustering

1) Does not need to identify

the number of clusters

before clustering.

2) Has dendrogram which

represents the clustering

hierarchy.

1) Difficult to select correct parameters

which grantee the required clustering

(find balanced clusters).

2) Almost has high computational

complexity.

 Density-Based 1) Does not need to identify

the number of clusters.

2) Can discover arbitrary

shapes.

3) Acceptable complexity.

1) Not accurate clustering and creating

unbalanced clusters.

2) Quality of clustering depends on the

identified threshold.

3) Not much informative therefore using an

indexing technique (R*-tree).

 Grid-Based 1) For clustering large dataset.

2) Can discover arbitrary

shapes resist outliers.

3) Low complexity.

1) Not accurate clustering and creating

unbalanced clusters.

2) Quality of clustering depends on the grid

resolution.

Graph-Based

Most of them modified to

support geometrical attributes

and graph edges which are

needed in the clustering

requirements of the proposed

placement algorithm.

Driven by different classes and has different

characteristics.

Graph-Growing
Methods
(Bubble Framework)

1) Considering the nodes and

links in clustering.

1) Beginning K nodes should be well

distributed over the graph, while controllers

positions consternate in the centre of graph.

Flows Method 1) Maximize reliability. 1) Used as subroutine inside another

algorithm because it is generated unbalance

clusters.

 Spectral Partitioning
Methods

1) Using the nodes

connectivity to cluster the

graph.

1) It can only partition the graph into four or

eight clusters.

2) Cannot guarantee a balance clustering.

 Recursive Graph
bisection (RGB)
Method

1) Using the nodes

connectivity to cluster the

graph.

1) Can only create 𝟐𝒌 balanced clusters,

where k=1,2,3...etc.

 Geometric-Partitioning
Methods

1) Utilize the geometrical

attribute of nodes in

clustering.

1) Cannot produce the required clustering:

 A) RCB only 𝟐𝒌 clusters.

 B) Space-filling: Not accurate clustering.

2) Does not considering the connectivity of

the graph nodes.

 Gene Expression Data
Clustering

1) The nodes (genes)

similarities are represented as

weighted edges.

1) Difficult to define the affinity threshold.

CHAPTER TWO BACKGROUND AND LITERATURE REVIEW

Page | 37

As demonstrated in the literature review of the clustering algorithm and previous tables

there is no single clustering algorithm which could partition according to the

geographical location and create balanced clusters of connected nodes in low

computational complexity.

In addition to the review of clustering algorithms that are presented in section 3.3, the

literature relates to the placement algorithms in section 3.2 showing some research that

exploits many clustering algorithms to generate controllers domains, which are

displayed in Table 2.9.

The studies presented in the table perform a different type of controller placement,

however, their clustering algorithms encounter the problem of high computational

complexity and cannot guarantee balanced clusters.

No. Research Clustering algorithm

1 (Zhang et al., 2011) Minicut clustering

2 (Xiao et al., 2014)
(Xiao et al., 2016)

Spectral clustering
K-self-adaptive clustering

3 (Yao et al., 2014) Capacitated K-center

4 (Aoki et al., 2015)

Minimum cut clustering
Conductance clustering
Distance-k cliques clustering

5 (Aoki and Shinomiya,2015) Conductance clustering,
Spectral clustering,
Betweenness centrality clustering
Repeated bisection clustering

6 (Liu et al., 2016) Reliability Factor (K-Mean)

7 (Sanner et al., 2016) Adapted the K-Mean
Hierarchical clustering

8 (Zhu et al., 2017) Adapted K-Mean

9 (Zhao et al., 2017) Exemplar-clustering

10 (Liao et al., 2017) Density-based clustering

 Table 2.9: Summary of most clustering algorithms exploited for SD-WAN.

Page | 38

CHAPTER THREE
OPTIMISATION METRICS OF CONTROLLER
PLACEMENT

3.1. Introduction

The previous research did not provide a view about the effect of the controller

placement on the bandwidth utilisation. Also, they focus only on measuring the effect of

the controller placement on the switch-controller latency and the flow-setup latency,

which is just one portion (control-plane latency) of the first connection latency.

According to the researcher, the optimisation ratio of the control-plane latency is not

enough to determine if the achieved improvement really optimises the SD-WAN latency

to a considerable level. Therefore, this research firstly examines the effect of the

controller placement on the SD-WAN bandwidth using the old and proposed routing

algorithm on the control packets. After that, it monitors the process of creating a full

connection between two hosts in SD-WAN in order to: 1) construct the formula that

contains all latencies, which are required when creating this connection; 2) measure the

value of every latency component in this formula. The formula of the complete

connection latency and the values of its components leads to determine the effect of the

controller placement on the latency of creating a connection between two hosts in the

SD-WAN.

This chapter demonstrates the mentioned objectives as three contributions, which are:

the design of novel routing algorithm for SD-WAN; and the two new techniques to

measure and evaluate the latency of the control plan and data plan of SD-WAN.

In the beginning, the chapter provides a complete review of the novel routing algorithm,

by covering: its literature review; its design; its results; and its effect on SD-WAN

bandwidth. Then, in a similar structure, the chapter explains the two different

techniques, which used to measure the latency metrics of the SD-WAN. The first

technique employs the computers (nodes in the data-plan) to measure the control plan

latency metrics (all the components of the connection flow-setup latency) and the data

plan latency metrics. While, the second technique employs the controller itself to

measure the control path latency, which improves the validity of the previous

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 39

measurements of the first technique. Finally, performing this measurement is essential

for determining the range of latency values of every latency metric. Also, it is the

fundamental process for generating the formula, which is used to compute the latency

metrics of the SD-WAN inside the COVN simulator.

3.2. Routing Algorithm Optimization for SD-WAN

Software Defined Network (SDN) provides a new fine-grained interface enabling the

routing algorithm to have a global view of the network throughputs, connectivity and

flows at the data-path (Adrichem et al., 2014)(Jin et al., 2013). Therefore, this research

proposes a novel approach for a dynamic routing algorithm for SD-WAN; based on using

a modified shortest-widest path algorithm with a fine-grained statistical method from

the OpenFlow interface, called Shortest-Feasible OpenFlow Path (SFOP). This algorithm

is designed to identify the optimal route from source to destination, and to provide

efficient utilisation of the SD-WAN resources. It achieves this aim by considering both:

the flow requirements; and the current state of the network. SFOP computes the optimal

path, which provides the feasible bandwidth with the lowest hop count (delay). That will

present better stability in SDN communication, QoS, and usage of available resources.

Moreover, this algorithm will be the base for the SDN controller because it extracts the

widest available bandwidth from source to destination for a single path. It enables the

controller to decide whether it is enough to only use this simple algorithm, or if a more

complicated algorithm that provides a larger bandwidth such as multiple-path

algorithms is needed. Finally, the MATLAB Simulator computes the path using the SFOP

algorithm. Then, the testbed is implemented using Pox controller, and Mininet emulator

to apply the communication over the path of the SFOP algorithm. Comparing the latency

of SFOP algorithm with the latencies of three other algorithm’s (shortest, widest and

shortest-widest routing algorithms), shows that this algorithm finds better latency for

the optimal path. Evidence will be shown that demonstrates that SFOP has good stability

in dynamic changes of SD-WAN.

3.2.1. The Motivation and the Objectives of SFOP Algorithm

In the traditional network, the routing algorithms find the best route from the source

to the destination based only on the requirements of the flow. While, it is difficult for

them to consider the status of the network to be optimised, when they are computing

this route, for two reasons. First, this requires an extra communication to build and

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 40

update the database of the available resources and their utilisation (Adrichem et al.,

2014). Second, it is difficult to provide the additional computation capability to execute

the complicated algorithm on all the routers of the network (Trimintzios et al., 2000).

SDN solved the above challenges and provided the motivation to develop the traditional

routing algorithms by introducing the logically centralised controller with OpenFlow

protocol, which allows it to control the data plan devices (switches). This new paradigm

significantly reduces the communication overhead needed to have a global view of

network resources utilisation. Also, SDN central control reduces the number of

authorities, which request this information. Furthermore, the additional computation

complexity is easier to provide in the logically central controller than on all network

routers (Adrichem et al., 2014).

Finally, the objectives of the novel SFOP routing algorithm are as follows:

1. Finding the optimal path:

a) It computes the shortest path of feasible bandwidth to have the path of the

lowest latency for this bandwidth.

b) It does not overuse the available bandwidth like widest and shortest-widest path

routing algorithms (Ma and Steenkiste, 1998). Because it uses the feasible

bandwidth as a base to search the shortest path.

 It does this without raising the time and space of the computation complexity to

the limit, which could produce an unacceptable delay in the performance of the

controller.

2. Optimizing the resources utilisation in real time because it uses OpenFlow statistic

(nodes capacity and links bandwidth), which has a fast update and convergence for

their database (Adrichem et al., 2014).

3. The SFOP algorithm will be the basis of the controller, which helps it to select

whether it needs to implement a simple routing algorithm for the single path or

will be required to apply a more complicated one for multiple-paths. It supplies the

controller with a maximum bandwidth of the widest path. This data facilitates the

controller to decide whether it needs to implement a more complicated routing

algorithm such multi-flow algorithm (Márton Zubor, Attila Kőrösi, András Gulyás,

2014)(Aloul et al., 2006).

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 41

3.2.2. The Related Works of the Routing Algorithm

History of routing algorithms for the traditional network has evolved from simple ones

such as shortest and the widest path to the very complicated algorithms of constraint

QoS (Márton Zubor, Attila Kőrösi, András Gulyás, 2014). Many works evaluate the

performance of a routing algorithm and classify them according to their complexity and

efficiency for a specific type of traffic (Ma and Steenkiste, 1998)(Steenkiste and Ma,

n.d.)(SHESHADRI, 2004). The work in (Ma and Steenkiste, 1998) concluded that the

shortest path algorithm functions fine for light traffic loads, while the widest-shortest

path algorithm is convenient for heavy loads. The widest path algorithm performs badly

for both heavy and light loads. While, the routing algorithm of shortest-widest path

causes a low throughput for best-effort-traffic.

After that, a more complicated routing algorithm was developed to satisfy specific QoS

requirements. Some authors provided an intensive review for the QoS routing algorithm

(SHESHADRI, 2004)(Korkmaz and Krunz, 2003). Multi-Constrained Multipath (MCMP)

routing algorithm was designed using a combination of multi-routing algorithms and

redefined matrices [11]. The researchers in (Korkmaz and Krunz, 2003) developed an

algorithm to find bandwidth and delay constrained path. Routing algorithms have

attracted a great deal of research interest in the traditional network.

The emergence of SDN has motivated the reinvestigation of the routing algorithm due to

the new features of a novel paradigm.

On the one hand, several works are implemented using a simple algorithm such as the

shortest and widest routing algorithm to optimise routing in SDN. For example, in

(Ingale and Kakade, 2014) the widest or shortest path was used, after the application

server notifies the controller, which one is more suitable for the current flow. Also, in

one of the recent works in this area (Yalda et al., 2015), they replaced the shortest path

with the widest path algorithm in a Floodlight controller. As noted, this work did not

develop many new aspects of the simple polynomial routing algorithm, which could

exploit the new features of SDN or to satisfy its new requirements. They mostly

implement and evaluate the traditional algorithms in SDN network. Therefore, this

research aims to fill this gap.

On the other hand, most of the research that optimised the routing algorithms in SDN

focused on the complicated routing algorithms, which are destined to serve many

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 42

constraining QoS specifications. For instance, (Egilmez et al., 2011)(Egilmez et al., 2012)

used very complicated algorithms to optimise QoS for multimedia and video streaming.

Similarly (Egilmez et al., 2013), constructed a multi-constrained shortest path to

enhance video streaming. Subsequently, (Nakibly et al., 2012) worked to get a better QoS

with a minimal controller load at the same time. After that, (Aloul et al., 2006) utilised

the advanced Boolean satisfiability (SAT) techniques to compute the constrained

shortest path. Some researchers in (Al-Jawad et al., 2015) have employed Bayes’

probability theorem to find the feasible link of satisfied QoS constraint. Then, K-

maximally disjoint path algorithm was presented by (Abe et al., 2015). This work also

aimed to provide a buffer, which prevents the implementation of these complicated

algorithms until the flow requirements enforce the controller to implement them.

Eventually, a new piece of research developed a new routing protocol which aims to

reduce the power consumption in SDN data center, as well as it reduces the failure rate

in its devices (Al Mhdawi and Al-Raweshidy, 2018).

After the above research, this work develops SFOP algorithm, which provides a path of

lower latency and feasible bandwidth. At the same time, it keeps acceptable complexity

according to the SDN controller capabilities. In addition, it focuses on replacing the

informative old protocol, and the complex computation requirements to update the

resources utilisation; by a fine-grained OpenFlow interface, which is one of the main

keys to the success of SDN.

Finally, it is clear that the shortest-widest path algorithm negatively consumes the

network bandwidth, as mentioned in the first paragraph. Therefore, it is modified to

search the shortest path of feasible bandwidth for the flow.

3.2.3. Statistics of OpenFlow Interface

This work suggests using the fine-grained statistics of OpenFlow interfaces to computing

the optimal path by routing algorithms. Especially, the information required for a

routing algorithm is extracted by efficient open-source software's, such as Open Traffic

matrix (Open TM) (Tootoonchian et al., 2010) and Open Network Monitoring

(OpenNetMon) from the OpenFlow interface (Adrichem et al., 2014).

This section briefly shows OpenFlow protocol and the related routing algorithms

requirements. OpenFlow protocol is designed to have a global view of all network

connectivity and throughput for dataflow layer. When any change in network

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 43

connectivity happens, OpenFlow switches send a port-state message to the controller

to update this change (Open Network Foundation, 2009). In addition, OpenFlow

switches have flow counters per-port, per-flow, and per-queue. These counters

maintain the network state in the controller database using two types of messages. The

more frequent one is the flow-removed message when the flow is time up. The second

message is Read-State, which is sent by the controller to collect statistics from switches.

Both messages contain the flow-duration and its byte count at each switch, which

enables the network throughput for each link to be identified (Open Network

Foundation, 2009)(Open Networking Foundation, 2013).

The developed routing algorithm needs to learn the network throughput as an incident

matrix of bandwidth (IncBW) (Adrichem et al., 2014)(Tootoonchian et al., 2010). In

addition, this software should supply the algorithm by the feasible bandwidth per flow

type (FBW) based on monitoring and the QoS requirements (Jin et al., 2013)(Adrichem

et al., 2014).

The algorithm also uses the OpenFlow to identify the type of flow based on different

parameters in OpenFlow header, which are source port (TCP/UDP-src-port),

destination port (TCP/UDP-src-port) and type of service (IP-TOS) (Open Network

Foundation, 2009).

3.2.4. The Design of the SFOP Routing Algorithm

It is based on a combination of shortest widest path and the restricted shortest path. The

algorithm is executed as a management application inside the SDN controller. The

algorithm has two input parameters, which are the incident matrix of residual

bandwidth (IncBW) in the current state of the network and the feasible bandwidth

(FBW) for the current flow. Both are learned from the open source software presented

in (Adrichem et al., 2014)(Jin et al., 2013), which use the fine-grained OpenFlow statistic

as explained in Section 3.2.3.

The algorithm works as follows: First, the algorithm computes the widest path and

widest bandwidth; Second, it compares the FBW of OpenFlow statistics with the found

the widest bandwidth; Then, it uses the FBW if it is less or equal to the widest

bandwidth. Otherwise, it uses the widest bandwidth itself; Third, it finds the shortest

path of the chosen bandwidth. The second and third parts (the modified parts) are the

contributions of this paper. Unlike the algorithm of the shortest widest path, that finds

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 44

the shortest path of widest bandwidth. The SFOP algorithm finds the shortest path of

feasible bandwidth.

The algorithm computes the optimal path, which provides the feasible bandwidth and

the minimum hops count (minimum delay). In the meantime, the algorithm also

optimises the utilisation of links bandwidth, because the algorithm will always use the

path, which has the feasible bandwidth in the current state of SD-WAN and leaves the

links, which have the widest bandwidth for best-effort-traffic.

Let's formulate the algorithm for a more detailed demonstration. The SD-WAN is

represented by an undirected finite graph 𝑮 (𝑁, 𝐿), where the 𝑵 is the network nodes

and 𝑳 is the links between them. 𝑁 = 𝑛 and 𝐿 = 𝑙 .The path 𝑷 is the optimal path of

sequence nodes 𝑷 = (𝑰𝒏 = 𝒏𝟏; 𝒏𝟐,… ,𝒏𝒌 = 𝑬𝒈), where 𝑰𝒏 is Ingress node, 𝑬𝒈 is

Egress node, 𝒌 is the length of the path and 𝑛𝑖;𝑛𝑖+1 ∈ 𝐿 ∶ ∀𝑖 = (1,… . ,𝑘 − 1). A link 𝒍

with origin node 𝒏 and destination node 𝒎 is denoted by (𝒏,𝒎). Respectively, with each

link 𝒍 = 𝒏,𝒎 ,𝑤𝑕𝑒𝑟𝑒 𝒏,𝒎 ∈ 𝑵 there is an associated bandwidth 𝑩𝑾𝒍 ≥ 0 and a delay

𝜹𝒍 ≥ 0.

The main steps of SFOP routing algorithm:

1. Find the less utilized links, which connect every neighbour of nodes (create the

Adjacency matrix AdjBW from incident matrix IncBW. See pseudocode in Figure

3.1.

2. Compute the widest path using modified Dijkstra's algorithm. See Figure 3.2.

 The widest path is defined as shown in Equation 3.1:

𝑩𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉 𝒘𝒊𝒅𝒆𝒔𝒕𝑷 = 𝑴𝒂𝒙𝒍𝒊=(𝒍𝟏,𝒍𝟐,𝒍𝟑…𝒍𝑰: 𝒍𝒊∈𝑨𝒅𝒍 𝒂𝒏𝒅 𝑰≤𝑨𝑫𝑪) 𝐦𝐢𝐧 𝑩𝑾𝒍𝒊,𝑫𝒊 (𝟑.𝟏)

Where:

a) D = Distance matrix, which saves the maximum bandwidth of path from the ingress node until this
node.

b) 𝐴𝑑𝑙 = the group of links connected to adjacent nodes.
c) 𝐴𝑑𝑐 = the count of these links.

3. Check bandwidth; the algorithm uses the feasible bandwidth (𝐹𝐵𝑊) if it is less

than the widest bandwidth (𝑤𝑖𝑑𝑒𝑠𝑡(𝐵𝑊𝑃)). Otherwise the widest bandwidth

(𝑤𝑖𝑑𝑒𝑠𝑡(𝐵𝑊𝑃)) is used. See Figure 3.3.

4. Remove all the links, which have a bandwidth less than the last specified

bandwidth (𝑤𝑖𝑑𝑒𝑠𝑡(𝐵𝑊𝑃) or 𝐹𝐵𝑊) . See Figure 3.3, step 31.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 45

5. Compute the shortest path of last specified bandwidth, using another modified

Dijkstra's algorithm. See Figure 3.4.

 The cost of shortest path is defined in Equation 3.2:

𝑪𝒐𝒔𝒕 𝒔𝒉𝒐𝒓𝒕𝒆𝒔𝒕𝑷 = 𝐌𝐢𝐧
𝒍𝒊=(𝒍𝟏,𝒍𝟐,𝒍𝟑…𝒍𝑰: 𝒍𝒊∈𝑨𝒅𝒍 𝒂𝒏𝒅 𝑰≤𝑨𝒅𝒄)

 𝑩𝑾𝒍𝒊 +𝑫𝒊

𝑵

𝒌=𝟎

 (𝟑.𝟐)

 Where:
a) D = Distance matrix, which saves the accumulated bandwidth of path from the ingress node

until this node.
b) 𝐴𝑑𝑙 = the group of links connected to adjacent nodes
c) 𝐴𝑑𝑐 = the count of these links.

Initialize 1# create Adjacency matrix of bandwidth (AdjBW) by extracting it from Incident matrix of the graph (
IncBW).
(G: GRAPH, NODE= N, Links=L, Incident matrix of bandwidth=IncBW, Adjacency matrix of bandwidth = AdjBW)
1. Input: incident matrix of bandwidth
2. For 𝑎𝑙𝑙 𝑛 ∈ 𝑁 do . /* for all nodes in G *|
3. chose the link of higher bandwidth; |* to find the less utilized link if there are more than one link *|
4. Endfor

Algorithm1# compute the widest path########################.
 (Ingress node=In, Egress node=Eg, Visited nodes vector=𝑽, Unvisited node vector=𝑼𝑽, Distance matrix=D, Current
Visit Node =CVN, path=P, Path bottleneck bandwidth= 𝒘𝒊𝒅𝒆𝒔𝒕𝑩𝑾).
Compute distance matrix
5. Initialize: 𝑉 = ∅; |* initialize visited node vector to be empty*|
6. Initialize: 𝑈𝑉 = 𝑎𝑙𝑙 𝑁; |* initialize Unvisited node vector to have all N*|
7. Initialize: k=0; |* initialize counter to zero*|
8. Initialize: 𝑪𝑽𝑵= 𝟎;|* variable to hold the Current Visit Node (CVN) *|
9. While 𝑈𝑉 ≠ ∅ do|* for all nodes in UV *|
10. k=k+1; |* increment counter*|
11. 𝑪𝑽𝑵= 𝒎𝒂𝒙𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝑛) |*Select node 𝑛 has maximum distance D to be current visited node*|
12. 𝑰𝒏𝒔𝒆𝒓𝒕 𝐶𝑉𝑁 𝒊𝒏 𝑉
13. 𝑹𝒆𝒎𝒐𝒗𝒆 𝐶𝑉𝑁 𝒇𝒓𝒐𝒎 𝑈𝑉
14. For all neighbours [𝐶𝑉𝑁] do
15. 𝑫 = [𝒎𝒊𝒏⁡(𝑨𝒅𝒋𝑩𝑾𝒍𝒌,𝑫𝒌−𝟏)]
 |* update the bottleneck bandwidth in D for all neighbours of CVN whose yet unvisited *|
16. Endfor
17. EndWhile
Compute widest path and its bandwidth from distance matrix.
18 Initialize: P= Eg; |* initialize path vector (P) to equal Egress node*|
19. Initialize: temp-node=Eg; |* initialize variable to hold last node in path*|
20. Initialize:𝑤𝑖𝑑𝑒𝑠𝑡𝐵𝑊 = ∞; |* initialize variable to hold the bottleneck bandwidth of widest path*|
21. W𝐡𝐢𝐥𝐞 𝑡𝑒𝑚𝑝− 𝑛𝑜𝑑𝑒 ≠ 𝐼𝑛 do
22. 𝑡𝑒𝑚𝑝− 𝑛𝑜𝑑𝑒 = 𝑙𝑎𝑠𝑡 𝑛𝑜𝑑𝑒 𝑜𝑓 𝑃
23. 𝑰𝒏𝒔𝒆𝒓𝒕 𝒏 𝑚𝑎𝑥 𝐷 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑢𝑟𝑠𝒕𝒆𝒎𝒑−𝒏𝒐𝒅𝒆 𝑡𝑜 𝑷 |* Update path vector*|
24. 𝒘𝒊𝒅𝒆𝒔𝒕𝑩𝑾 = 𝑚𝑖𝑛(𝒑𝒓𝒆𝒗𝒊𝒐𝒖𝒔 𝑤𝑖𝑑𝑒𝑠𝑡𝐵𝑊, max𝐷)
25. Endwhile

Figure 3.1: The pseudo code for creating adjacency matrix of bandwidth.

Figure 3.2:The pseudo code of algorithm 1 (computing the widest path).

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 46

3.2.5. Analysing the Computational Complexity of SFOP Routing Algorithm

As have been shown in the previous section the SFOP algorithm is composed of two

main parts. Both parts are based on modified Dijkstra's algorithm (Barbehenn, 1998).

Algorithm 1, shown in Figure 3.2, is responsible for computing the widest path. The

worst-case complexity of Algorithm 1 is 𝑶(𝑵𝒍𝒐𝒈𝑵+ 𝑳) (Kaibel and Peinhardt, 2006),

Initialize2# Find and Use Best Available Bandwidth ########.
(Feasible bandwidth of flow =FBW, Best Available bandwidth = 𝑩𝑨𝑩𝑾).
Best Available bandwidth (𝐵𝐴𝐵𝑊) equal to the feasible or widest bandwidth.
26. Input: FBW; |*input the Feasible bandwidth (FBW) for this flow *|
27. Initialize: 𝑩𝑨𝑩𝑾 = 0;
 |*Variable hold the value of Best Available bandwidth (𝐵𝐴𝐵𝑊) *|
28. If 𝐹𝐵𝑊 ≥ 𝑤𝑖𝑑𝑒𝑠𝑡𝐵𝑊 𝒕𝒉𝒆𝒏 𝑩𝑨𝑩𝑾 = 𝐹𝐵𝑊
 |*if the feasible bandwidth is available then use it*|
29. Else 𝑩𝑨𝑩𝑾 = 𝑤𝑖𝑑𝑒𝑠𝑡𝐵𝑊
30. Endif
###Remove any bandwidth lower than 𝐵𝐴𝐵𝑊 from adjacency matrix of bandwidth (𝐴𝑑𝑗𝐵𝑊).
31. For 𝑎𝑙𝑙 𝑛 ∈ 𝑁 do |* for all nodes in G *|
32. If 𝐵𝑊𝑛 < 𝐵𝐴𝐵𝑊 then 𝐵𝑊𝑛 = 0; |* set unwanted bandwidth to zero*|
33. Endfor

Algorithm 2#compute the shortest path###########################.
###prepare adjacency matrix of bandwidth (Adj𝑩𝑾).
34. For 𝑎𝑙𝑙 𝑛 ∈ 𝑁 do |* for all nodes in G *|
35. If 𝐴𝑑𝑗𝐵𝑊𝑛 ≤ 0 then 𝐴𝑑𝑗𝐵𝑊𝑛 = ∞;
 |* set zero bandwidth to infinity*|
36. Endfor
updates node distance and path.
37. Initialize: 𝑉 = ∅;|* initialize visited node vector to be empty *|
38. Initialize: 𝑈𝑉 = 𝑎𝑙𝑙 𝑁;
 |* initialize unvisited node vector to have all nodes N*|
39. Initialize: k=0 |* initialize counter to zero*|
40. Initialize: 𝐶𝑉𝑁 = 0
 |* it is a temporary variable to hold the Current Visit Node (CVN) *|
41. While 𝑈𝑉 ≠ ∅ do |* for all nodes in UV *|
42. k=k+1; |* increment counter*|
43. 𝑪𝑽𝑵 = 𝒎𝒊𝒏𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝒏);|*Select 𝑛 with minimum distance D *|
44. 𝑰𝒏𝒔𝒆𝒓𝒕 𝐶𝑉𝑁 𝒊𝒏 𝑉;
45. 𝑹𝒆𝒎𝒐𝒗𝒆 𝐶𝑉𝑁 𝒇𝒓𝒐𝒎 𝑈𝑉
46. For all neighbours [𝑐𝑕𝑜𝑠𝑒𝑛] do
47. 𝑫 = 𝑨𝒅𝒋𝑩𝑾𝒍𝒌 +𝑫𝒌−𝟏 |* update the bottleneck bandwidth
 in distance matrix D for all all neighbours of CVN whose yet unvisited *|
48. 𝑷 = 𝒏(𝒎𝒊𝒏 𝑫 𝒐𝒇 𝒂𝒍𝒍 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒔𝒕𝒆𝒎𝒑−𝒏𝒐𝒅𝒆)
 |*Update shortest path*|
49. Endfor
50. EndWhile

Figure 3.3: The pseudo code for finding and using the best available bandwidth.

Figure 3.4: The pseudo code of Algorithm 2 (compute the shortest path).

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 47

where 𝑵 is network nodes, and 𝑳 is network links. Similarly, Algorithm 2’s

computational complexity is 𝑶 𝑵𝒍𝒐𝒈𝑵+ 𝑳 (Barbehenn, 1998), where 𝑵 is the number

of network nodes, and 𝑳 is network links. Therefore, the worst-case computational

complexity for all algorithms is 𝑶(𝑵𝒍𝒐𝒈𝑵+ 𝑳).

From a simple comparison of computational complexity, between this algorithm and

other polynomial routing algorithms, has been presented in (Orlin, 2013). It has been

observed that most of the polynomial algorithms used to find the optimal path have a

similar time complexity of our algorithm. However, SFOP algorithm still reduces time

complexity because in logically centralise control of SDN it is executed fewer times in

comparison to distributed control of the traditional network.

3.2.6. SFOP Emulation Environment

This section introduces the hardware and software tools used for the emulation. A

computer with a corei7 of the 2.4GH processor and 16GB memory is used to implement

the emulation. The Matlab programming language is used to write the management

routing algorithms. This program reads the incident matrix of bandwidth (IncBW) and

feasible bandwidth of current flow (FBW). After that, it computes the optimal path (P)

using the SFOP algorithm.

Next, a Python application program is developed for the Pox controller to read the

optimal path and install the required rules to OpenFlow switches. In addition, it updates

the bandwidth matrix of SD-WAN. Pox controller is used due to it is easy to program and

has no faults (Kreutz et al., 2015b).

Another, Python program is written to create the SD-WAN topology. Finally, Mininet

emulator is used to emulating the network of OpenFlow virtual switches (OVS) and

execute the rules Pox controller.

3.2.7. Implementation and the Results of the SFOP Algorithm

A virtual network is generated to emulate SD-WAN. This network is designed to have

similar characteristic to the real WAN topology, as shown in Figure 3.5.

The topology has one Pox controller and sixteen OVS switches, which is the maximum

port capacity for a Pox controller. The bandwidth of the backbone links is 1 Gbit, while

the forked links have 100 Mbit and 10 Mbit bandwidth.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 48

A Pox controller is placed in the position of node eleven, because it is located in the

centre of SD-WAN and lays on its backbone infrastructure.

Two different tests are implemented in this algorithm. The first one is to compare the

path latency of SFOP algorithm with the path latency of shortest, widest and shortest-

widest algorithms to specify which algorithm has the best performance. The second

comparison is for path latency of SFOP algorithm in multiple states of the network to

evaluate the algorithm performance with dynamic changes.

Both tests are applied to three sizes of packets (1 KB, 10 KB, and 64 KB) to evaluate the

performance of the routing algorithm with different loads. Moreover, both use the single

ingress node and Egress node.

A) Test one: shows the different paths of the routing algorithms as shown in Figure 3.5.

Route one shows the shortest path. It also represents SFOP route when small packets

are sent (feasible bandwidth required is less than 10 Mbits). Route two displays the

shortest path. In addition, it presents SFOP route, when the packet size is larger than 10

KB (a feasible bandwidth larger than 10 Mbits is specified). Finally, route three

expresses the widest path.

Figure 3.5: The paths of the different routing algorithms in SD-WAN (Note: 10,100 and
1000 represent the link bandwidth in Mbit).

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 49

Consequently, the emulation generates the latency results, which are displayed in Figure

3.6.

These results show that the shortest path and SFOP algorithms have the best mean of

latency for small packets. While, for the big packets the shortest path algorithm, is very

bad, and the other three have similar results. Which means that the shortest-feasible

bandwidth does better than the others in all loads. See the comparison summary in

Table 3.1.

B) Test two: it shows the different paths of SFOP algorithm when the network links

have a different residual bandwidth (IncBW), and the feasible bandwidth (FBW) is fixed

to be larger than 100 Mbit. See Figure 3.7.

No. Packet
size

Shortest
(ms)

Widest
(ms)

shortest-
widest (ms)

shortest-
feasible (ms)

1 1 KB Best
(0.108)

Good
(0.147)

Better
(0.125)

Best
(0.111)

2 10 KB Bad
(12.894)

Best
(0.145)

Best
(1.607)

Best
(1.581)

3 64 KB Bad
(103.345)

Best
(11.342)

Best
(11.517)

Best
(11.357)

Notes:
Consume
residual

Bandwidth

Not consume
residual

Bandwidth

Figure 3.6: The latencies for different routing algorithms.

Table 3.1: Latency performance of different routing algorithms.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 50

Route one shows the path in a normal state (full bandwidths). Route two displays the

path if the bandwidth of link 𝐞𝟔 down from 100 Mbit to 10 Mbit. The third route

presents the path in case link 𝒆𝟐𝟏 goes from 100 Mbit to 10 Mbit. Finally, route four,

represent the path when the links 𝒆𝟖 and 𝒆𝟗 have residual bandwidths 10 Mbit instead

of 100 Mbit in the initial state.

As a result, the algorithm shows a similar latency for all cases, if an alternative path of

similar bandwidth is available, See Figure 3.8. In summary, the algorithm provides good

stability for flow path in SD-WAN.

Figure 3.7: Several paths of SFOP algorithm with the dynamic changes of the bandwidths.

Figure 3.8: The latency of the dynamic routing in different states of SD-WAN.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 51

Bearing in mind that the test is done using ping command with different bandwidths to

examine the algorithm latency, which is the focus of this research.

3.2.8. The Conclusion of the SFOP Algorithm

In this section, I proposed a routing algorithm called SFOP to find the optimal path and

to enhance the network resources utilisation, in SD-WAN. The emulation of the

algorithm in Mininent, shows that it provides better latency than other comparable

polynomial routing algorithms (shortest, widest and shortest-widest path). It also shows

it has good stability with dynamic changes of the network in most cases. Moreover, SFOP

provides valuable data for the controller to build its decision to apply the further

complicated algorithm as demonstrated in Section 3.2.4. Finally, it provides the

resources utilisation of SD-WAN without increasing the computation complexity. It is

noteworthy that, this algorithm does not produce a different result from the shortest

path routing algorithm, if it is implemented for the control-packets between the

controller and its switches, because they are a small packet. This finding is obtained only

after completing the tests of routing algorithms and lead the research to keep using the

shortest path algorithm for control packets.

3.3. Developed Asynchronous Technique to Evaluate the Performance of

the SDN Switches Using the Hosts in Data-Plane

This section presents the second contribution, which objecting to measure the values of

latency metrics, which are required for creating a connection between two hosts in SD-

WAN. Besides that, it is extracting the other performance metrics, such as bandwidth,

packet losses and jitter of the SDN physical equipments. Also, it is objecting to producing

the latency equation (formula), which is needed to compute the connection flow-setup

latency and its components in this research (see Section 3.3.5).

A new technique is developed by this research to accurately measure the data-plan and

control-plane latency metrics using the host nodes in the data-plane. The conducted

tests provide realistic performance metrics, which could be used in the research

computations. Also, this research addresses the differences between the SDN virtual

environment and physical SDN switches in order to modify the SDN virtual environment

to make it more realistic. Consequently, this research presents a precise performance

evaluation and comparison of off-the-shelf SDN devices, HP Aruba 3810M, with Open

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 52

Virtual Switch (OVS) inside Mininet emulator. This work examines the variability of the

path delay, throughput, packet losses and jitter of SDN in a different windows size of the

packets and network background loads. The conducted experiments consider a number

of protocols such as ICMP, TCP and UDP. The developed technique shows more precise

results in comparison to other techniques. The comparison of results shows a

dissimilarity in the behaviour of SDN hardware and the Mininet emulator. The SDN

hardware exposed higher latency and connection flow-setup time due to extra resources

of delay, which the emulator does not possess. Finally, the results of latency metrics

demonstrate that the control-path latency is much smaller than other latencies of

creating the connection in SD-WAN.

3.3.1. The Related Works of the Measurement Techniques

Both the physical and emulated SDN test-beds need to be evaluated, which demands the

unified and idealistic measurement tools for both test-beds. Although, there has been a

significant amount of research in the field of network measurement, it is imperative to:

(1) Identify and adjust a suitable measurement technique which serves the aim of this

evaluation; (2) Investigate the findings of other research; (3) Exploit their results as

additional evidence that verifies the accuracy of the result this research. Therefore, a

comprehensive literature review of network measurement is performed to avail the

purposes above. The related work is classified into three parts: (A) Traditional

measurement techniques and matrices; (B) Evaluation of virtual switches and emulator;

and (C) Evaluation of SDN.

A) Traditional Measurement Techniques and Matrices

In traditional networks, two-way latency can be obtained using: (a) Ping (ICMP) (Wang

et al., 2004); (b) (SYN-ACK/ACK) packets of TCP three handshake (Dhaval N. Shah et al.,

2002); (c) TCP Timestamp option (V. Jacobson et al., 1992); and (d) Two-way UDP

packets with embedded timestamp of connected hosts (Wang et al., 2004). Ping is a

powerful tool to extract the end-to-end Round-Trip-Time (RTT). It is a very effective tool

to measure the latency variance in the different windows size of packets. However, it

gives a rough estimation for one-way latency (Wang et al., 2004). Ping tools

predominate in latency measurement research as could be notified in (Prieto et al.,

2015)(Wang et al., 2004). The second technique to calculate the RTT is based on the

difference in timestamp between the SYN-ACK packet and ACK packet (second and third

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 53

packets) of the TCP connection establishment on the callee side (Dhaval N. Shah et al.,

2002). (SYN-ACK/ACK) technique is unlike ping in the ability to change the window size

of packets. It can find the RTT only for the small window size of packets (the packets of

TCP three handshake). Both techniques suffer the additional latency which resulted

from the processing time in the second end-host (Prieto et al., 2015). The third method

to obtain the RTT is enabling the TCP timestamp option in TCP header (V. Jacobson et al.,

1992). It provides an acceptable precision of transmission latency, but it produces an

extra payload added to the real load of original traffic. Sometimes, the packet with

enabled TCP timestamp is terminated by firewall devices because it reveals the

timestamp of communicated nodes, which is clearly described in (Prieto et al., 2015).

Finally, using the two-way UDP with an embedded timestamp of connected hosts to

detect the Round-trip Delay Time (RTD) or One-way Delay (OWD). Like the TCP

timestamp option, it supplies an accurate latency, but it requires a customised

benchmark which can test only the latency of UDP packets (Sans and Gamess, 2013).

B) Evaluation of Virtual Switches and Emulator

Open vSwitch was used to emulate the SDN network in Mininet emulator, because it can

provide complete functionality of the OpenFlow switches (Mininet Team, 2016). Several

works evaluate Mininet for different purposes using the common measurement tools.

The works in (Keti and Askar, 2015)(Danielis et al., 2015)(Gustaf Jan Gunnar Nilstadius,

2016)(Wang, 2014) measured the RTT of Mininet using ping utility. Others evaluated

the RTT with ping and bandwidth of links using Iperf tools (Koerner and Kao,

2014)(Zoher Bholebawa and Dalal, 2016). Finally, the ping ICMP packets were used to

indicate controller flow setup time, while the TCP, UDP packets were emulated to

estimate application latency in the Mininet (Turull et al., 2014). All pre-mentioned works

missed defining the bandwidth limit of links inside Mininet, which created an unrealistic

measurement. However, their results were a good starting point to realise the behaviour

of SDN network and Mininet emulator.

C) Evaluation of SDN

The logically centralised control of SDN adds new measurement fields such as the

latency of the control layer. In SDN, the methods of determining the network latency

would be handled by the data plane or by the control plane.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 54

On the one hand, most works used the controller to compute the path latency in

different ways. The authors in (Phemius and Bouet, 2013)(van Adrichem et al., 2014)(Yu

et al., 2015) sent probe packets from the controller, which passed through the path back

to the controller. The path latency is extracted by subtracting the control path latency

from the difference of sending and receiving timestamps. The work in (Shuo Wang et al.,

2017)(Agarwal et al., 2014)(sFlow.org, 2012) uses the same method except for the way

of determining the path. The path is passively determined after collecting all the entries

of the flow-table from the OpenFlow switches, then sending a probe packet from the

controller to compute the paths latency. Another piece of research uses the looping

technique by applying a loop of special service packets through the path with specified

Time-to-live (TTL). OpenFlow switches on that path: (a) decrement TTL; (b) register the

number of iterations; (c) and forward the packet in the loop while the TTL is not zero,

otherwise, forward it to the controller. The controller then calculates the latency using

TTL and iteration number (Sinha et al., 2015)(Altukhov and Chemeritskiy, 2014).

Another piece of research proposes the Queue Length Method (Sinha et al., 2015). It

considers the processing, propagation and transmission delay as constant values and

uses the detected queuing delay to estimate the path delay.

On the other hand, some researchers deny over-heading the controller with additional

computation. Also, they noticed that the control layer latency varies more than the

switch forwarding latency, which heavily affects the accuracy of latency measurement of

the data path (Shuo Wang et al., 2017)(Atary and Bremler-Barr, 2016). For example,

(Atary and Bremler-Barr, 2016) employs a monitoring host in the data-plane to measure

the path latency using an active probe packet. Also, (Koerner and Kao, 2014) uses the

traditional ping and Iperf tool to identify the latency and bandwidth of the network in

his study.

Finally, a few studies focus on resolving the control layer latencies. Kuniar et al., (2014)

create a python script to probe packets between OpenFlow switches and the controller

to dissect fractions of the control layer latency. Sonchack et al., (2016) study the effect

of varying the load of the control plane on its latency using background control probe

packets and ping utility on the Pica8 physical switch. Lastly, High-Fidelity Switch Models

for SDN Emulation (Huang et al., 2013) is the work most related to this paper. It tests

and compares the flow-setup latency of the HP ProCurve, Quanta, and Monaco physical

switches with OVS. The OVS was emulated on Linux based virtual machine and not in

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 55

Mininet. The test in (Huang et al., 2013) is limited to measure the control layer latency

under different conditions while missing the measurement and comparison of the data-

plane latency, While this research measures the data plane latency on the physical and

Mininet testbeds.

3.3.2. Description of the Proposed Asynchronous Latency Measurement

Technique

Since the intent here is to extract actual path latency and not its approximation, ping

utility might not fulfil the purpose by itself. For the reason that, the RTT which is

computed by the ping tool comprising an extra processing time which belongs to the

Callee side. Therefore, simple steps were added to optimise the latency which was

obtained from RTT of the ping tool, as follows:

1. Ping from sender to receiver as shown in Figure 3.9.

2. Capturing the send request at both sides to record the timestamp of:

 a) Send-Request-Time (SReqT) at the sender.

 b) Received-Request-Time (RReqT) at receiver.

3. Capturing the returned reply at both sides to record the timestamp of:

a) Send-Reply-Time (SRepT) at receiver.

b) Received- Reply -Time (RRepT) at the sender.

4. Compute processing time (Δ2) in the receiver side “callee side” by subtracting (SRepT)
from (RReqT):
 Δ2 = (SRepT) - (RReqT) (3.3)

5. Compute the actual Latency from ping RTT in two steps:

a) Calculate the ping RTT (Δ1):
 RTT = Δ1 = (RRepT)- (SReqT) (3.4)

b) Calculate two-way-latency (Δ3):
 Two-way-Path-latency= Δ3= Δ1- Δ2 (3.5)

6. Compute the one-way-latency:

 One-way-latency= Δ3/2 (3.6)

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 56

The (Δ3) represents two-way-latency through the switch with considering that the link

delay is negligible. For the reason that the maximum propagation delay for 1 meter is

approximate to 5.5 ns/m (Beckhoff Automation GmbH & Co. KG, 2017). One-way latency

is half of two-way latency, because SDN provides the same path for the request and the

reply packets. In that technique, it is possible to compute the two-way or one-way path

latency accurately. Also, it demonstrates parity with one-way synchronised techniques

without the severing of synchronising the end host or customising a software

benchmark. Furthermore, it can be used to measure the accurate latency for any traffic

such as TCP, UDP, ICMP, etc.

3.3.3. Testbeds Description and Methods

This section briefly describes the testbed components and their topologies, followed by

the measurement methods.

A) Testbeds description:

The tests are performed in the SDN laboratory of the University of Northampton. Two

testbeds were used to examine the physical and emulated SDN. The physical testbed

comprises of HP VAN SDN Controller 2.7.18 (Packard Enterprise, 2016a) which runs

over a VirtualBox on a dedicated machine; physical HP Aruba 3810M SDN switches

(Packard Enterprise, 2016b), which constructs a single and duplex bus topologies as

shown in Figure 3.10; Four computers represent the communicated hosts; and, one-

gigabit connections. Meanwhile, the emulated testbed consists of the same controller

Figure 3.9: The proposed asynchronous latency measurement technique.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 57

mentioned above and Mininet emulator, which hosted on the single server. Mininet

emulated single and duplex bus topologies as well with FastEthernet speed connection

1000Mbit, (see Figure 3.10).

All machines are running Windows 8.1, 64-bit with an Intel Core i7 CPU and 16 GB of

RAM. Additionally, the server which hosted the controller and Mininet has an SSD hard

drive.

B) Measurement methods:

The Measurement method is divided into three types of measurement; they are

“Latency”, “Throughput” and “Jitter and packet losses” measurement. Every

measurement type has several tests, which will be described below. For studying the

impact of background traffic on foreground traffic, every test is performed three times.

In the first time, the test measures the performance of SDN only with foreground traffic

between H2 and H1, see Figure 3.10. In the second and third times, the foreground

traffic was tested after saturating the network with background traffic, where both H3

and H4 sent background traffic to H1 with 250 and 375 Mbit. That saturated the

network with total background traffic of 500 and 750 Mbit for the second and third

times respectively. Next will be a brief demonstration of the three measurement types

and their tests:

1) Latency measurement. Firstly, path latency is measured using: (a) the ping utility;

(b) the proposed asynchronous latency measurement technique; and (c) (SYN-

ACK/ACK) measurement technique, which is described in Section 3.3.2. The results of

these three techniques are compared to show the accuracy of the proposed

measurement technique. In ping and asynchronous latency measurement technique, the

test is performed for three windows sizes of packets 1.5, 10 and 65 Kbytes. The three

(2) Duplex Bus Topology (1) Single Topology

Figure 3.10: The used topologies in the tests of evaluating the performance metrics.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 58

windows sizes help to discriminate SDN behaviour for small, medium and large

application packets. Whereas, for (SYN-ACK/ACK) measurement technique, the test is

performed for only a small window size of packets because the window size always

starts small through the three-handshake process of TCP connection. The results

represent the average value of RTT for twenty pings or TCP probe packets.

Secondly, the connection flow-setup latency is found from the RTT of the first packet of

each flow. It was extracted from ping and the proposed asynchronous technique is the

same as the procedure mentioned above.

2) Throughput measurement. The throughput is tested for TCP and UDP traffic with

four different windows size of the packets. This time, the test is done with 1.5, 10, 65 and

150 Kbytes as a window size for foreground traffic. The reason for adding a window size

of 150 Kbytes is that the UDP traffic does not achieve the maximum throughput with a

window size of 65Kbytes on HP Aruba switch, see Figure 3.13-b. The results averaged

the throughput of a twenty TCP/UDP connection transmitted for 120 seconds using

Iperf tool.

3) Jitter and packet losses measurement. Both of them were obtained for UDP traffic

with four different windows size of the packets, similar to the throughput measurement.

The results were calculated the average of twenty UDP connections lasted for 120

seconds using Iperf as well.

3.3.4. Results Evaluation

This section will discuss the results which were obtained from the practical

implementation of the experimental traffic on single topology and duplex bus topology.

1) The Tests of the Single Topology:

 The results of the single topology will present the four performance metrics ("path

latency", "connection flow-setup latency", "throughput" and "jitter and jacket losses

rate") to show the difference in the behaviour of the physical and emulated SDN

equipments.

A) Path latency. The proposed asynchronous technique (Figure 3.11-b) show more

accurate results than ping measurements (Figure 3.11-a). The proposed technique

shows lower latency values which increase linearly with the increment of network

background load, while ping shows higher and unstable latencies. The SYN-ACK/ACK

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 59

technique (Figure 3.11-c) shows comparable results to the results of the proposed

technique but only for a small window size of packets. That verified the accuracy of the

results of this work.

In the results of the proposed technique, HP Aruba switch occupied latency (red-line)

were ten times larger than OVS latency (green-line) for the small window size of packets

(1.5 Kbyets). Meanwhile, this difference reduces to four-times of latency in a window

size of 10 Kbyets and becomes only two times the latency for a window size of 65

Kbyets.

Fi

B) Connection flow-setup latency. The connection flow-setup latency of the small

window size of packets and zero background load was around 280ms for HP Aruba

switch (red-line) and 3ms for OVS (green-line), when computed by the proposed

asynchronous technique, see Figure 3.12-b. Diversely, connection flow-setup latency got

around 400ms for HP Aruba switch (red-line) and 3.5ms for OVS (green-line), if

extracted from ping RTT, see Figure 3.12-a. The difference in latency between the two

techniques resulted from removing the processing latency of the second end from the

flow-setup latency. That is proving the results validity of the asynchronous latency

measurement technique specifically for the physical testbed.

Additionally, it is feasible from Figure 3.12 that, the difference in connection flow-setup

latency between the real network and Mininet emulator is very big. The latency

variation ranges from 100 to 40 times of flow-setup latency for small to the large

window size of packets. Finally, all latencies increased with the rising of the background

traffic of the network.

Figure 3.11: Two-Way Latency measurement comparison between Mininet (OVS) and Physical
testbed (HP Aruba) in three different techniques.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 60

C) Throughput. As displayed in Figure 3.13, the physical and emulated SDN provide

different throughputs. However, the links of both testbeds were configured with the

same bandwidth. On the one hand, HP Aruba generates very poor TCP throughput with a

small window size of packets while OVS presents higher TCP throughput. On the other

hand, HP Aruba provides the best TCP throughput with a large window size of packets.

The throughput of UDP traffic changed a lot in HP Aruba switch according to the window

size of packets while a small variation of UDP throughput occurs in OVS. TCP/UDP

throughput degraded when the background traffic of network is boosted.

D) Jitter and packet loss rate. The tests showed that OVS possess a lower jitter and

packet loss rate than HP Aruba switch. However, the jitter and packet loss rate of HP

Aruba are more responsive to the change of window size of packets and network

background traffic, see Figure 3.14.

Note:
Links Bandwidth =1Gbps,
for Mininet and physical
testbed.

Figure 3.12: Flow setup Latency measurement comparison between Mininet (OVS) and Physical
testbed (HP Aruba) in two different techniques.

Figure 3.13: Throughput measurement comparison between Mininet (OVS) and Physical
testbed (HP Aruba) for TCP and UDP traffic using Iperf.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 61

2) The Tests of the Duplex Bus Topology:

The results of the duplex bus topology will present only the two performance metrics

("path latency", and "connection flow-setup latency"). This is because the latency

metrics increase with increasing the number of switches, while the other two metrics

("throughput" and "jitter and jacket loss rate") keep a similar behaviour for the single

and duplex bus topology. Also, the latency metrics are the focus of this evaluation.

A) Path latency. Similar to the results of the single topology tests, the ping

measurements have less precision in determining the communication latency (see

Figure 3.15-a). While, the proposed asynchronous technique and SYN-ACK/ACK

technique (see Figure 3.15- b and c), demonstrate better latencies in terms of the

accuracy and the response to the changes of the communication conditions (packet size

and background load).

Also, the difference in the behaviour of the latency between the physical and emulated

switches is similar to the one in the tests of the single topology, but it only owned higher

values.

In the results of the proposed technique, the latency of the HP Aruba switch (red-line) in

these tests is higher than itself in the tests of the single topology. For example, the

connection with a small packet size and zero background load has (0.97155 ms) in these

tests, while it is only (0.3435 ms) in the single topology. This helps to calculate the

forward latency at each switch (when the forwarding rule is already installed and it can

directly forward the packet) from the difference between the results of the single and

duplex bus tests, more details will be explained in Section 3.3.5.

Figure 3.14: Jitter and loss packet rate measurement comparison between Mininet (OVS)
and Physical testbed (HP Aruba) for UDP traffic using Iperf.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 62

B) Connection flow-setup latency. Figure 3.16 shows that the ping results are larger

than the results of the asynchronies technique due to the extra latency of the destination

side.

Also, Figure 3.16-b, demonstrates that the connection flow-setup latencies of the

physical switches are larger than the latencies of the OVS by a big amount, which

reaches to 100 times. It also, exposes that the latencies in these tests are larger than

their peers in the tests of the single topology in proportional values.

Finally, the comparison of the connection flow-setup latency of these latencies with the

latencies of the single topology testes indicates an identical attitude toward the packet

size and background load. Also, it helps to compute the latency at each switch (when

installing the forwarding rule for the first packet of the flow).

Figure 3.15: Two-Way Latency measurement comparison between Mininet (OVS) and Physical
testbed (HP Aruba) in three different techniques.

Figure 3.16: Flow setup Latency measurement comparison between Mininet (OVS)
and Physical testbed (HP Aruba) in two different techniques.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 63

3.3.5. Formulating a New Latency Metrics and Equation for SD-WAN

Examining and measuring the SD-WAN latency leads to defining new latency metrics

and formulates the latency equation. This section explains: the motivation for creating

the new metrics; Then, the steps of creating the connection; After that, the new metrics

and their components; Flows by, formulating the latency equations; Finally, computing

the value of every latency components from the testes results and equations.

1) The motivation of using the new latency metrics

As mentioned in Chapter one, Section "1.3. Research Methodology", the previous

placement researchers only compared some latency features which were the focus of the

optimisation process, before and after applying their placement. For example, the

switch-controller latency, the inter-controller latency and the flow-setup latency (see

chapter two Section 2.3.1). The flow-setup latency is defined as the summation of the

latencies for sending the first packet of flow from the switch to the controller, processing

it in the controller and installing its forwarding-rules back to the switch's flow-table

(Jimenez et al., 2014). All previous latencies represent only the individual delays at the

switch or controller and do not demonstrate the latency of the complete path of the flow.

Therefore, He et al. (2017) models the end-to-end flow-setup latency, which calculates

the latency of transferring the first packet along the complete path from the sender to

the receiver computers for single flow only. In He's line of thought, this research

demonstrates that even the end-to-end flow-setup latency does not show the complete

latency for the full process of sending a packet between any two hosts. That was the

motivation to compute a new latency metric which is the 'connection flow-setup

latency' and its features which are the 'connection control-path latency' and

'connection data-path latency'. This introduces a clearer demonstration of the

controller placement effect on the latency of the flow-setup time for connecting two

communicators. The connection flow-setup latency is defined as the summation of all

the time fractions for sending the first packet from the source-host to the destination-

host, which is required to set the connection flow-rules of three flows in order to

perform the sending operation. The connection control-path latency is restricted by the

time summation of transferring the control packets that lead to complete the sending

operation. Finally, the connection data-path latency includes the time of forwarding

these packets through the path between the two hosts. Before defining the new metrics,

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 64

it is important to understand and define the steps of creating a connection, as explained

in the next section.

2) Defining the connection steps

Sending a packet from the source (Src.) host to the destination (Dst.) host starts by

requesting the Media Access Control (MAC) address of the destination computer

(Plummer, 1982) (Goralski, 2009). Then, the original packet is constructed and sent.

Therefore, the process of sending the first packet consumes three flows as demonstrated

in the Figure 3.17 below. The first flow is the MAC request, the second flow is the MAC

reply, and the third flow represents the first packet that is intended to be sent to the

destination. However, the fourth flow is responsible for acknowledging the receiving of

the first packet at the destination, which does not consider its time as part of the

connection flow-setup latency (marked by shaded rectangular in Figure 3.17).

Regardless of the type of the first packet, it is not important because the flow-rules are

set according to its type. For example, if it is a TCP packet, then the TCP three handshake

could be performed without the need for new flow-rules as its flows are already defined

in the two directions.

 Host 1
(Src.)

Host 2
(Dst.)Switch 1Controller

MAC
request

Flooding MAC
request

MAC
request

 Set rule for MAC request

 MAC reply

Forwarding MAC
reply

MAC reply

 Set rule for MAC reply

First packet
request

Forwarding First
packet

ICMP,TCP
or UDP

First packet request

 Set rule for First packet
request

First packet reply

Forwarding MAC
reply

 First packet reply

 Set rule for First packet
reply

Flow 1 latency
(Included in connection

flow-setup latency)

Flow 2 latency
(Included in connection

flow-setup latency)

Flow 3 latency
(Included in connection

flow-setup latency)

Flow 4 latency
(Not included in connection

flow-setup latency)

Figure 3.17: The steps of connection flow-setup latency.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 65

3) Defining the latency components:

The process of sending the first flow starts when the packets arrive at the switch, which

is connected to the source-host (see Figure 3.18). The switch then sends a flow-request

to the controller through the control-path (red-dashed-line), which produces a delay

that compounds of the Control-Path Switch (CPS) delays and the Control-Path Link

(CPL) delays. After that, the controller computes the flow-rules in time called Controller-

Delay (CD). Then, the controller uses the control-path, which connects itself to every

switch to send the generated flow-rules simultaneously to all the switches on the data-

path between the two hosts. Finally, the first packet of the flow is passed through the

data-path (green-dashed-line), which creates a delay that is composed of the Data-Path

Switch (DPS) delays and the Data-Path Link (DPL) delays.

The complete delay of passing one flow equals the summation of the controller-delay,

the control-path delay (the flow-request delay, flow-rules installation delay) and data-

path delay (the delay of forwarding the first packet along data-path), as demonstrated

below:

1. The controller delay is the complete delay at the controller itself.

2. The flow-request delay is the delay of the control-path from the source switch to

the controller (CPS1+CPL1).

Figure 3.18: The outcome of examining the latency optimisation.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 66

3. The flow-rules installation delay is the delay of the control-path from the

controller to the farthest switch in the data-path of the flow (CPS1+CPS2+CPS3 +

CPL1+ CPL2+ CPL3), because all flow-rules are send simultaneously.

4. The data-path delay is the accumulated delay of the switches and links of the

data-path DPS1+ DPS2+ DPS3 + DPL1+ DPL2+ DPL3).

Finally, the equation in Figure 3.18, demonstrates the connection flow-setup latency,

which includes the delays of the three flows (complete connection), but for a single

controller. This equation will be explained in detail in the next section for a more

complete view of SD-WAN, when it has multiple controllers.

4) Connection control-path latency

It is the summation of all latencies of control-packets, which are exchanged between the

switches and controllers to install the required flow-rules for the three flows, which are:

the switch latency, link latency and inter-controller latency. The control-path latency is

represented by the red-dashed-line, which is located above the switches in Figure 3.19.

Figure 3.19: An example of SDN to demonstrate the connection control-path latency and connection

flow-setup latency.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 67

The connection control-path latency is also presented as a mathematical expression in

the last five brackets (red-shaded-rectangular) of the equation of the connection flow-

setup latency in Figure 3.19 above. The latencies of these five brackets are as follows:

1. First bracket: Two flow requests from the source switch to its controller (for

sending MAC request and original packets in the forward direction)

2. Second bracket: One flow request from destination switch to its controller (for

sending MAC reply in the opposite direction);

3. Third and fourth brackets: Every controller requires installing three flow rules in

data-path switches to pass the required packets in two directions.

4. Last bracket: The inter-controller latency. It is comprised of three packets, two

of them passing the flow-rules from the first controller to another one (to

forward MAC request and original flow), while the last packet carries the flow-

rules from the second controller in the opposite direction (to forward the MAC

reply).

5) Connection flow-setup latency

It consists of the controller delay (grey-shaded-rectangular), the connection data-path

delay (green-shaded-rectangular) and the connection control-path delay (red-shaded-

rectangular) as interpreted in Figure 3.19 and the above section.

6) Computing the latency components

The computation of the latencies from the results of the conducted tests are based on the

following assumptions:

1. The delays of the three flows (Mac request, MAC reply and desired flow) are

considered equals.

2. The propagation delays of the links of the physical testbed are ignored because

they are only 5.5 ns/m for Ethernet (cat5) links (Beckhoff Automation GmbH & Co.

KG, 2017), and the length of the used links was only one meter.

3. The propagation delays of the fibre optic links considered from 3.3 μs/Km for the

new Photonic crystal fibres (PCFs) (Brosi, 2008)(Kawanishi et al., 2012)(Kawanishi

et al., 2013), to 5 μs/Km for the standard optical fibres (Bobrovs et al., 2014).

Therefore, the CPL and DPL propagation delay equal the multiple of the fibre optic

delay (5 μs/Km) by the length of the link.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 68

After that, two types of computation are performed to compute the other latency

components that occur, when setup the first connection and when forwarding the data

over this connection after that.

The explanation of computing the latencies of forwarding data over established

connections, will come first because some of its latency components are needed when

computing the latencies of setup the connection.

A) Computing the latencies of forwarding data over established connections

The computation of this section finds the values of the following latency components:

The latency of forwarding the control packets (OpenFlow packets) through the switches

of the control path, which is CPS latency; Also, the outcome of this computation

represents the latency of forwarding the data packets through the switches of the data-

path, when the switches have the flow-rules (not the first packet of the flow), which are

approximately equal to the CPS latency. The steps for performing this computation are

as follows:

1. Obtaining the latency of forwarding the packets of small windows size (1.5 KB) for

the single topology (343.5 μs) and for duplex bus topology (971.55 μs), from the

tests of the asynchronies measurement technique on the physical testbed (see

Figure 3.11-b and Figure 3.15-b). It is noteworthy that these latencies are the two

way latencies.

2. Subtracting the latency of the single switch topology from the latency of the four

switches of the duplex bus topology to obtain the residual latency of passing the

packet through the last three switches. Then, dividing the results of the previous

step by three to find the latency at one switch (for two ways) (see Equation 3.7

below). Subtracting these two latencies removes any additional latency which

could be produced by the communicators' interfaces and keep only the delay of

forwarding the packet at the switches.

𝑇𝑤𝑜 𝑤𝑎𝑦𝑠 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 𝑎 𝑝𝑎𝑐𝑘𝑡 𝑎𝑡 𝑜𝑛𝑒 𝑠𝑤𝑖𝑡𝑐𝑕

 = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 4𝑠𝑤 − 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 1𝑠𝑤 / 3 (3.7)

971.55- 343.5 = 628.05/3 =209.35 μs two ways latency of forwarding a packet at one switch

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 69

3. Dividing the two ways latency of one switch by two to get the one-way latency (see

Equation 3.8 below).

𝐶𝑃𝑆 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (𝐸𝑞𝑢𝑎𝑙𝑠 𝑜𝑛𝑒 𝑤𝑎𝑦 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 𝑜𝑛𝑒 𝑠𝑤𝑖𝑡𝑐𝑕)

= 𝑇𝑤𝑜 𝑤𝑎𝑦𝑠 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 𝑜𝑛𝑒 𝑠𝑤𝑖𝑡𝑐𝑕 2 (3.8)

The value of CPS latency demonstrates that the latency at a single node is larger than the

propagation latency of 20Km according to the standard fibre optics specifications

mentioned above.

B) Computing the latencies of setup the connection

This computation calculates the values of the following latency components: The latency

at each switch on the data path when passing the first packet of the flow (DPS latency);

Also, It computes the controller delay (CD). The steps for performing this computation

are as follows:

1. Obtaining the latency of forwarding the first packet of small windows size (1.5 KB)

for the single topology (280.448 ms) and for duplex bus topology (603.514 ms),

from the tests of the asynchronies measurement technique on the physical testbed

(see Figures 3.12-b and 3.16-b). It is noteworthy that these latencies are the two

ways latencies of two flows (MAC flow and desired flow).

2. Subtracting the latency of forwarding the first packet of the single switch topology

from the latency of the four switches of the duplex bus topology to obtain the

residual latency of passing the first packets through the last three switches. Then,

dividing the results of the previous step by three to find the latency at one switch

(for two ways of two flows) (see Equation 3.9 below). Subtracting these two

latencies removes any additional latency which could be produced by the

controller and keep only the delay of forwarding the first packet at the switches.

𝑇𝑤𝑜 𝑤𝑎𝑦𝑠 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 𝑡𝑕𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑜𝑓 𝑡𝑤𝑜 𝑓𝑙𝑜𝑤𝑠 𝑎𝑡 𝑜𝑛𝑒 𝑠𝑤𝑖𝑡𝑐𝑕

= 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 4𝑠𝑤 − 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 1𝑠𝑤 / 3 (3.9)

𝑪𝑷𝑺 𝒍𝒂𝒕𝒆𝒏𝒄𝒚 = 209.35 / 2= 104.675 μs one-way latency of forwarding a packet at one switch

603.514 - 280.448 /3 = 107.688 ms two ways latency of forwarding the first packets of two flows at
one switch

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 70

3. Dividing the two ways latency at one switch by two to get the one-way latency (see

Equation 3.10 below).

𝑂𝑛𝑒 𝑤𝑎𝑦 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 𝑡𝑕𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑜𝑓 𝑡𝑤𝑜 𝑓𝑙𝑜𝑤𝑠 𝑎𝑡 𝑜𝑛𝑒 𝑠𝑤𝑖𝑡𝑐𝑕

= 𝑇𝑤𝑜 𝑤𝑎𝑦𝑠 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 𝑡𝑕𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑜𝑓 𝑡𝑤𝑜 𝑓𝑙𝑜𝑤𝑠 𝑎𝑡 𝑜𝑛𝑒 𝑠𝑤𝑖𝑡𝑐𝑕 2 (3.10)

4. Dividing the one ways latency of two flows at one switch by two to get the one-way

latency of one flow (see Equation 3.11 below).

𝐷𝑃𝑆 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑂𝑛𝑒 𝑤𝑎𝑦 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 𝑡𝑕𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑜𝑓 𝑜𝑛𝑒 𝑓𝑙𝑜𝑤 𝑎𝑡 𝑜𝑛𝑒 𝑠𝑤𝑖𝑡𝑐𝑕 =

 𝑂𝑛𝑒 𝑤𝑎𝑦 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔 𝑡𝑕𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑜𝑓 𝑡𝑤𝑜 𝑓𝑙𝑜𝑤𝑠 𝑎𝑡 𝑜𝑛𝑒 𝑠𝑤𝑖𝑡𝑐𝑕 2 (3.11)

5. Finally, the CD is calculated using the formula shown in Figure 3.20 and Equation

3.12.

𝐶𝐷 =

 latency of forwarding the first packet of single switch topology − 𝐷𝑃𝑆1 ∗ 4 − 𝐶𝑃𝑆1 ∗ 8 (3.12)

All the above latency components are applied to compute the connection flow-setup

latency using the formula which is presented in Figure 3.19.

107.688 /2 = 53.844 ms one ways latency of forwarding the first packets of two flows at one switch

DPS latency= 53.844 /2 = 26.922 ms one ways latency of forwarding the first packet of one flow at
one switch

CD= 280.448 - {107.688} - {8*104.675/1000} = 172.76 - 0.8374= 171.9226ms

Figure 3.20: The formula of calculating the controller delay.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 71

3.4. Developed Technique to Measure the Latency of OpenFlow Packets
Using the Controller

This section measures the latency of the OpenFlow packets that are exchanged between

the controller and its switches. This latency is represented by the control path latency,

which consists of all the CPSs and CPLs latencies that are resulted by the switches and

links of this control path. These latencies are calculated from the results of the previous

asynchronies technique, but by using the hosts in data-plan and normal data packets.

Therefore, they are measured this time using the controller and OpenFlow packets to

prove the validity of the previous assumption, which considered the DPS latency of

forwarding the data packet (not first data-packet) and CPS latency of forwarding the

OpenFlow packet through the switch are almost equal.

It is noteworthy that, to learn about the related work of the latency measurement

technique, see Section 3.3.1. Furthermore, the testbed description could be found in

Section 3.3.3. Also, it is possible to revise the latencies definition in Section 3.3.5.

3.4.1. Description of the OpenFlow Latency Measurement Technique

This technique using the controller machine to capture the time of sending and receiving

the OpenFlow symmetric packets, which are continuously exchanged between the

controller and its switches every five seconds. The computation is performed on the

captured traffic of these symmetric packets, which are captured for about five minutes.

This technique could be described in two processes, which are: (A) The capturing

process; and (B) The analysis process.

A) The capturing process: The steps of this process as follows.

1. Connect the duplex bus topology of four hp SDN switches and HP VAN controller,

as shown in Figure 3.21.

2. Start Mininet VM on the same computer, which hosted the controller.

3. Start Wireshark from Mininet (to read OpenFlow header).

 #sudo Wireshark &

4. Start Capturing the interface eth0.

5. Use the (of) filter to display all OpenFlow traffic.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 72

B) The analysis process: The steps to analyse the traffic and compute the latencies are

as follows:

 The topology has four switches, so it is needed to analyze the traffic of each switch

individually, to find the RTT between the controller and every switch.

 Each switch will reply to the controller when they receive a controller request.

Therefore, to extract the RTT of bi-directional request-reply packets, two filters are

required as following;

1. Filtering the request from the controller to the switch (request C --> SW)

(of) && (of10.echo_request.type == 2) && (ip.dst == 195.195.93.184)

2. Filtering the reply from the switch to the controller (reply SW --> C)

(of) && (of10.echo_reply.type == 3) && (ip.src == 195.195.93.184)

 After applying each filter, export the display packet as CSV (excel) file.

 Then, subtracting the Request time from the Reply time to calculate the RTT for

each bi-directional request-reply between the controller and the switch (see

Equation 3.13):

[RTT] =(reply-time) – (request-time) (3.13)

Figure 3.21: The testbed of implementing the OpenFlow latency measurement technique.

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 73

 After that, subtract the RTT of the subsequent switch (swi+1), from the RTT of the

previous switch (swi), to find the delta RTT of connecting the switch to its

predecessor switch in the duplex bus topology (see Equation 3.14).

[𝐷𝑒𝑙𝑡𝑎 − 𝑅𝑇𝑇 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑤𝑖+1 𝑎𝑛𝑑 𝑠𝑤𝑖] = (RTT𝑠𝑤𝑖+1) – (RTT𝑠𝑤𝑖) (3.14)

 Finally, dividing the Delta-RTT between switches by two to obtain the one-way

forwarding latency from (SW2) to (SW1) (see Equation 3.15). This latency

represent the CPS latency of (SW2), bearing in mind that, the CPL latency is ignored

because it is very small (only 5.5 ns/m).

 𝐶𝑃𝑆 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐷𝑒𝑙𝑡𝑎 − 𝑅𝑇𝑇 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑤𝑖+1 𝑎𝑛𝑑 𝑠𝑤𝑖 / 2 (3.15)

3.4.2. The Results of the OpenFlow Latency Measurement Technique
This section presents only the average value of RTT of every switch. Then, it

demonstrates how to calculate the CPS latency from the resulting RTT of these switches,

as below:

1. Switch 1:

 RTTaverage = 0.000527912 second

2. Switch 2:

 RTTaverage = 0.000683979 second

 Apply Equation 3.14 to compute the Delta-RTT:

 Apply Equation 3.15 to compute the CPS latency:

3. Switch 3:

 RTTaverage = 0.000865087 second

 Apply Equation 3.14 to compute the Delta-RTT:

 Apply Equation 3.15 to compute the CPS latency:

4. Switch 4:

 RTTaverage = 0.00104125 second

 Apply Equation 3.14 to compute the Delta-RTT:

Delta-RTT-sw2-1= 683-527=156 µs

CPS latency sw2= 156/2= 156 µs

Delta-RTT-sw3-2= 865-683= 182 µs

CPS latency sw3= 182 /2= 91µs

Delta-RTT-sw4-3= 1041 - 865 =176 µs

CHAPTER THREE OPTIMISATION METRICS OF CONTROLLER PLACEMENT

Page | 74

 Apply Equation 3.15 to compute the CPS latency:

Finally, the average value for the three DPS latencies is 85.6 µs. This value indicates that

the difference between the results of this measurement and the previous measurement

of the asynchronies technique (104.675 µs) is only 19 µs. This proves that the CPS

latency of the data packet almost equals to the control packets. In addition, this small

difference may occur because the synchronized packets between the controller and its

switches are smaller than 1.5KB, and also they are continuing packets.

3.5. Summary and Conclusion

This chapter examines if the control packets affects the SD-WAN bandwidth. Also, it

monitors and measures the latency metrics of creating the connection between two

hosts, in order to define the complete latency formula and determine the values of

latency metrics. This measurement identified a complete view of latency of SD-WAN and

led to understanding to what extent the controller placement could affect this latency.

This chapter present examination as three contributions. The novel SFOP routing

algorithm and its tests are explained. Then, the new asynchronies measurement

technique is used to evaluate the performance of the physical and emulated SDN

equipments. Consequently, another technique is employed to measure the latency of

forwarding the OpenFlow packets on the switches of the control path.

In conclusion, the results of the SFOP routing algorithm demonstrate that the small

control packets of OpenFlow do not degrade the network bandwidth, either with the

shortest path or SFOP routing algorithms. Therefore, the research kept using the

shortest path routing algorithm. It follows that, the outcome of the tests of the

asynchronies technique algorithm contributes to the construction of the equation of the

connection flow-setup latency and computes the value of its components from the

practical results of the physical devices. Also, it helped to identify the required

calibration of the performance metrics, which support the realism results of the

emulated SD-WAN. Finally, the measurement technique for measuring the latency of the

OpenFlow packets using the controller proves the validity of the CPS latency value,

which is calculated by the previous asynchronies technique. Also, it proves the validity

of the assumption that the forwarding latency is approximately equal for control and

data packets.

CPS latency sw4= 176 /2= 88µs

Page | 75

CHAPTER FOUR
COVN PLACEMENT ALGORITHM

4.1. Introduction

This chapter presents the design of the novel COVN placement algorithm for SD-WAN

with multiple virtual networks. It starts by restating the research problem that is

identified by the thesis (missing a controller placement algorithm for multiple virtual

networks) and presenting the main contribution (COVN placement algorithm). After

that, Section 4.3 introduces the objectives, requirements and purpose of the new model.

Then, Section 4.4 explains the possible methods to place the controllers of SD-WAN with

multiple virtual networks in three different scenarios to validate the most appropriate

solution, which is considered in the present thesis. Subsequently, Section 4.5 describes

the usage and dynamic implementation of the COVN placement algorithm. The complete

structure of the algorithm is then shown in Section 4.6. The design of the algorithm is

demonstrated after that in two parts. Finally, the chapter ends with a summary and

conclusion of the presented design.

4.2. Problem Statement and Solution

This section summarises the considered research of the controller placement algorithms

and states the problem, with the proposed solution. As mentioned earlier in the

literature review, the controller placement problem was developed to optimise several

criteria of SD-WAN such as: minimising flow-setup latency, maximising the reliability,

reducing the cost and power consumption and considering the multi-objective approach

(see Chapter 2, Section 2.3.5). The present thesis investigates all the above models and

finds the following problem, to the best of the author knowledge, all previous research

of controller placement does not observe the inevitability of deploying the virtual

networks over SD-WAN to extend its ability and increase its flexibility. Consequently,

there is no single placement algorithm to dynamically place the controllers of SD-

WAN with multiple virtual networks. Therefore, this thesis aims to design a novel

controller placement algorithm, called COVN placement algorithm, to dynamically

place the controllers of SD-WAN with multiple virtual networks to optimise their

reliability, their flow-setup latency, their load balancing and their resources

utilisation.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 76

4.3. Introducing the Objectives and the Requirements of the COVN
Placement Algorithm

This section explains the objectives and requirements of the sliced SD-WAN. The last

sub-section highlights the differences between the controller placement algorithm for

SD-WAN and the one for SD-WAN with multiple virtual networks.

4.3.1. The Objectives of COVN Placement Algorithm

The COVN algorithm performs the following objectives: First, the flow-setup latency is

minimised through reducing the latency resources such as: the link delay (distance

between nodes), the number of hops between switch and controller, the inter-controller

communication latency and the controller response time (restricting the capacity of the

controllers); Second, the network resilience is optimised via including the rank of the

nodes which host the controllers (number of joint paths from this node to all switches)

and preparing the backup controllers; Thirdly, the load balance is provided by

partitioning the SD-WAN into balanced clusters and assigning each cluster to the most

appropriate controller by considering the distance and the current load of the

controllers; Finally, utilizing the SD-WAN resources is achieved through assigning the

minimum number of controllers for each VN, which reduces the number of active

controllers and the used paths (switches-controllers and inter-controllers paths).

4.3.2. The Requirements of COVN Placement Algorithm

In order to set up the requirements of COVN placement algorithm, the sliced model of

SD-WAN should be described, and some terminology which is used in this thesis should

be defined. Running multiple virtual networks over a physical SD-WAN will slice it to

create a more flexible model of the network which functions as several dedicated

networks. Hence, this requires placing the controllers of every slice independently.

Each VN could have a different administration and serve a different sector of the

community such as Education, Health and Telecom. One essential purpose of having the

dedicated virtual networks is for utilising the usage of the physical resources by

modifying the virtual topology according to the demands of the services (Ordonez-

Lucena et al., 2017). Therefore, each VN can instantly make substantial changes in its

topology due to the high flexibility of the software-based topology. Consequently, every VN

needs to adjust its controller placement frequently, which requires a minimal computation

complexity of a placement algorithm. The virtual controllers need to be adjusted

dynamically in reaction to the changes of data-plane as will demonstrate in Table 4.2.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 77

In this study, the researcher assumes that the control layer of SD-WAN is composed of

logically centralised but physically distributed controllers (see Figure 4.1). The

controllers are connected and collaborate. However, they are placed in various locations

to avoid a single point of failure and to reduce the switch-controller communication

latency. Usually, in SD-WAN the controller comprises of a server, with controller

software running over it. Differently, in the sliced SD-WAN, the controller requires a

powerful server which hosts multiple dedicated instances of controllers' software each

serving one VN or a single controller software serving all virtual networks. In this thesis,

the active server which is hosting the controller software is called the physical

controller and the controller software that runs on the server (either the dedicated

controller or a portion of the controller) is called the virtual controller as shown in

Figure 4.1. Possessing two types of controller requires a separation of the process of

locating the physical controllers from the process of placing the virtual controllers.

Additionally, to study the usability of the existing placement algorithm with the sliced

SD-WAN, this chapter presents the current placement algorithms according to their used

approach into two groups, see the left side of Figure 4.2. The first group defines the

controller node as a location which optimises the targeted metrics. This group searches

the subset of nodes which could get the optimal value of the desired metrics, for example

(Heller et al., 2012). The second group splits the topology into clusters, then finds the

optimal location for the controller of each cluster to optimise specific metrics for

Figure 4.1: The SD-WAN with multiple virtual networks.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 78

instance (Zhang et al., 2011). Both groups end up with the controller's locations relating to

a subset of nodes named as control domains or clusters, see the left side of Figure 4.2.

Placing the physical controllers according to the clusters of the physical topology does

not provide an optimal controller placement because every slice has a different virtual

topology and necessitates a different placement. Therefore, the COVN algorithm requires

the provision of a physical controller placement which is not related to the clusters of the

physical topology to enable an efficient placement for each VN, see the right side of Figure

4.2. The explanation of this assumption will be demonstrated in Section "4.4 COVN

Placement Approach ".

From the above, it is possible to reorganise and summarise the requirements of COVN

placement algorithm as follows:

1) COVN placement needs to place the physical controllers (active servers) by

considering the prerequisites of the entire network (all virtual networks), such as the

maximum load and the latency.

2) After that, the algorithm should distribute the virtual controllers (software

controllers) over the physical controllers for every VN individually.

3) The frequent changes in virtual topology cause the virtual controller placement to be

repeatedly applied, which requires the placement algorithm to have a low computational

complexity.

Figure 4. 2: The difference in the outcome of the existing placement and the COVN
placement algorithms.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 79

4) The COVN placement algorithm has to solve a new problem, which is, the placement

of the physical controllers which should not be dependent on the clusters' shape of the

physical topology. This is because each VN could have a different clusters shape of its

topology, the latter requires other locations of physical controllers in order to set the

virtual controllers, see Section 4.4 for more details.

Finally, Table 4.1 displays the disparity in the requirements between the current and the

CONV placement algorithms.

4.4. COVN Placement Approach

(The COVN placement approach of using the whole SDN network as a single domain)

It is notable that the existing placement algorithms determine the position of every

controller in relation to a subset of nodes (cluster) in the SD-WAN topology. Whereas,

the COVN approach needs only to identify the most optimum nodes (controllers'

positions) in the graph without clustering the topology (see the method details in

Section 4.6). This is regarding of coexisting of multiple virtual topologies that have

different shapes, as it is mentioned as in Section "4.3.2. Define The Requirements Of

COVN Placement Algorithm".

In order to solve the above problem, the COVN algorithm should place the physical

controllers without portioning the network so that the VN can only use the required

number of controllers regardless of the domains restrictions. Therefore, the COVN

algorithm depends on using the whole SDN network as a single domain. It works to find

the specific nodes, which have the best communication abilities by exploiting the graph

theory, the details will be presented in Section 4.7. That means the selected nodes have

less latency to communicate with all the other nodes of the network, less latency to

No. SD-WAN placement algorithms SD-WAN with Multiple Virtual Networks
(CONV placement algorithm)

1 Single network. Multi-network.

2 Single step, both the server and controller
software placed together.

Two steps, placing server (physical controller),
then placing the software (virtual controller).

3 Less frequent placement. More frequent placement
(lower computational complexity)

4 Considering the shape of clusters of the
physical topology to place the
controllers.

Should not consider the shape of clusters of
the physical topology to place the physical
controllers.

 Table 4.1: The differences between the requirements of the placement algorithms of SD-WAN
and CONV placement algorithm.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 80

communicate with each other and more routes to connect to other nodes. The number of

the specified nodes should be equal to the number of required controllers. In this way, it

is possible to assign any number and combination of the N nodes (controllers) to control

any network switches. The algorithm would not need to worry about assigning a specific

switch to a specific controller because all controllers have communication abilities

which are approximately similar to all other switches. That helps to assign only the

required number of controllers to each VN. Also, it supports the dynamic change of the

controller's number and location according to the needs of virtual networks.

Figure 4.3: A and B present how to find the four optimal locations of controllers for all

nodes of the network using COVN placement algorithm. In Figure 4.3: C and D, only two

virtual controllers were assigned to manage the red VN. Since, the two controllers have

enough capability to manage the whole red VN. This will reduce the number of virtual

controllers to be used and reduce the inter-controller communication time and

information. Similarly, for the green VN, one controller was sufficient to manage it (see

Figure 4.3: E and F). All of this is now possible due to the new approach of the COVN

placement algorithm. The resulting placement proves the validity of using this approach

in this work.

(A) The physical Network (B) Find N optimal locations

(C) Set red virtual switches (D) Set two red virtual controllers

(E) Set green virtual switches (F) Set green virtual controller

Physical Switch Virtual Switches Physical Controller Virtual Controllers

Figure 4.3: Placing the physical controllers using the COVN placement algorithm to optimise
controller placement of virtual networks.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 81

4.5. The Usage and the Dynamic Implementation of COVN Placement

This section starts by summarising where and when COVN algorithm could be applied,

then it shows why it is possible to apply this algorithm dynamically.

4.5.1. The Usage of the COVN Placement Algorithm

The controller's architecture of SD-WAN is either hierarchy architecture where all

controllers are managed by the master controller or flat where all controllers have a

similar role (Hock et al., 2013). In the hierarchy controllers, the placement algorithm is

always executed by the master controller. While in flat architecture, an undetermined

controller takes the master role to be responsible for performing the dynamic placement

of controllers when needed. Afterwards, this controller may stay active or may be

deactivated and transfer this role to the active one. Consequentially, the algorithm is

always implemented in the master controller.

The second issue which needs to be addressed, is when should the COVN placement

algorithm be applied. Applying this algorithm is dependent on the changes of SD-WAN

status, as summarised in Table 4.2.

This Table demonstrates that there are two types of status changes, the big and small

changes. The big change means the variation of load or number of virtual switches

exceedes or less than the abilities of the current physical controller/s. The big change

No. Type of
change

Description Where Action

1 Big
Change

Increase/decrease the load of all
network.
 More /less than the processing
capacity of physical controller/s.

Overall
network.

Recalculate no. of Physical
controllers.
Replacement the Physical
controllers.

increase/decrease the number of virtual
switches.
More/Less than the nodes capacity of
physical controller/s.

Overall
network.

Recalculate no. of Physical
controllers.
 Replacement the Physical
controllers.

2 Small
Change

Increase/decrease the load of one
virtual network load
 More /less than the processing
capacity of one virtual controller/s.

Over virtual
network only.

Recalculate no. of virtual
controllers.
Replacement the virtual
controllers.

Increase/decrease the number of virtual
switches
More/Less than the node capacity of
virtual controller/s.

Over virtual
network only.

Recalculate no. of virtual
controllers.
 Replacement the virtual
controllers.

 Table 4.2: The summary of all the status of applying the COVN placement algorithm.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 82

leads to the implementation of the COVN placement algorithm overall the physical

network and replaces the physical controllers. The small change defines the change of

load or number of virtual switches within a single VN only, where the variation becomes

over or under the capacity (load processing or a number of nodes) of the virtual

controllers. This causes the COVN placement algorithm to be partially applied over this

virtual network only.

Also, there are two different uses of the placement algorithm. Firstly, it could be used to

optimise the performance of the network when the load or the number of virtual

switches exceeds the ability of the controllers. Consequently, the placement algorithm is

employed to increase the number of controllers to satisfy the new requirements of the

network. Secondly, it may be used to optimise the utilisation of resources. Therefore, if

the load or switch reduction equal to or more than the capacity of one controller, the

placement algorithm is applied to reduce the number of controllers. Keeping the load or

number of switches to less than the current controller's abilities could be efficient in

term of performance of the network. However, it has a negative effect on the utilisation

of resources. Therefore, the final decision about how to use the placement algorithm will

depend on the network administrator.

4.5.2. The Dynamic Implementation of the COVN Placement Algorithm

The COVN placement algorithm is applied in two phases which are, computation and

implementation. Computing the controllers' placement does not disturb the work of SD-

WAN because the placement process is only applied after completing the algorithm

computation. Therefore, the COVN placement algorithm does not have a critical time.

However, the faster the recalculation benefits quicker optimisation of network

behaviour, which means it is acceptable to produce the decision in minutes but not in

hours even for large SD-WAN.

The second phase is implementing the placement decision (reassigning the switches

from the current controller to another one). Even this process does not completely stop

the work of SD-WAN for two reasons. One reason is that, the switches can keep

forwarding the active flows based on the rules instilled before the reassigning process

until all the packets of these flows are delivered. Another reason is, the dynamic

provisioning of controllers by periodically assigning the switch to controller is

developed based on OpenFlow 1.3 (Pfaff et al., 2012), to be live (not noticeable) and safe

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 83

process in many works such as (Dixit et al., 2013) (Bari et al., 2013) (Auroux et al., 2014)

(Tuncer et al., 2015a) (Yanyu Chen et al., 2015) (Tao Wang et al., 2016) (Tao Wang et al.,

2017) and (Cello et al., 2017).

4.6. The Full Structure of COVN Placement Algorithm

The structure of the COVN placement algorithm is demonstrated in this section. The

algorithm consists of: the initialising; the part-one (physical controller placement); the

part-two (virtual controller placement); and the restarting of COVN algorithm, as shown

below in Figure 4.4. The algorithm begins by reading the nodes of physical topology to

identify their connectivity and the length of the links between these nodes and also the

nodes positions. Also, it identifies the maximum capacity of load, which is the number of

switches or the flow requests per second. The last task for the initialisation process is

identifying the preferred network policy, for example, using the placement algorithm to

optimise only the performance or both network performance and its utilisation of

resources.

After that, the part-one of the COVN algorithm is performed, which is the placement of

physical controllers. It calculates the maximum number of physical controllers needed

(N) according to the maximum number of switches or their load. After that, it finds the

optimal (N) locations to place the physical controllers according to the closeness and

connectivity of these loacations.

Coming next, the part-two of the COVN algorithm which is the independent placement of

virtual controllers of each VN. It places the controllers according to the number of virtual

switches, their locations and the most suitable physical controller in term of

communication latency, reliability against path failures and load processing capacity (to

optimise the load balance among the physical controllers). Also, it shows how to manage

the independent dynamic placement of each VN. If the number of virtual switches or its

load is changed, the replacement algorithm of the virtual network is executed.

Finally, the reapplication conditions are performed in the restarting step. It keeps

checking the controller status and comparing it to the identified parameters.

Consequently, it reapplies the placement algorithm if the check has passive results to

optimise the SD-WAN dynamically, see Figure 4.4 below.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 84

4.7. The COVN Placement Algorithm Part-One

The part-one of COVN algorithm is placing the physical controllers. This part calculates

the number of active and backup controllers needed regarding the maximum load of the

complete network. Then it identifies the controllers' positions by selecting the optimum

nodes in the entire graph according to their closeness (latency) and connectivity

Start

Read topology
(Connectivity, distance and positions matrices)

Specify Administrator policy
(Performance, utilization etc.)

Defined Maximum load
(Nodes and Load.)

Calculate number (N) of physical controllers

Find (N) optimal locations
(Closeness and Reliability)

Placement of one virtual network

Calculate number and location of virtual controllers
(Minimum Latency and controller load)

Does load of Virtual network
change?

There is another virtual network?

Does switches of Virtual network
change?

No

No

Initialising
Input

Does ports count of all networks
exceed/deceed specify capacity?

No

No

Does transmission load of all
networks exceed/deceed specify

capacity?

Wait for specified time

No

Yes

Yes

Yes

Yes

Yes

Part-One
Physical

placement

Part-Two
Virtual

placement

Restarting
Reapplying
conditions

Figure 4.4: The structure of the COVN placement algorithm.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 85

(reliability). The closeness indicates the nodes which possess the lowest latency to

communicate with all other nodes of the network. While, the connectivity specifies the

nodes which have the highest reliability against path failures with all other graph nodes.

The following subsection demonstrates why combining the multi-objectives is used.

After that, the sub-features of the latency and reliability is defined. Then, the design of

part-one is explained. Finally, the computational complexity of this part is presented.

4.7.1. Trading-off versus Combining the Multi-Objectives (Latency and

Reliability)

The objectives of placing the physical controllers are: optimising the SD-WAN flow-setup

latency and its reliability against any failure (path and controller failures). However,

process two of the methodology reveals that optimising the latency by improving the

controller placement produces a small latency optimisation (see Section 1.3-B). The

latency improvement is still considerable because every network has a different

topology and purpose. For example, in the network which has sparse connectivity,

reliability could be more important, while in a network with dense connectivity the

flow-setup latency may act as the optimal target.

On the one hand, trading-off between them could offer an acceptable solution. On the

other hand, combining these objectives with variable weight may introduce better

placement. Therefore, this study tested both ways and found that combining the

latency and reliability according to the method of the COVN algorithm provides a

better placement than trading-off between them.

In more detail, implementing COVN placement base on the latency causing all controllers

to be set in the centre of the network (due to closeness centrality), which could provide

Figure 4.5: The controller placement according to the reliability alone, latency alone and

Combining both of them.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 86

a good latency but could choose some unreliable nodes, see Figure 4.5-A. While, placing

them with COVN algorithm according to the reliability allocates the controllers in the

rubout nodes against path failure but could scatter them across the network which

produces high flow-setup latency, see Figure 4.5-B. Therefore, combining both

placements with specified weight leads to the selection of the reliable nodes which are

located in the centre of the network, to get the optimal placement for this model, see

Figure 4.5-C. The weight of latency to reliability placement differs according to the type

of topology (see results in Chapter 6).

4.7.2. The Features of Latency and Reliability

The flow-setup latency has many features which could be improved in order to get the

optimal flow-setup time. In the present research, the optimised features of the flow-

setup time mainly consist of switch-controller latency, controller response latency and

inter-controllers latency. All of them are included in the flow-setup latency minimisation

as follows. The inter-controller latency is reasonably minimised without harmfully

mounting the controller-switch latency. While optimising the controller response

latency is kept to be improved in part-two of COVN placement. The interest in the inter-

controller latency is based on its effective role in the flow-setup latency which is

mentioned in several placement researches (see Chapter 2, Table 2.6 the points 3,4,8

and 9) and the direct observation from the practical results (see Chapter 6).

The reliability of controller and path failures are taken into account in this thesis.

Controller failure is covered by preparing the backup controllers when calculating the

controller's number. While, path failure is avoided by selecting the graph nodes which

have optimal connectivity to the other nodes.

4.7.3. The Design of COVN Placement Algorithm- Part 1

This section describes the definitions, formulation and the complete design of part-one

of COVN algorithm, which is the placement of the physical controllers (see Figure 4.4).

A) Definitions

 Network:

The COVN placement algorithm considers the SD-WAN as an undirected graph

G (N, L), Where (N) is the nodes of the graph and (L) is the links that are connecting

them. The node count is 𝑁 = 𝑛 and the length of links is 𝐿 = 𝑙. The path (P) is

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 87

the sequence of nodes from Ingress node (In) to Egress node (En), 𝑷 = (𝑰𝒏 =

𝒏𝒊;𝒏𝒊+𝟏,… ,𝒏𝒌 = 𝑬𝒏), where K is the length of the path (its hop count) and

 𝒏𝒊;𝒏𝒊+𝟏 ∈ 𝑵 ∶ ∀𝒊 = (𝟏,… . ,𝒌 − 𝟏). The length of link (l) from node (m) to node

(n) denoted by 𝒍 𝒏,𝒎 , where 𝒏,𝒎 ∈ 𝑵 with associated delay (𝜹𝒍 ≥ 0). Finally, the

controllers of SD-WAN symbols as (C).

 Input:

- The maximum capacity of the physical controller as the number of switches (𝛔𝐂).

- The maximum capacity of the physical controller as requests per second (𝛒𝐂).

- The number of physical switches (n).

- The Load matrix (𝑳𝒅𝑵), which has the load of every switch.

- The connectivity matrix used here is the adjacency matrix (AdjD).

- The weight of the node latency to communicate all other nodes (𝝎𝑳) against the

weight of the node reliability in network (𝝎𝑹).

B) The Formulation of finding the Number of Controllers

Calculating the number of the physical controllers (C) according to controllers' capacity

(𝛔𝐂 or 𝛒𝐂) and the maximum load, which are either the number of switches (see

Equation 4.1) or the requests per second (see Equation 4.2), as following:

𝐶 = 𝑁 σC (4.1)

𝐶 = (𝐿𝑑𝑖
𝑁

𝑁

𝑖=0

) ρC (4.2)

C) The Formulation of finding the controllers Locations

The targeted controllers' node should have the minimal average latency (hop count) and

the maximum average reliability (joint paths) to all the other nodes of the graph. The

COVN placement algorithm is doing that using the graph theorem to count the paths

between the vertices (Rosen, 2012) on page 688. This theorem considers the adjacency

matrix (A) as a map of a graph that indicates the number of the paths with one link of

length between every pair of nodes. Consequently, powering this adjacency matrix to the

second rank (𝑨𝟐) finds the number of paths which have their length equal to two links

between every node pair, and repeating the same process to compute the number of

paths of three links in length, as shown in Figure 4.6.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 88

Figure 4.6 demonstrates an example used to find the number of paths and the length of

the shortest path (the number of links which make up the shortest path) between the

nodes (a) and (c). The highlighted cell in the adjacency matrix (A) indicates that there is

no single link path between them. Similarly, the (𝑨𝟐) shows there is no path of two links

connecting (a) and (c). Therefore, the multiplication is repeated to get (𝑨𝟑), which

presents a single path of the length of three links which joins (a) and (c). That means the

total count of paths of the maximum length equals to three links is only one path and the

length of the shortest path is three. The above theorem is exploited to compute the

nodes which have an optimal closeness and connectivity to all other nodes of the graph

(network) as following:

1. Multiply the adjacency matrix (A) by itself to find the shortest path and the number

of paths between every pair of nodes. This operation stops when the shortest path

and the number of paths are found for all nodes of the graph.

𝑓 𝑥 ==
𝑨𝑲 = 𝑨𝒌

𝐾

𝑘=1

, ∃ 𝑆𝑕𝑜𝑟𝑡𝑒𝑠𝑡𝑃 = ∅

𝑆𝑡𝑜𝑝, ∄ 𝑆𝑕𝑜𝑟𝑡𝑒𝑠𝑡𝑃 = ∅

 4.3

𝑊𝑕𝑒𝑟𝑒 𝑨𝑆𝑕𝑜𝑟𝑡𝑒𝑠 𝑡𝑃 = 𝐴𝑟𝑟𝑎𝑦 𝑜𝑓 𝑠𝑕𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡𝑕 ∀ 𝑁,

 𝐾 = 𝑟𝑎𝑛𝑘 𝑜𝑓 𝑡𝑕𝑒 𝐴 𝑎𝑡 𝑡𝑕𝑒 𝑙𝑎𝑠𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑓𝑜𝑟𝑒 𝑓𝑖𝑛𝑑 𝑡𝑕𝑒 𝑠𝑕𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡𝑕 𝑓𝑜𝑟 ∀ 𝑁.

Paths of length one link between (a) and (c) = 0

Paths of length two links between (a) and (c) = 0

Paths of length three links between (a) and (c) = 1

Total count of paths between (a) and (c) = 0+0+1 =1

The length of the shortest path between (a) and (c) =3

𝐴2 =

1 0 0 1
0 2 1 0
0 1 1 0
1 0 0 2

 𝐴 =

0 1 0 0
1 0 0 1
0 0 0 1
0 1 1 0

 Adjacency matrix

 It is possible to count the number of different paths of length K between 𝒏𝒊 and 𝒏𝒋 , where K is positive
integer equals to the (i,j)th entry of 𝑨𝑲.

 Also, it could find the length of shortest path between any two nodes of graph, which is represented by
the rank (K) of (𝑨𝑲) that disclose the first path between these two nodes.

𝐴3 =

0 2 1 0
2 0 0 3
1 0 0 2
0 3 2 0

b a

c d
0

0

1

Figure 4.6: The graph theorem to find the count of paths between two nodes in the graph.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 89

2. Calculates the nodes closeness centrality which is defined as the average of the

shortest path from the node to all other nodes of the network (Sabidussi, 1966) and

calculated as follows:

𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝑚 = 𝑆𝑕𝑜𝑟𝑡𝑒𝑠𝑡𝑃(𝑚 ,𝑛 𝑖)

𝑁−1

𝑖=0

 𝑁 − 1 4.4

𝑊𝑕𝑒𝑟𝑒 𝑚 ≠ 𝑛, 𝑎𝑛𝑑 𝑆𝑕𝑜𝑟𝑡𝑒𝑠𝑡𝑃 = 𝑆𝑕𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡𝑕 (𝑚, 𝑛)

3. Compute the node connectivity which is defined in this thesis as the average

number of paths used to connect the current node to all other nodes of the graph

and it is calculated as follows:

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑚 = 𝐶𝑜𝑢𝑛𝑡𝑃(𝑚 ,𝑛 𝑖)

𝑁−1

𝑖=0

 𝑁 − 1 4.5

𝑊𝑕𝑒𝑟𝑒 𝑚 ≠ 𝑛, 𝑎𝑛𝑑 𝐶𝑜𝑢𝑛𝑡𝑃 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑕𝑠 (𝑚, 𝑛)

4. Normalizing the 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 and Connectivity according to the Sum-to-One

normalization (STO) method to unify the range of their values (Wu, 2012), as

follows:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝑚 = 𝑁𝐶𝐿𝑚 =
𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝑚

 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝑛 𝑖
𝑁−1
𝑖=0

 4.6

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑚 = 𝑁𝐶𝑂𝑚 =
𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑚

 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑛 𝑖
𝑁−1
𝑖=0

 4.7

5. Sorting the nodes according to their "closeness centrality" ascending to define the

nodes of the smallest latency that are needed to communicate with all the other

nodes.

6. Sorting the nodes according to the inverse of their connectivity ascending to

identify the nodes of the highest reliability in the network.

7. Creating a new weight which is the combination of the node closeness value (their

latency) (ωL) with the inverse of node connectivity value (their reliability) (ωR) to

find the final sort of the nodes, as the following:

𝐶𝑜𝑚𝑏.𝑁𝐶𝐿 − 𝑁𝐶𝑂𝑛 = 𝑁𝐶𝐿𝑛 × 𝜔𝐿 +
1

𝑁𝐶𝑂𝑛
× 𝜔𝑅 (4.8)

𝑊𝑕𝑒𝑟𝑒 𝑛 ∈ 𝑁, ∀𝑛 = (1,… . ,𝑁 − 1).

8. Finally, sorting the nodes according to the new weight ascending and select the

Controllers nodes (C) according to the number of controllers which are found from

the Equations (4.1) or (4.2).

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 90

To summarise and simplify the above steps, they are represented by the Pseudocode

which is displayed in Figure 4.7.

The above steps find the nodes which have the optimal latency and reliability to host the

physical controllers of SD-WAN.

4.7.4. The Computational Complexity of COVN Placement Algorithm Part-One

The highest computational complexity for part one of COVN placement is 𝑶 𝑲𝑵𝟐 , where

K is the maximum iteration until all the shortest paths are founded and N is number of the

network nodes. While finding the optimal placement by brute-force search produces a

large complexity because it grows exponentially when the number of controllers are

increased (Heller et al., 2012), according to the following equation; 𝐴𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑒𝑠 =

𝑵!

𝑪! 𝑵−𝑪 !
 , where C is the controllers' number. In addition, brute-force search needs to

apply the shortest path algorithm for each possibility. The computing complexity of

calculating the shortest path using Dijkstra's algorithm is 𝑶(𝑵𝒍𝒐𝒈𝑵+ 𝑳) (Kaibel and

Peinhardt, 2006). Therefore, the total computation complexity for finding controller

placement using all possibilities is 𝑶 (𝑵𝒍𝒐𝒈𝑵+ 𝑳) ×
𝑵!

𝑪! 𝑵−𝑪 !
 , which is much higher

than the complexity of COVN placement algorithm.

(G: GRAPH, NODE= N, Links=L,)
#Initialise #
1. Input:
𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑤𝑖𝑡𝑐𝑕𝑒𝑠 = σC ;
𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑠 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 = ρC ;
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑤𝑖𝑡𝑐𝑕𝑒𝑠 = 𝑛;
𝐿𝑜𝑎𝑑 𝑚𝑎𝑡𝑟𝑖𝑥 = 𝐿𝑑𝑁 ;
𝐶𝑜𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 = 𝐴𝑑𝑗𝐷;
𝑤𝑒𝑖𝑔𝑕𝑡 𝑜𝑓 𝑡𝑕𝑒 𝑛𝑜𝑑𝑒 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝜔𝐿;
𝑤𝑒𝑖𝑔𝑕𝑡 𝑜𝑓 𝑡𝑕𝑒 𝑛𝑜𝑑𝑒 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜔𝑅;

###Find Controllers Count ###
2. Controller Number=C = 𝑁 σC or = (𝐿𝑑𝑖

𝑁𝑁
𝑖=0) ρC

###Find Controllers Locations ###
3. Initialise: 𝑺𝒉𝒐𝒓𝒕𝒆𝒔𝒕𝑷 = ∅;|* Array of shortest paths
*|
 Initialise: 𝑪𝒐𝒖𝒏𝒕𝑷 = ∅; |* Array of paths count*|
 While (𝑎𝑛𝑦 𝑺𝒉𝒐𝒓𝒕𝒆𝒔𝒕𝑷 𝑖, 𝑗 = ∅)
 𝑨𝑲 = 𝑨 × 𝑨𝑲−𝟏;
 For 𝑎𝑙𝑙 𝑛 ∈ 𝑁 do . /* for all nodes in G *|
 Find shortest path and paths count by graph
theorem;
 Set shortest path in 𝑺𝒉𝒐𝒓𝒕𝒆𝒔𝒕𝑷 ;
 Update path count in 𝑪𝒐𝒖𝒏𝒕𝑷 ;
 End For
 End While

4. For 𝑎𝑙𝑙 𝑚 ∈ 𝑁 do . /* for all nodes in G *|

 |* Compute Nodes Closeness *|

 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝑚 = 𝑆𝑕𝑜𝑟𝑡𝑒𝑠𝑡𝑃(𝑚 ,𝑛 𝑖)
 𝑁−1

𝑖=0 𝑁 − 1 ;

 |* Compute Nodes Connectivity *|
 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑚 = 𝐶𝑜𝑢𝑛𝑡𝑃(𝑚 ,𝑛 𝑖)

 𝑁−1
𝑖=0 𝑁 − 1 ;

 Endfor

5. For 𝑎𝑙𝑙 𝑚 ∈ 𝑁 do . /* for all nodes in G *|

 |* Normalising Nodes Closeness *|

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐶𝑙𝑜𝑠𝑠𝑛𝑒𝑠𝑠𝑚 =
𝐶𝑙𝑜𝑠𝑠𝑛𝑒𝑠𝑠 𝑚

 𝐶𝑙𝑜𝑠𝑠𝑛𝑒𝑠𝑠 𝑛 𝑖
 𝑁−1

𝑖=0

 ;

 |* Normalising Nodes Connectivity*|
 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑚 =

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑚

 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑛 𝑖
 𝑁−1

𝑖=0

 ;

 Endfor

6. Sort according Closeness ascending (smallest latency);

7. Sort according inverse of Connectivity ascending
 (highest connectivity);

8. For 𝑎𝑙𝑙 𝑚 ∈ 𝑁 do . /* for all nodes in G *|

 |* Combine Nodes Closeness and inverse of connectivity values*|

 𝐶𝑜𝑚𝑏.𝑁𝐶𝐿−𝑁𝐶𝑂𝑛 = 𝑁𝐶𝐿𝑛 ×𝜔𝐿 +
1

𝑁𝐶𝑂𝑛
×𝜔𝑅 ;

 Endfor
 Sort according combined weight ascending;
 Select C controllers' nodes;

Figure 4.7: The Pseudocode of part 1 of COVN placement algorithm.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 91

4.8. The COVN Placement Algorithm Part-Two

Part-two of COVN placement algorithm places the virtual controllers for every VN

separately. The placement of virtual controllers consists of two sections which are,

clustering the VN and assigning the virtual controllers of this VN. In the first section,

every VN is partitioned into balanced and position related clusters. The second section

determines the most appropriate physical controller that could host the virtual

controller of every cluster according to the switch-controller latency. The clustering of

the VN is performed by a novel clustering algorithm proposed by this research, called

Peripheral Clustering Algorithm. What follows next is the explanation of the two

sections of the placement of the virtual controllers.

4.8.1. The Motivation to Propose a Novel Clustering Algorithm

Part two of COVN placement algorithm needs to partition the network into balanced,

connected and converged clusters. As well as this, it is required that every VN

dynamically segmented which necessitates the smallest possible computational

complexity for segmentation process. Therefore, a comprehensive literature review is

performed on the clustering methods to search for the demand clustering algorithm (see

Section "2.4.6. Summary and Conclusion of Clustering Algorithms"). The literature

review discloses that the clustering methods are trading off between results accuracy

and computational complexity. Furthermore, the literature review could not identify a

clustering method that slices the network according to position, load and connectivity

with simple computational complexity.

In addition, several practical tests were conducted in this research to employ the K-

means, Breadth-First Search (BFS), and Spectral Geographical Clustering (SGC) to

partition the SD-WAN but they did not produce acceptable results. For instance, K-

Means has a high computational complexity and generates a different shape of cluster

every execution due to the random starting of the clusters' centroid. The BFS creates

unbalanced clusters, and SGC can only partition the network into an even number of

clusters.

The need for clustering accurately according to the pre-mentioned requirements with

the lowest computational complexity was the motivation to develop a novel clustering

algorithm, called Peripheral Clustering Algorithm. This new algorithm provides any

number of connected clusters with a balanced load and converged positions. Also, it

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 92

consumes an accepted computation complexity, which allows it to be applied

dynamically, as shown below:

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑄 ∗ 𝑰

𝛔𝐐−𝟏

𝑰=𝟎 𝑤𝑕𝑒𝑟𝑒 𝑸:𝑁𝑜 .𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 , 𝛔𝐐: 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .

 (4.9)

4.8.2. The Design of the Peripheral Clustering Algorithm

As mentioned above, the first section of placing the virtual controllers is represented by

partitioning the virtual network using the peripheral clustering algorithm. This

algorithm could be summarised in three stages, Initialising, clustering and balancing

(see Figure 4.8).

Figure 4.8: The structure of the peripheral clustering algorithm.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 93

These three stages are explained in detail below:

A) Initialization stage: it includes: the reading of the adjacency matrix which

represents the network connectivity; Also, the reading of the load matrix which

identifies the load of each node if required; Furthermore, the choosing of the desired

balance approach, which could be the summation of cluster nodes or the summation of

their load; Followed by calculating the maximum and minimum capacity of the cluster to

be used as a boundary for the cluster sizes. The initial stage is finished by drawing the

graph and finding four diagonal edges for it, which would be used as a base point in the

clustering process (see Figure 4.9 below).

The four diagonal edges are virtual nodes in the coordinate space and not a node of the

graph. The X and Y of the diagonal edges extracted from the coordinates (X and Y) of all

the nodes of the graph are as the follows:

1. Finding the Maximum and Minimum value of X for all graph nodes:

𝑀𝑎𝑥.𝑋 = Max
𝑛∈𝑁

 𝑥1,… . . ,𝑥𝑛 (4.10)

𝑀𝑖𝑛.𝑋 = Min
𝑛∈𝑁

 𝑥1,… . . , 𝑥𝑛 (4.11)

2. Finding the Maximum and Minimum value of Y for all graph nodes:

𝑀𝑎𝑥.𝑌 = Max
𝑛∈𝑁

 𝑦1 ,… . . , 𝑦𝑛 (4.12)

Figure 4.9: Example of the four diagonal edges, which are extracted from node
coordinates.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 94

𝑀𝑖𝑛.𝑌 = Min
𝑛∈𝑁

 𝑦1 ,… . . ,𝑦𝑛 (4.13)

3. The coordinates of the first edge:

𝐹𝑖𝑟𝑠𝑡 𝑒𝑑𝑔𝑒 = 𝑀𝑖𝑛.𝑋,𝑀𝑖𝑛.𝑌 (4.14)

4. The coordinates of the second edge:

𝑆𝑒𝑐𝑜𝑛𝑑 𝑒𝑑𝑔𝑒 = (𝑀𝑎𝑥.𝑋,𝑀𝑖𝑛.𝑌) (4.15)

5. The coordinates of the third edge:

𝑇𝑕𝑖𝑟𝑑 𝑒𝑑𝑔𝑒 = (𝑀𝑎𝑥.𝑋,𝑀𝑎𝑥.𝑌) (4.16)

6. The coordinates of the fourth edge:

𝐹𝑜𝑢𝑟𝑡𝑕 𝑒𝑑𝑔𝑒 = (𝑀𝑖𝑛.𝑋,𝑀𝑎𝑥.𝑌) (4.17)

B) Clustering stage: the second stage is the clustering stage (see Figure 4.8). At this

stage the algorithm uses the four diagonal edges cyclically to create the clusters. It starts

by taking the first edge and sorting all nodes of the graph according to the distance from

the first edge. The algorithm is then inserts the nearest connected node to the first

cluster every loop in order to create this cluster. The loop stops inserting the nodes to

cluster one when the identified cluster capacity is achieved (see Figure 4.9). The graph

nodes which are combined to cluster one are removed from the searching group. After

that, the process is repeated with the second, third and fourth edges cyclically to create

the clusters. The process repetition is stopped when the number of the required clusters

is achieved or the process comes to the end of connected nodes.

In the clustering stage, some nodes are arrested among the clusters, which are defined

as isolated nodes. Also, the clustering stage may end before the distribution of all nodes

of the graph if all clusters achieve the maximum capacity, which produces several

surplus nodes (flooded nodes). The algorithm then distributes the nodes which did not

join any cluster. These nodes include both isolated and surplus nodes which are

mentioned above. The distribution process begins by sorting all clusters according to

their load in descending order. Next, the cluster of minimum load receives one

undistributed node only if any of these nodes is connected to this cluster. The algorithm

then repeats the cluster sorting according to the new load after the minimum cluster

receives one of the undistributed nodes. This loop continues to run until all

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 95

undistributed nodes are distributed. The distribution of isolated and surplus nodes does

not demolish the cluster balance because there are only a few nodes and they are always

added to the clusters with the lowest load (see Figure 4.8).

C) Balancing stage: The third stage is responsible for the balancing of the clusters

which are produced by the previous operations. The balancing is performed in two

directions as shown in Figure 4.8. The left one is minimising the big clusters, which

performs the most balancing optimisation. However, some small clusters are not

connected to big clusters, therefore, they do not optimised to get the desired capacity.

For that reason, the right side is added to guarantee that the algorithm does not leave

any small cluster unbalanced.

The balancing process is designed to work in two different mechanisms in order to keep

a small computational complexity whatever the difference between the unbalanced

clusters. This is because balancing by moving one node in every loop provides a good

computational complexity if the difference is small. While, if the difference between

unbalanced clusters is big, combining and bisecting these two clusters produces better

complexity in this case. Also, it is noteworthy that, there are some important principles

applied in programming these mechanisms to preserve a low computational complexity

without decreasing the accuracy of this clustering algorithm. One principle is using the

sparse array to represent the graph (the network). The sparse array is best to represent

the graph which does not have a dense connection in term of less cells of information

and less computational complexity for any operation on this array. Another significant

principle is converting every cluster into a single graph object that has the defined

external edges connect it to the other clusters. Considering the cluster as one object

shortens the process of searching its connectivity because the search will include only

the external edges instead of all nodes of the cluster. However, this operation increased

the program difficulty because it needs to find the external edges and to update them

with every change to the cluster. For more details see the pseudocode of the left side of

the third stage with its explanation in the rest of this section.

The pseudocode in Figure 4.10, shows that the load could be the number of switches or

the summation of their load which is represented by the flow requests per seconds.

Then it finds the cluster capacity which is the average of the network load. Subsequently,

the algorithm needs to calculate the balancing tolerance value which is based on the

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 96

cluster capacity and the ratio of balancing tolerance. This ratio depends on the

network size and the sensitivity of network toward the load balancing. For example, if

the ability of the controller to manage the load is not very restricted, then the network

has low load sensitivity. This research considers the network is sensitive to the load

balance and uses the ratio equals to 0.1 in all conducted tests. Consequently, the

maximum and minimum cluster capacity is computed to be used as a boundary when

constricting the clusters.

A next worthy step at point 6, is extracting the external edge to deal with the cluster as a

single object. Then, a balancing loop is started with two different conditions. On the one

hand (point 11), if the difference between the cluster capacity and load of the

constructed cluster is small then move one node from the largest to the smallest

connected cluster. On the other hand (point 16), if the difference is large then combine

and bisect the largest and the smallest connected clusters. Identifying the difference

amount as big or small depends on the difference weight which should be specified

before running the algorithm (see Figure 4.10, point 16). The different weights are

(G: GRAPH, NODE= N, Links=L,)
 #Initialise #

1. 𝑳𝒐𝒂𝒅= switches number or summation of switches load (request per second);
2. 𝑪𝒍𝒖𝒔𝒕𝒆𝒓 𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 = Load

No. of controllers ;
3. 𝑩𝒂𝒍𝒂𝒏𝒄𝒆 𝒕𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆= (0.1 𝑡𝑜 0.5) × 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦;
4. 𝑴𝒂𝒙.𝑪𝒍𝒖𝒔𝒕𝒆𝒓 𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 = 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦+ 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒;
5. 𝑴𝒊𝒏.𝑪𝒍𝒖𝒔𝒕𝒆𝒓 𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 = 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦;

Minimising the Big Cluster ###

6. Set External edges;

7. Sort Clusters descending (max. at top)

8. While Cluster Load > Max. Cluster Capacity do

9. Sort Clusters descending (max. at top)

10. find Max cluster;

11. if [𝐿𝑜𝑎𝑑.𝑀𝑎𝑥. 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 − 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦] > [(0.1 𝑡𝑜 0.4) × (𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦)]

 /* if difference is big */
12. find min-connected cluster and connections-pairs;

13. Sort connections-pairs; /*farthest from centre first*/

14. Check Cut-vertex;

15. Move node from big-to-small cluster and Update Matrices;

16. Elseif

 /* if difference is small */
17. find min-connected cluster;

18. Combine clusters;

19. Bisect the merged cluster into two clusters;

20. Endif

21. End While

Figure 4.10: The pseudocode of left side in the third stage of the peripheral clustering algorithm.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 97

tested in a range of values between the (0.1 to 0.5). The results demonstrated that

good execution time is achieved at weight 0.4 for most size of SD-WAN's.

Steps 10 and 12 find the maximum and minimum connected clusters and determine the

pair of nodes which connect them. Then step 13, sorts the pairs of connections according

to their geographical remoteness from the centre of the maximum cluster because the

pair which is near the cluster centre has a higher probability of being a cut-vertex.

Therefore, this step tries to minimise the iteration of finding the non-cut-vertex edge

which is performed in step 14. This is because the cut-vertex edge cannot be moved

from the biggest to the smallest cluster as it splits the biggest cluster into two detected

clusters.

4.8.3. The Design of Assigning the Virtual Controllers

The second section is devoted to explaining how every cluster is assigned to the proper

controller. The proper controller is represented by the physical controller which can

host the virtual controller and have the smallest average latency to the cluster switches.

In the present study, the researcher came up with a new method to allocate the

controllers for all clusters. This method is called Farthest-Cluster to Nearest-Controller

(the researcher refers to as FCNC for short), this explained further below:

1. The shortest paths array (number of hops) is obtained from the part one of COVN

placement algorithm- which is the placement of physical controllers, the first step

of ‘multiply the adjacency matrix’.

2. The physical controller's array is also available from the output of the part one of

COVN placement algorithm.

3. Calculating the Average Shortest Path (Avg.ShP) between every cluster (Clu) and

all controllers (Ctr) according to the following equation:

𝑨𝒗𝒈. 𝑺𝒉𝑷 𝑪𝒍𝒖𝒊 − 𝑪𝒕𝒓𝒋 = 𝑺𝒉𝑷𝒏

𝑵−𝟏

𝒏=𝟎

 𝑵− 𝟏 (𝟒.𝟏𝟖)

𝑊𝑕𝑒𝑟𝑒 𝒊 ∈ 𝑰: 𝑡𝑕𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝐼𝑛𝑑𝑒𝑥, 𝒋 ∈ 𝑱: 𝑡𝑕𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑠 𝐼𝑛𝑑𝑒𝑥,

 𝒏 ∈ 𝑵: 𝑛𝑜𝑑𝑒𝑠 𝑜𝑓 𝑪𝒍𝒖𝒊, 𝑎𝑛𝑑 𝑺𝒉𝑷: 𝑠𝑕𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡𝑕 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒 𝑎𝑛𝑑 𝑪𝒕𝒓𝒋.

4. Sorting all Avg.ShP in the table that has (J) rows of controllers and (I) columns of

clusters, adding to them the nearest controller column which will be used in next

steps. (see Table 4.3).

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 98

5. Identifying the smallest Avg.ShP for every row and set them in the new column

named Nearest Controller (NC) in order to find the nearest controller for every

cluster. The smallest values of each row in bold and underlined in Table 4.3 above.

6. Determining the biggest value in the column (NC) to make sure that the farthest

cluster will select its nearest controller. In this example, the farthest cluster is

cluster 3 (orange nodes), and its nearest controller is controller 1 (node 12). The

biggest value of (NC) in bold and double underlined in Table 4.3 (see Figure 4.11).

 Controller1

(Node12)

Controller2

(Node18)

Controller3

(Node28)

Controller4

(Node11)

Nearest Controller

(NC)

Cluster1
(Blue) 4.5 3.5 2.5 4.7 2.5

Cluster2
(Turquoise) 2.1 1.8 2.8 3.1 1.8

Cluster3
(Orange) 2.6 3.6 4.4 2.6 2.6

Cluster4
(Brown) 2.4 3 2.4 1.8 1.8

 Table 4.3: An example of sorting the average shortest path (average number of hops) between
clusters and controllers (the values in table belongs to the SD-WAN in Figure 4.11 below).

Figure 4.11: An example to explain the process of assigning the virtual controllers to clusters.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 99

7. Removing the row and column that shows interest in the selected cluster-

controller value as shown in Table 4.4.

8. The second step is the reparation of the first step. It identifies the next smallest

Avg.ShP after deleting the row and column of the first step and sets them in the NC

column (see Table 4.4).

9. Again, finding the biggest value in NC column to let the next farthest cluster chose

the nearest controller, which is cluster1 (Blue nodes) and controller3 (Node28) in

this example as displayed in Table 4.4 (see Figure 4.11 above).

10. Step two ends by removing the chosen row and column similarly to the first step.

11. The above process stops when all clusters receive controllers as demonstrated in

the SD-WAN in Figure 4.11 above.

The FCNC method showed that it can always minimise the worst-case latency by

allowing the farthest cluster to choose its proper controller.

4.8.4. The Computational Complexity of COVN Placement Algorithm- Part 2

To determine the final computation complexity for the part two of COVN placement

algorithm, it is compulsory to define the complexity of every step of this part as

illustrated in the following subsections A and B.

A) The Computation Complexity of the Peripheral Clustering Algorithm

As mentioned before the network is represented by the graph G(N, L), where N is the

graph nodes which are connected by (L) links. The network needs to be partitioned into

(Q) clusters. Every cluster has a capacity as the number of switches (𝛔𝐐) or the load of

 Controller1

(Node12)

Controller2

(Node18)

Controller3

(Node28)

Controller4

(Node11)

Nearest Controller

(NC)

Cluster1
(Blue) Non 3.5 2.5 4.7 2.5

Cluster2
(Turquoise) Non 1.8 2.8 3.1 1.8

Cluster3
(Orange) Non Non Non Non Non

Cluster4
(Brown) Non 3 2.4 1.8 1.8

 Table 4.4: The second step of assigning the controller to cluster.

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 100

requests per second (𝛒𝐐). Each node has the degree (d), which indicates the number of

edges connected to this node. The summation of the degrees of all nodes is denoted as

(D). The connectivity between the graph nodes is represented by the Spare matrix (S).

Finally, the length of spare matrix is equal to the number graph edges also equivalent to

the half of D (MATLAB, 2017).

The peripheral clustering algorithm has three main stages, initialising, clustering and

balancing (see Section "4.8.2. The Design of the Peripheral Clustering Algorithm"). The

computation complexity of the initialising stage is simple because it is just reading the

input matrices and draw the graph. Therefore, the highest complexity in the initialising

stage is as below:

𝑪𝒐𝒎𝒑𝒖𝒕𝒂𝒕𝒊𝒐𝒏 𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 𝒐𝒇 𝒓𝒆𝒂𝒅𝒊𝒏𝒈 𝑺

1

2
∗ 𝐷𝑁 =

1

2
∗ 𝐝𝐈

𝑵−𝟏

𝑰=𝟎 𝑤𝑕𝑒𝑟𝑒 𝑫𝑵:𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑑𝑒𝑔𝑟𝑒𝑒 , 𝑵: 𝑁𝑜 .𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 , 𝑎𝑛𝑑 𝒅: 𝑑𝑒𝑔𝑟𝑒𝑒 .𝑜𝑓 𝑛𝑜𝑑𝑒 .

 (4.19)

The second stage (clustering) has three sequential steps. Step one, is sorting the nodes

according to the distance from the cluster edge. Step two, is inserting the nodes into the

cluster according to their connectivity. While, the computational complexity of the third

step is negligible because it only distributes a few disjoint nodes to clusters.

The computational complexity of step one is:

Sorting Computational Complexity (SCC)

𝑆𝐶𝐶 = 𝑵− 𝑰𝛔𝐐

𝑸−𝟏

𝑰=𝟎 𝑤𝑕𝑒𝑟𝑒 𝑵: 𝑁𝑜 .𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 , 𝑸:𝑁𝑜 .𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 , 𝛔𝐐: 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .

 (4.20)

While the computational complexity of step two is:

Inserting Computational Complexity (ICC)

𝐼𝐶𝐶 = 𝑄 ∗ 𝑰

𝛔𝐐−𝟏

𝑰=𝟎 𝑤𝑕𝑒𝑟𝑒 𝑸:𝑁𝑜 .𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 , 𝛔𝐐: 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .

 (4.21)

The third stage (balancing) has a smaller computational complexity than the previous

two stages because it deals only with the unbalanced clusters. The unbalanced clusters

are a small group. Furthermore, the stage consideres the cluster as a single object and

defines its connectivity using external edges which minimise the searching of its

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 101

connected neighbour clusters. Therefore, its computational complexity is small and

negligible as well.

B) The Computation Complexity of Assigning Virtual controllers

The process of assigning the controllers to the clusters depends on the number of

clusters and number of controllers. The computational complexity of this process is:

Assigning Computational Complexity (ICC)

𝑨𝑪𝑪 = 𝑸 ∗ 𝑪𝑤𝑕𝑒𝑟𝑒 𝑸:𝑁𝑜 .𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 , 𝑪: 𝑁𝑜 .𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑠 . (4.22)

Therefore, the ACC is also very small and of an ignorable complexity.

C) The Final Worst-Case Computational Complexity

From the previous equations of computational complexity, it is possible to identify that

the computational complexity of step two in the second stage of peripheral clustering

algorithm (see Equation 4.21) represents the greatest one. Therefore, the Equation 4.21

is considered as the worst-case computational complexity of part two of COVN

placement algorithm, as it is redefined below in Equation 4.23.

Worst-Case Computational Complexity

 𝑂 𝑄 ∗ 𝑰

𝛔𝐐−𝟏

𝑰=𝟎

𝑤𝑕𝑒𝑟𝑒 𝑸:𝑁𝑜 .𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 , 𝛔𝐐: 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .

 (4.23)

It is of relevance to mention that the cluster capacity in the previous equations could be

(𝛔𝐐) or (𝛒𝐐) therefore the used (𝛔𝐐) could be replaced by (𝛒𝐐), if the second one is the

implemented capacity in clustering.

4.9. Summary and Conclusion

The chapter displays the problem and its solution, which is represented by the COVN

placement algorithm. Then, the usage and dynamic implementation of COVN algorithm

are described in detail.

After that, the COVN algorithm is introduced as shown in Figure 4.12. The objectives,

requirements, and purposes are defined. Then, the three scenarios are investigated in

order to show the validity of the method which is used in the COVN placement

CHAPTER FOUR COVN PLACEMENT ALGORITHM

Page | 102

algorithm. It is important to note that the used method differs from all the previous

placement methods where the controller placement considers all SD-WAN as a single

domain and does not depend on the set of nodes (cluster). After that, the design of COVN

algorithm is demonstrated as two parts. Part one places the physical controllers, while

part two is the placement of virtual controllers. Part two is explained in two sections

which are the clustering by the novel peripheral clustering algorithm and assigning the

virtual controllers to the resulting clusters (see Figure 4.12).

The computational complexity is discussed at the end of each section to show that the

COVN placement algorithm has achieved a low computational complexity for both main

parts. The complexity of the physical controller placement is a little higher than the

complexity of the virtual controller placement. That is fitting the requirements of this

model because part two is applied more frequently than the part one.

Finally, it is worthy to mention that part one used the method to find the shortest path

faster than searching all possibilities of shortest paths between switches and controllers.

While, part two uses geographical location to cluster the nodes instead of the path to

obtain a faster clustering process. Also, part two employs the sparse matrix and

constructs the cluster as a single object to simplify the balancing operation.

Figure 4.12: The flowchart of introducing the COVN placement algorithm in this chapter.

Page | 103

CHAPTER FIVE
COVN PLACEMENT TESTBEDS

5.1. Introduction

This chapter presents the two testbeds and the assisting programs which have been

produced for examining the COVN placement algorithm over SD-WAN with multiple

virtual networks. The first testbed is represented by the new simulator which is built by

the researcher and called COVN simulator. The second test platform is acted by the

developed Mininet emulator. While, the assisting programs are Matlab functions, which

performing the initial preparations on the topology to make it usable by the testbeds,

such as extracting the distances between the nodes and converting it to Mininet

topology. The chapter starts by introducing the used test platforms and the reasons for

using or discarding each of them. Then, it introduces the new simulator in detail by

explaining its tabs and their functionalities. After that, the Mininet emulator is presented

to show its functional shortage which prevents the implementation of the controller

placement. Subsequently, the proposed development of Mininet emulator is

demonstrated. Further, the assisting programs are briefly demonstrated and their

hardware specification is stated. Finally, the chapter ends with a summary and a

conclusion.

5.2. SDN Test Platforms

The network researchers and network vendors need to test and evaluate the

performance of software and hardware products before deploying it to the real network.

They are using a test system called the 'test platform'. There are many types of test

platforms, but the most common three are the simulators, the emulators and the online

testbed (Heller, 2013). A network simulator is a software model which intends to

examine the performance of the network through discrete events . The emulators mimic

the behaviour of real network components and use an actual clock of the physical device

which runs over it. Therefore, it produces more realistic results than the simulators

(Heller, 2013). Lastly, the online testbeds are provided by the network communities to

shared the access to their physical devices for testing the performance of network

innovations.

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 104

The above definitions demonstrate that both the simulator and the emulator are needed

to be used for implementing the COVN placement algorithm. The COVN simulator is built

to compute the controller placement and to apply its decision on SD-WAN. After that, the

simulator calculates the statistics of the switches-controllers latency, the connection

flow-setup latency and the nodes reliability. Simultaneously, the Mininet emulator is

required for additional evaluation of the implementation of these decisions and to

validate the results and the statistics of the simulator.

On the contrary, the online test platforms are discarded because it is not possible to

modify them to the desired requirements that are needed to implement the COVN

placement algorithm. The modification is, however viable for the Matlab simulator and

the Mininet.

The disadvantages that prevent the use of every testing platform are summarised in

Table 5.1. Some of them are solved in order to produce a testbed for COVN placement

such as creating a specific simulator for COVN algorithm and to modify Mininet to

implement controller placement. While, the others cannot be sorted such as the

disadvantages of the online testbeds and the general simulators.

5.3. COVN simulator

This section demonstrates in detail the COVN simulator which represents the Graphical

User Interface (GUI) for implementing the COVN algorithm. This simulator consists of

eight tabs as shown in Figure 5.1. Every tab has different functionality. The first and

second tabs perform the placement of physical and virtual controllers. The third and

 Online testbeds Simulators Emulators

Names • Emulab.
• Internet2.
• GENI.
• OFELIA.

• NS3
• GNS3
• Matlab POCO tools.

• Mininet

Disadvantage 1. Restricted topology.

2. Restricted technique.

3. Not replicable results.

1. General: does not
support controller
placement.

2. POCO: does not support
another placement.

3. Low results realism.
 a) Not real clock.
 b) Not full functionality.

1. Does not support the
controller placement.

2. Does not produce
statistics.

 Table 5.1: The disadvantages of the test platforms which prevent the implementation of COVN
Placement algorithm.

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 105

fourth tabs are responsible for generating the physical and virtual topology if required.

The last four tabs calculate the statistics of latency and reliability in the failure-free and

failure status as will be explained later.

5.3.1. First Tab (Placement)

This tab executes the part-one of COVN placement algorithm by computing the

placement of the physical controller according to the latency (closeness) and reliability

(connectivity) to all other nodes (see Section 4.7). The number of physical controllers

represents the maximum required number of the active and backup controllers that are

required to manage the SD-WAN according to its maximum load (number of nodes/their

load).

The required input and parameters are entered in the panel at the left side of the tab as

shown in Figure 5.2. These parameters are:

 Selecting the Controllers' Number or Controllers' capacity.

Figure 5.1: The eight tabs of COVN simulator.

Figure 5.2: The first tab of COVN simulator (part-one of COVN placement).

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 106

 If controller capacity is chosen, then it needs to enter the controller capacity as a

number of nodes or their load (number of flow-request per second).

 Identifying the preferred weight for the latency against the reliability.

 Entering the adjacency matrix that represents the network connectivity.

 Entering the matrix of the expected load of the flow requests per second.

 Entering the coordinates of the network if it is a real topology, otherwise, the

Matlab creates the coordinates of the network.

By the end of the left side, the simulator presents the number of network nodes and

their load summation at initial status. The right side of the tab displays three tables and

figures. The first table and figure represent the placement according to the latency

(closeness) only. The second table and figure offer the placement regarding the

reliability (connectivity) only. The last table and figure shows the final placement which

is the placement according to the entered weight of latency/reliability.

Finally, the colour-bar shows the importance of the network nodes in relation to the

used property like the closeness, the reliability or both.

5.3.2. Second Tab (Clustering)

The second tab implements the part-two of the COVN placement algorithm which is the

placement of the virtual controller that is executed independently for every virtual

network. This part starts by clustering the network in the light of balancing the nodes

number or their load. After that, every controller is assigned to the cluster according to

the minimum average latency between the controller and cluster's switches (see Section

4.8). As shown in Figure 5.3, the input parameters are similarly entered in the panel at

the left side, as follows:

 Selecting the type of load (nodes or request per second).

 Entering the Clusters number or cluster capacity to find its number.

 Choosing the placement of complete network or just a virtual network.

 Entering the adjacency matrix that represents the network connectivity.

 Entering the matrix of the expected load of the flow requests per second.

 Entering the coordinates of the network if it is a real topology, otherwise, the

Matlab creates coordinates of the network.

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 107

The end of the left side of this tab presents the nodes number and their load summation

for complete network and for the virtual network which is under the process of the

placement. The graph plot displays the clustered SD-WAN and the controller of every

cluster. The colour-bare indicates the sequence of the clusters that are created through

the clustering operation.

It is important to identify that, if the clustering is performed according to the number of

nodes, the table under the graph shows only the number of nodes of each cluster (see

Figure 5.3 above). However, if the clustering is conducted based on the nodes load, then

the table below the graph presents the number of nodes and their load summation for

every cluster (see Figure 5.4 below).

Figure 5.3: The second tab of COVN simulator (part-two of COVN placement, clustering base on
nodes number).

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 108

5.3.3. Third Tab (Virtual Network Generator)

This tab creates an arbitrary virtual network or a specified virtual network according to

the needs of the SD-WAN examination. The shape of the virtual network can be

identified by the using the control buttons on the left side of the tab (see Figure 5.5), as

follows:

1) If the Reliable VN Check-Box is selected, then the VN nodes are connected by at least

two paths.

2) If the Farthest Nodes Button is chosen, then it needs to select:

 a) Horizontal VN (Down or UP).

 b) Vertical VN (Left or Right).

 c) Diagonal VN (Front or Back).

This way produces a VN that extends in the selected direction without the needs to

specify any node.

Figure 5.4: The second tab of COVN simulator (part-two of COVN placement, clustering base on
nodes load).

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 109

3) If the Random Nodes Button is chosen, then the nodes that are included in the virtual

network need to be specified in the field of Random Nodes Parameters, which is located

below the previous options. This way generates a VN that joins together the specified

nodes.

4) Enter the adjacency matrix that represents the network connectivity in the field

under the run button.

5) Enter the coordinates of the network if it is a real topology. Otherwise, the Matlab

creates coordinates of the network.

5.3.4. Fourth Tab (Topology Generators)

This tab could be used to generates a topology or just create matrices for a given

topology such as distance, bandwidth and load matrices. Therefore, it is very useful to

produce or modify test topologies in order to examine them and analyse their behaviour

in the different status. The use of this generator is displayed below with its figures.

Figure 5.5: The third tab of COVN simulator (Virtual Network Generator).

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 110

A) Generating a new topology: this tab has two different topology generators. Every

topology generator has a different method to generate a topology (see Figures 5.6 and

5.7).

1) Generator-one, creates a network in which its nodes are connected in a completely

random manner, as shown in Figure 5.6. This generator produces a network which could

join the first node with the last node because it does not provide any control over its

randomisation of the connectivity. This generator is good for building large-sized

network, but its networks extend in just about in all directions equally.

 Using the Generator-one

 Chose Topology Generator 1 button.

 Enter the Edge ratio

 Enter Nodes No.

 Select Max. Degree and Min. Degree of graph nodes.

 Select Bandwidth and Distance Check-Box if their matrices are required.

 Select Load Check-Box if its matrix is required.

 Press Create Topology button.

Figure 5.6: The fourth tab of COVN simulator (Topology Generator, Generator-one).

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 111

 The work of Generator-one

 It starts by reading the number of nodes and edge ratio from the entered

parameters. Then, it calculates the number of graph edges according to the

following equation:

𝑵𝒐.𝑬𝒅𝒈𝒆𝒔 = 𝒏× 𝑴𝒂𝒙.𝑫𝒆𝒈𝒓𝒆𝒆 𝟐 × 𝑬𝒅𝒈𝒆𝒔 𝒓𝒂𝒕𝒊𝒐 (5.1)

 It uses the uniform distribution function to distribute the edges between the

nodes of the network. The distributed function of the generator-one formulates

as follows:

𝒇 𝒏 =
𝟏

𝑴𝒂𝒙.𝑫𝒆𝒈𝒓𝒆𝒆 −𝑴𝒊𝒏.𝑫𝒆𝒈𝒓𝒆𝒆
 , ∀ 𝑛 ∈ 𝑁 5.2

 It creates the selected matrices for the topology as will be explained in point (B).

 It plots the topology.

2) Generator-two, creates a network while providing some control over the

connectivity randomisation in order to prevent the joining of the very far away nodes

would produce a longitudinal network (see Figure 5.7 below).

Figure 5.7: The fourth tab of COVN simulator (Topology Generator, Generator-two).

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 112

 Using the Generator-two

 Chose Topology Generator 2 button.

 Select the Scale to specify the connecting space.

 Enter Nodes No.

 Select Max. Degree and Min. Degree of graph nodes.

 Select Bandwidth and Distance Check-Box if their matrices are required.

 Select Load Check-Box if its matrix is required.

 Press Create Topology button.

 The work of Generator-two

 It begins by reading the Nodes No. and a Scale value.

 It computes the allowed searching space which could be used to find the next

nodes that should be connected to the current node, according to the Equation

5.3.

𝑺𝒆𝒂𝒓𝒄𝒉 𝑺𝒑𝒂𝒄𝒆 = 𝑺𝒄𝒂𝒍𝒆 × 𝑴𝒂𝒙.𝑫𝒆𝒈𝒓𝒆𝒆 (5.3)

 It uses the same uniform distributed function to distribute the edges onto the

graph nodes (see Equation 5.2), but here, the node is only connected onto other

nodes in the restricted search space, which is identified above.

 It creates the selected matrices for the topology as will be explained in point (B).

 It plots the topology.

Finally, it is worth noting that the colour-bar indicates the degree of the node in the

graph.

B) Creating matrices: Additionally, this tab can create the distances and the bandwidth

of the link for an existing topology. Also, it can produce the load matrix for network

switches.

1) Creating the distance matrix: the distance matrix is important to examine the

implementation of the controller placement algorithm. Therefore, this tab can establish

a distance matrix in different ranges of distances (see Figure 5.8).

 Using the tab to create the distance matrix

 Enter the name of the connectivity file (adjacency matrix of graph connectivity).

 Select the Bandwidth and Distance check-box.

 Enter the value in the Distance-Factor field to scale up or down the distances.

 Press the button of Create Matrices.

 To display the bandwidths on the graph, only choose Distance-button that
located in the plot showing the panel under the graph.

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 113

 The working steps to create the distance matrix

 Compute the betweenness centrality (bc) for all nodes of a network according

to the following equation (Matlab, 2017):

𝑏𝑐 𝑛 =
𝑁𝑜.𝑆𝑕𝑝𝑠 ,𝑑(𝑛)

𝑁𝑜. 𝑆𝑕𝑝𝑠,𝑑
𝑠,𝑑≠𝑛

 (5.4)

𝑊𝑕𝑒𝑟𝑒 𝑛, 𝑠,𝑑 ∈ 𝑁, 𝑠: 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒, 𝑑:𝑑𝑖𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑛𝑜𝑑𝑒,

𝑁𝑜. 𝑆𝑕𝑝𝑠,𝑑 𝑛 :𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑕𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡𝑕𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠 𝑎𝑛𝑑 𝑑𝑡𝑕𝑎𝑡 𝑝𝑎𝑠𝑠 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑛,

𝑁𝑜. 𝑆𝑕𝑝𝑠,𝑑 : 𝑡𝑕𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑕𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡𝑕𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠 𝑎𝑛𝑑 𝑑.

 Divide the network nodes according to its bc into three groups (high, medium

and low).

 Split the distance into three ranges (short, medium and long).

 For the nodes of high bc randomly find the distance from the first range, for the

nodes of medium bc find the distance in second range and the low bc nodes use

the third range.

 Amplify or diminish the distance using the Distance-Factor.

 The distances are between (1 to 20 km), which are the optimal lengths for SD-

WAN links that could apply this algorithm. Also, the algorithm could achieve

Figure 5.8: The fourth tab of COVN simulator (Topology Generator, Creating distance matrix).

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 114

good results for longer links, therefore Distance-Factor is set to scale up the

length of optics fibre links. See the available length of optics fibre links in (Cisco,

2016).

2) Creating the bandwidth matrix: the bandwidth is generated using a simple method

(see Figure 5.9 below).

 Using the tab to create a bandwidth matrix

 Enter the name of the connectivity file (adjacency matrix of graph connectivity).

 Select the Bandwidth and Distance check-box.

 Press the button ‘Create Matrices’.

 Choose the Bandwidth-button which is located in the plot showing the panel

under the graph to only display the bandwidths on the graph.

 The working steps to create the bandwidth matrix

 Compute the betweenness centrality (bc) for all nodes of a network according to

the Equation 5.4 above:

 Divide the network nodes according to its bc into three groups (high, medium

and low).

 Split the bandwidth into three ranges (high, medium and low).

 For the nodes of high bc randomly find the bandwidth from the first range, for

the nodes of medium bc search bandwidth in the second range and the low bc

nodes use the third range.

 The bandwidths are between (1 to 10 Gbit/s), which are the most used

bandwidths for optics fibre links (Johnson, 2009).

 Figure 5.9:The fourth tab of COVN simulator (Topology Generator, Creating bandwidth matrix).

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 115

3) Creating the load matrix: the load matrix is needed to implement load balancing

when implementing the COVN algorithm, and can be created as follows (see Figure

5.10):

 Using the tab to create a load matrix

 Enter the name of the connectivity file (adjacency matrix of graph connectivity).

 Select the load check-box.

 Enter the value in the Over-Load-Rate field to scale up or down the loads.

 Press the button of Create Matrices.

 To display the load on the graph, choose the Load-button which is located in the

plot showing the panel under the graph.

 The working steps to create load matrix

 Compute the betweens centrality (bc) for all nodes of a network according to the

Equation 5.4 above:

 Divide the network nodes according to its bc into three groups (high, medium

and low).

 Split the load into three ranges (high, medium and low).

 For the nodes of high bc, randomly find the bandwidth from the first range, for

the nodes of medium bc, search bandwidth in the second range and the low bc

nodes use the third range.

 Amplify or diminish the loads using the Over-Load-Rate.

Figure 5.10: The fourth tab of COVN simulator (Topology Generator, Creating load matrix).

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 116

5.3.5. Fifth Tab (Latency)

This section is important because it presents the results of the latency that reflects the

effect of implementing the COVN placement algorithm. It starts by briefly introducing

the commonly used latency metrics, which is represented in the two top figures of the

node-controller latency and maximum inter-controller latency. After that, the section

displays the comparison of the newly added latency metrics, which are: the connection

control-path latency versus the connection flow-setup latency (see Section 3.3.5).

The tab in Figure 5.11 shows the plots of all the mentioned metrics; it also displays the

maximum, average and minimum values for them (see Figure 5.11). It is noting that this

tab is used to find these latencies before and after controller failure (failure-free and

failure statuses). The required matrices needed to calculate these latencies are the

topology distances matrix and controllers-clusters matrix which is produced by the

COVN placement algorithm. The used mentioned latencies are defined in the following:

A) Node-Controller Latency: It expresses the latency between every node and its

controller (switch-controller latency). This latency is improved by applying the COVN

Figure 5.11: The fifth tab of COVN simulator (Latency).

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 117

placement, therefore, it is exposed in the first figure on the upper left of this tab. This

latency was used by previous researchers, and it is calculated here as well. Also, the

maximum, average and minimum node-controller latency is shown under the bar-chart.

B) Maximum Inter-Controller Latency: The second bar-chart on the upper right of this

tab discloses the maximum latency between every controller, to all other controllers.

Similarly, this latency was examined by some placement studies, and it is one of the

optimisation foci of this research. Also, the maximum, average and a minimum value of

this latency is available under its bar-chart.

C) The Connection Control-Path Latency Versus the Connection Flow-Setup

Latency:

The connection control-path and the connection flow-setup latencies are new metrics

proposed by this research. These latencies are formulated from the direct analyses of the

experimental tests on SDN hardware and emulated equipment, which are explained in

Section 3.3.5. The connection flow-setup latency is defined as the time that required to

create connection and pass the first packet between two hosts. This latency includes

both latencies of the control and the data paths. While, the connection control-path

latency consists only of the latencies of the control paths for the control packets, which

are required to install the flow-rules on the switches.

These two latencies are calculated for every node to all the other nodes of SD-WAN.

However, the COVN simulator displays only comparisons between them from every

node to the nearest node and the farthest node.

The bottom half of this tab exhibits two stem plots, which introduces these two

comparisons. Each plot compares the connection control-path and the connection flow-

setup latencies. While, the left plot introduces a comparison of these two latencies for

every node to its nearest node (neighbour). The right plot reveals the matching between

these two latencies from each node to its farthest node in the graph. The reason for

selecting the comparisons from every node to nearest and farthest nodes is to present

the ratio of affecting connection control-path latency on the connection flow-setup

latency for the minimum and maximum path length. Also, the maximum, average and

minimum values of these latencies (from every node to all the other nodes) are

presented in the space between them.

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 118

5.3.6. Sixth Tab (Reliability)

The results and statistics of the reliability are presented in the sixth tab. The three bar-

charts present the different parameters that indicate the reliability of the SD-WAN such

as the switch reliability, the controller reliability and the control-path reliability, as

shown in the Figure 5.12.

The maximum, average and minimum values of each parameter are displayed on the left

side of the bar-chart in this figure. The required matrices to calculate these parameters

are topology connectivity matrix and controllers-clusters matrix which is produced by

the COVN algorithm. Also, this tab needs to determine if the reliability computations are

failure-free or have a failure status. The reliability parameters are defined in the

following:

A) Number of Links/ Nodes to cut the connectivity between Switch-Controller: It is

an important parameter used to evaluate the SD-WAN reliability. The higher value of

cut-link or cut-node provides more stability for network against switch or link failure

because it means there are more paths from the switch to the controller. This parameter

is used to refer to the reliability of every switch in the network. The first bar-char at the

top of the Figure 5.12 displays the values between every node (switch) and its

controller.

Figure 5.12: The sixth tab of COVN simulator (Reliability).

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 119

B) Ratio of Controller-Connectivity to all other nodes of the network: This

parameter indicates, the extent to which the controller location is connected to the

network (all nodes). The controller connectivity ratio is extracted from the

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 which is calculated by the Equation 4.7 in Section "4.7.3. The

Design of COVN Placement Algorithm- Part 1". The middle plot in Figure 5.12 discloses

this ratio for every controller.

C) Min. Number of Hops to connect the controller to the farthest node in the

network: The minimum number of hops of every path between the switch and the

controller represents the reliability of this control-path. The smaller (shorter) control-

path refers to a lower probability of link/node failures. The bottom drawing in Figure

5.12 offers the highest minimum number of hops for every controller to its nodes.

5.3.7. Seventh Tab (Controller-Failure)

The seventh frontage is responsible for producing the controller-failure status. It is

programmed to simulate the work of COVN placement algorithm when the controller

failure happens. It implements that by disabling the active controller/s which is/are

given in the input text field named failed controller/s. After that, it uses the next

controllers in the controller list that is produced by COVN placement. Then, it reassigns

the halted clusters to the nearest backup controller/s. The output of this process is

represented by a new controller-clusters matrix that could be used in the latency and

reliability tabs to calculate the statistics in the failure status. This tab draws a graph plot

which exposes the new controller placement after the controller-failure as exhibited in

Figure 5.13 below.

 Figure 5.13: The seventh tab of COVN simulator (Controller-Failure).

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 120

5.3.8. Eighth Tab (Results Summary)

The last frontage of this GUI creates a table to summarise the maximum, the average and

the minimum values of all the latency and reliability parameters that are calculated by

this simulator (see Figure 5.14). Furthermore, it has a button to save all the created plots

of the simulator in good quality resolution to the specified folder. Also, it has another

button to save the files that represent the decision of the COVN placement algorithm

such as:

 Controller list file (locations and priority of physical controllers).

 Controllers-clusters for every virtual network in failure-free and failure status

(assigning virtual controller for every cluster).

5.4. The Developed Mininet Emulator

Mininet emulator provides a flexible environment to implement and test SDN networks.

In addition, it supports the results realism and test replication (Heller, 2013). The

results realism means the emulation results are close to the results which can be

obtained from real network equipment (hardware or software). The test replication

indicates that the test could be implemented as much as needed with the same

components of the test environment. Therefore, this thesis intends to use the Mininet in

some experiments to validate the results accuracy of the COVN simulator. However, it

does not support the implementation of controller placement because it cannot emulate

Figure 5.14: The seventh tab of COVN simulator (Results Summary).

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 121

the effect of changing the controller position. For that reason, this mechanism is added

to Mininet to enable controller placement emulation. This section explains the problem

and its proposed solution; the tools used to implement the solution and which

mechanism is used to add the effect of changing controller position.

5.4.1. The Mininet Limitation and the Developed Solution in Mininet

Mininet can connect the controller to OpenFlow switches whether it was internal (on the

same machine) or external (on different machines). Also, it can connect the switches to

several controllers simultaneously, each group of switches is specified to one controller.

The port and IP address of a controller is used to identify the controller for the switches,

whereas, only the port number of the switch is used to identify the switches to the

controller. The problem is, the ports connecting the switch and controller are not

network ports, they are passive ports (Listening port), which are used to communicate

between applications. That decimates the ability to establish a link between the switch

and the controller and inhabit the possibility to make any specification or configuration

for this connection. Therefore, it was not possible to reflect the effect of the controller

position in the network. Conversely, all other ports used to communicate between

switches or between switches and hosts are network ports. Consequently, the network

links can be established and configured with any network parameters like bandwidth,

latency and packet losses ratio.

That was the only limitation in Mininet according to the implementation of the

controller placement algorithm. It was the motivation to find the solution to this

problem. The solution is summarised by tracking the communication between the

passive ports (listening ports) until the socket between the controller and switch is

established, after which the active port is created. The active port is used to identify the

connection and apply the traffic control mechanisms on that connection. The tools which

are used for tracking the connection and apply traffic control are explained in Section

5.4.2.

5.4.2. The Tracking Communication and Traffic Control Tools

A) Tracking Communication Tools

Mininet provides a wide range of tools for monitoring and debugging the

communication of SDN network. It does this by integrating many well-known tools of

the real network to support network monitoring realism. Also, it allows the network

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 122

developers to perform the monitoring in exactly the same way of the real network. For

example, Mininet uses the OVS to emulate the behaviour of OpenFlow switches.

Therefore, it can use all the tools which have been developed to debug the OVS switches

like ovs-dpctl (OpenvSwitch, 2016b), ovs-appctl (OpenvSwitch,2016a), ovs-ofctl

(OpenvSwitch,2016c) and ovs-vsctl (OpenvSwitch, 2016d). Also, it uses famous

monitoring tools such as Netstat (Durgin et al., 2005), tcpdump (Van et al., 2016),

Wireshark (Wireshark, 2016b) and tshark (Wireshark, 2016a). All the mentioned tools

were tested to capture the needed information, but the most suitable one was the

tshark. That is because it can capture the traffic continuously in contrast to the other

OVS debugging tools and Netstat monitoring tools which could only discretely capture

the status of switches. Also, it was easier than tcpdump in filtering the captured data.

Finally, the tshark is used to extract the port number of the switch which is created and

activated when the socket between the switch and controller is established.

B) Traffic Control Tools

There are two tools of traffic control used to solve the problem of the limitation of

controller placement in Mininet they are: the Linux Traffic Control (tc) and Network

Emulation (netem). Combining these tools allows for applying all traffic impairments on

emulated nodes and links (Tim De Backer, 2014). These tools can get a proficient level of

traffic realism in complex or distributed emulation of the network.

On the one hand, these tools were already applied to the emulated links between the

switches or between the switches and their hosts in the Mininet (Mininet Team, 2016).

On the other hand, these tools were not applied on the links between switches and

controllers. Since, these links are not considered as network links. Therefore, it was

imperative to recall these links (capturing their port number) and apply these tools to

them in order to allow their configuration. The tc is an authoritative tool for shaping,

classifying, scheduling and prioritising the network traffic. That is because, it is basically

a based queuing discipline (qdisc) algorithms, which has had a long development to

optimise the network traffic scheduling. The tc tool can apply any scheduling algorithm

and set the transmission rate (bandwidth). However, it is not able to add all traffic

deviations such as latency and jitter. Therefore, the Netem tool is used to extend the

abilities of tc tool as it allows it to define and set more traffic impairments (Tim De

Backer, 2014).

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 123

5.4.3. The Applied Traffics Control Mechanism

Changing the controller position in SDN network affects the communication between the

controller and its switches. Therefore, a different path between them should be used

when the controller position is changed. In a real network, this occurs automatically due

to the change of the control path, Mininet emulator does not change it automatically

because Mininet emulation mechanism separates the control path from the data path.

This means each switch is connected directly to the controller by a separated link

(control link), which ignores the controller position in the network (see Figure 5.15).

Therefore, the effect of the controller position should be added to Mininet by the

following steps:

1. The path between the controller position and each switch should be identified

using a routing algorithm, which computes the optimal route between the two

points.

2. Communication properties of each path should be converted to traffic control rules.

3. The traffic control rules of each path should be applied to the coordinate control

path.

Figure 5.15: SD-WAN in Mininet that demonstrates the difference between the virtual
control path and data path.

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 124

The communication properties are represented by communication latency, jitter, and

losses packet ratio. The latency variation is caused by many parameters such as the links

bandwidth, the number of passed hops (switches) and switches' transmission ratio. All

these parameters are considered for computing the path properties in the introduced

solution.

Figure 5.15 shows an example of SD-WAN which is created by Miniedit, a primitive GUI

of Mininet emulator. The example demonstrates the difference between the data path

and control path in Mininet. Note that the switches and hosts are connected using blue

lines (Data links/Network links), while all switches are connected directly to the

controller using red lines (Virtual Control Links). Therefore, the controller position does

not affect the control path. The example assumes that the controller is located in the

position of switch four (S4). For instance, if the controller wants to communicate with

the switch one (s1) using shortest path. It should pass the path of two links through

switch two (s2) (line with grey triangles), while it communicates now directly through

the red link. That is not the real behaviour of SDN network and does not reflect the effect

of controller position. Therefore, the properties of the blue path are calculated,

converted to traffic rules and applied on the red path to achieve more realism and

emulate the effect of controller position.

5.4.4. The Programmes of Implementing the Mininet Developments

This section shows the main programmes that are used to implement the above-

mentioned procedure.

1. Executing Matlab programme (Latency.m) to calculate the latency of the shortest

path between every node and its controller. This programme will create switch-

controller latency matrix to be used to configure the control link in Mininet using tc

tool.

2. Running python programme (portcap.py) on the Mininet-Virtual Machine before

starting the Mininet topology to capture the switches names and ports.

The output is (outfile.txt), which contains the ports number that connects the switch to

its controller for all the switches of topology.

sudo python ./ portcap.py

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 125

3. Starting the Mininet topology.

4. Running python programme (applyTC.py) to run the tc on Mininet-Virtual Machine.

5. Implementing the required tests as will be explained in the results in the chapter

five.

5.5. The Assisting Programmes

There are two additional Matlab programmes that perform the initial preparation to

simulate or emulate the real world networks which are obtained from the Internet

Topology Zoo (Knight et al., 2011). The Internet Topology Zoo is a network database

which is created from the real network data that is made available by the operators.

These two programs are explained as below:

A) Distance Extracting Program:

This programme reads the position of the node from the GML file which is downloaded

from the internet topology zoo and calculates the distances between these nodes using

the Vincenty equations. This formula is not very accurate for computing the distance on

the earth’s surface because it treats the Earth as a sphere rather than a spheroid which

has two radii a and b, but it could be treated as the most accurate formula (Veness,

2016). This programme creates a distance matrix for the selected topology in order to

use it in the COVN simulator or Mininet emulator as well.

B) Mininet Code Generating Programme:

Another Matlab program is used to read the real world topology from the GML file and

generate a python code which builds a topology in Mininet emulator. This programme

does not only produce a Mininet topology faster and easier, but also avoids the error

that could occur through the producing process.

 sudo mn --custom ~/mininet/custom/Topo1-2.py --topo mytopo --mac --controller=remote,
 ip=192.168.0.44, port=6633 --switch ovs, protocols=OpenFlow13

sudo python ./ applyTC.py

CHAPTER FIVE COVN PLACEMENT TESTBEDS

Page | 126

5.6. The Implementation Environment

The computers which are used to implement the COVN simulator and Mininet emulator

have the following specifications: (1) corei7 - 2.4GH processor; (2) 16GB memory; (3)

125 GB-SSD hard drive; and (4) Windows 8.1, 64-bit operating system.

The emulator used the HP VAN SDN controllers. The emulator also used the OpenFlow

protocol version 1.3 (OF 1.3) because it has the features, which are required to

implement the COVN placement algorithm. OF 1.3 also is the dominated protocol for the

latest version of SDN controllers and switches.

5.7. Summary and Conclusion

This chapter presents the necessity for using the created COVN simulator to compute the

placement decision and to calculate the resultant latency and reliability parameters.

Then, it emphasises the importance of applying some tests on the modified Mininet

emulator to improve the validity of the simulator results. This chapter also explains in

detail about every one of the eight tabs of the COVN simulator including its use, its way

of working, its output and functionality. In addition, the chapter illustrates the

functionality shortage of Mininet, which hinders the implementation of the controller

placement and how this study overcomes this. Furthermore, the two assisting Matlab

programmes that prepare the topology distance matrix and topology Mininet code are

provided here. Finally, the specifications of the computers used are mentioned at the

end of the chapter.

Page | 127

CHAPTER SIX
RESULTS AND EVALUATION OF COVN
PLACEMENT

6.1. Introduction

The results of implementing the COVN placement algorithm are demonstrated in this

chapter. The simulator results are explained in detail, and then results are evaluated in

two different ways. The first evaluation is formed by implementing the placement

decision, which is generated by the COVN placement over Mininet emulator to validate

the latencies which are calculated by the COVN simulator. The second evaluation, by

comparing the latency and the reliability parameters that are produced by the COVN

placement algorithm with those which are generated depending on the POCO tools using

the statistics of COVN simulator. The chapter starts by showing the used topology and

the reasons for choosing them. It then explains the tests of the COVN simulator by

clarifying: their objectives; their execution strategies; and their results. Further to that,

the Mininet results are introduced. The comparison between COVN placement and POCO

placement algorithms is then discussed. Finally, the chapter is summarised and

concluded.

6.2. SD-WAN test Topologies and Parameters

The COVN placement is applied over six SD-WAN topologies that have the different sizes

(different number of nodes) and geographical expansions (different length of links). The

reasons for that are: examining the performance parameters of the COVN placement

algorithm on different load (number of nodes), such as load balancing and computation

time; Also, exploring the limits of latency optimisation in relation to the length of links.

Two of these topologies are generated by the topology generator, while the other

topologies are real-world networks, which are downloaded from the internet zoo

topology database (Knight et al., 2011). Figure 6.1 shows these topologies with coloured

nodes that indicate their closeness to all other SD-WAN nodes. The first topology named

Generated-1 and it is produced by the COVN simulator with a maximum

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 128

length of links equal to 20 Km, which is the optimal length of the link for the COVN

placement algorithm. Conversely, the second topology Internet2 expands over very wide

distances (from 42 to 1612 Km) which helps to find the COVN algorithm limitation in

term of the maximum length of the link. Furthermore, the other topologies, which are

India, US carrier, Generated-2 and Kentucky, have incremented a number of nodes to

determine to which extent the COVN algorithm could keep providing a quick and

probable performance. Most networks in the zoo topology database have a small size,

but only a few topologies have big sizes. These topologies are selected to be used,

however the size of large topologies jumps from 158 nodes (US carrier) to 754 nodes

(Kentucky) therefore, the topology called Generated-2 is created with 400 nodes to

cover this jump (see Table 6.1).

Topology Name Number of Nodes

(Switches)

Minimum length

of link (Km)

Maximum length

of link (Km)

Number of Links

Generated-1 36 7 20 54

Internet2 34 42.920 1612.096 42
40 links >100 Km

India 145 1 152.5 187
110 links >100 Km

US Carrier 158 3.870 833.7455 189
Only 47 links >100 Km

Generated-2 400 6 20 559

Kentucky 754 1 909.801 895
Only 103 links >100 Km

(A) Generated-1 Topology

high

medium

low

(D) US Carrier Topology

(E) Generated-2 Topology (F) Kentucky Topology

(C) India Topology

(B) Internet2 Topology

 Node closeness

Figure 6.1: The six topologies used for testing the COVN placement algorithm.

Table 6.1: The specifications of the six topologies used for testing the COVN placement algorithm.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 129

In addition, Table 6.2 presents the test parameters that could be changed through the

conducted tests.

6.3. The Results of the COVN Simulator

This section describes the test objectives, test strategy and test results for the conducted

tests that are examining the COVN placement algorithm. There is six categories of the

conducted test as follows:

6.3.1. The Metrics of COVN simulator

This is the first category of tests, which intends to present and explain the basic metrics

of COVN simulator in order to validate some of the assumptions that are considered

when the COVN algorithm is designed. These assumptions are:

 The Node-Controller latency is relatively small;

 The algorithm selects near positions for hosting the physical controllers to improve

the latency of inter-controller communication;

 The connection control latency has a small portion in connection flow-setup

latency;

 The nodes which are selected by COVN algorithm for hosting the controllers have

the best reliability parameters to other nodes of SD-WAN.

NO. Parameter Explanation

1 Topology of Physical Network. The tests are applied to several SD-WANs.

2 Weight of Closeness-Reliability. The total weight equals 1, which should assign a specific

ratio to the closeness and the reliability.

3  Number of Physical Controller.

 Load:
 Number of switches.
 Request per second of every

switch.

When placing the physical controllers, the number of active

and backup controllers or the maximum expected load for the

entire network (all VNs) should be determined.

4  Number of Clusters.

 Load per Cluster:
 Number of switches.
 Request per second of every

switch.

When placing the VN, the number of clusters or the

maximum load of the cluster for every VN should be

specified.

5 Topology of VN. For every SD-WAN topology several VNs are applied, then

the connectivity matrix of every applied VN should be

provided.

 Table 6.2: The parameters that could be changed when implementing the COVN placement
algorithm.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 130

 Finding the backup controller is performed without recalculating the controller

placement or clustering the topology (no additional computational complexity).

These objectives are demonstrated by presenting the complete steps for implementing

COVN placement algorithm on single topology (Generated-1) in failure-free and failure

cases. These steps produce the figures and statistics of latency and reliability which

should be concluded to validate the above assumptions. The steps for implementing

COVN placement algorithm are as follows:

A) Applying the placement of physical controller produces their number and their

positions, as shown in Figure 6.2. In this topology, there are five physical controllers, and

their locations are ordered in the following sequence 12,18, 28, 11 and 26 (white

rectangles). The first four controllers are the active controllers, while the last one

represents the backup physical controller. The node's colour shows its closeness to all

the other nodes of the graph.

B) Performing the placement of the virtual controller, clustering the virtual network and

assigning a virtual controller for every cluster. Figure 6.3 Shows that the Generated-1

topology has a single VN and this includes the complete physical topology; it is then

partitioned into four clusters, each of them has nine nodes (switches). This discloses the

ability of COVN algorithm to balance the controller's load (more detail will be

Node Closeness

Figure 6.2: The placement of physical controllers for Generated-1 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 131

presented in Section 6.3.3). The nodes of every cluster have the same colour as its

controller, and the value of colour-bar indicates the number of clusters.

C) Executing the latency statistics to calculate four metrics as follows:

(C-1) Node-Controller Latency Metric: It is a fundamental metric for evaluating the

controller placement because the switch-control path changes in the consonance with

the controller's positions.

Figure 6.4 presents the latency from every switch to its controllers, for all switches of

the network (36 switches). This figure shows that the latency could vary from (80.005

𝝁𝒔) at nodes 1, 3, 23, 24, 33 and 36 to (320.02 𝝁𝒔) at nodes 8, 11, 17, 19 and 32. This

Cluster Number

 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Node number 9 9 9 9

Figure 6.3: The placement of virtual controllers for Generated-1 topology.

Figure 6.4: The node-controller latency for all switches of Generated-1 topology.

 Node number from the graph of network

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 132

reflects that the latency of the close switches is a quarter of the farthest switches latency.

However, the values variation is relatively small because it is in ‘microsecond’ while

the flow-setup latency is almost in ‘millisecond’.

(C-2) Maximum Inter-Controller Latency Metric: Is the second basic metric, which is

significantly improved to the optimal limit and avoids degrading the other metrics. That

is because its nodes not only reduce the latency of the control path but it also optimises

the usage of network resources (links and switches) when converging the controllers'

rules and databases. Figure 6.5 shows that the Maximum inter-controller latencies are

altered from (80.005 𝝁𝒔) at controller's positions 12 and 18 to (240.015 𝝁𝒔) at

controller's positions 11 and 28. The difference in these latencies is not big because the

nearest controller's positions can reach all other controllers by the maximum path of

one hop, while the farthest controller's positions communicate with the others with

three hops. The COVN algorithm intents to keep the inter-controller path with a

minimum number of hops.

(C-3) Connection Control-Path Latency Metric Versus Connection Flow-Setup Latency

Metric: The connection control-path latency includes all latencies that are required to

install the forwarding rules to all the switches on the path of the flow, to deliver the first

packet between two hosts. The connection flow-setup latency represents the complete

time that is consumed to send the packet from the sources host to the destination host,

which consists of the controller latency, the connection control-path latency and the

connection data-path latency (see Chapter five, Section "5.3.5. Fifth Tab (Latency)").

These two metrics are plotted together as a stem-chart with the aim to show the ratio of

 Node number from the graph of network

Figure 6.5: The maximum inter-controller latency for every controller to all other
controllers of Generated-1 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 133

contributing the first one on the later. These two metrics are calculated for the

communication of every node to all other nodes. However, the presented stem-charts

show only the comparisons of these two latencies from every node to the nearest and

farthest nodes in order to demonstrate the minimum and maximum ratio of the effect

(see Figures 6.6 and 6.7).

Both Figures above reveal that the connection control-path latency is much smaller than

the connection flow-setup latency. One clean example is shown in Figure 6.6 which

compares the maximum values of connection control-path latency (1.920 ms) and the

 Node number from the graph of network

Figure 6.6: Connection control-path latency metric versus connection flow-setup latency
metric to nearest node of Generated-1 topology.

Figure 6.7: Connection control-path latency metric versus connection flow-setup latency
metric to the farthest node of Generated-1 topology.

 Node number from the graph of network

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 134

connection flow-setup latency (923.600 ms), which validate that the effect of the first

latency is small upon the second one.

Also, Figure 6.6 realises that the connection flow-setup latencies are very close to each

other (between 280.4 and 282.01 ms) because the variation of the connection control-

path latency is tiny (between 0.32 and 1.9 ms) and the variation of the data-path to

reach the nearest node is small (one link). While, in Figure 6.7, the connection flow-

setup latencies have a larger variance (between 602.3 and 923.6 ms) due to the bit

higher variance in the values of the connection control-path latency (between 1.3 and

1.92 ms) and the variation of the data-path to reach the farthest node is higher (from 5

to 6 hops). The comparisons of the previous ranges find that the ratio of effecting the

connection control-path latency is always small on the connection flow-setup

latency.

Finally, it is noteworthy that the average values of these two metrics are provided by the

simulator, however they are not plotted.

D) Executing the Reliability statistics calculate three metrics as follows:

(D-1) The Metric for the Number of Links/Nodes to Cut the Node-Controller Connection:

The first metric defines the reliability of the switches, which is the number of links or

nodes that cut the path between the switch and its controller.

Figure 6.8 presents the metric which demonstrates that all nodes (switches) are

connected to their controller by at least two different paths. Therefore, the connection

between them is only halted, if two nodes or links fail in these two different paths at the

 Node number from the graph of network

Figure 6.8: The metric for the number of links/nodes to cut the node-controller
connection of Generated-1 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 135

same time. This proves that all switches have acceptable reliability against control-

path failures when applying the COVN placement algorithm.

(D-2) The Ratio of the Controller Connectivity Metric: This is the second metric that

precisely identifies the reliability of the controller locations, which is the ratio of the

connectivity of controller to all the other nodes of the network (see Chapter five, Section

"5.3.6 Sixth Tab (Reliability)").

The colours of the nodes in Figure 6.9 indicates the ratio of the node connectivity. These

values are varying from the smallest value at node 3 (9.864) to the highest value at the

node 17 (53.353). This range differs for every topology according to the connectivity of

its nodes (number of links). Calculating this range for a specific topology helps to

identify the nodes which have the acceptable reliability and could then be used to host

the physical controllers. As mentioned before, the COVN algorithm computes the

physical controller placement according to closeness against the connectivity by

specifying the desired weight for each of them. The strategy of choosing the optimal

weights will be discussed in the next Section 6.3.2. It is noteworthy that the controller

Nodes Connectivity

Figure 6.9: The ratio of the nodes connectivity for Generated-1 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 136

positions which are selected for the Generated-1 topology have an acceptable ratio of

controller-connectivity, as shown in Figure 6.10.

For more detail, Figure 6.10 reveals that the highest connectivity ratio of controller's

nodes is 52.539 at node 12, while the lowest one is 32.003 at node 28. These values of

connectivity ratio reflect good reliability for controller locations. This proves that the

COVN placement algorithm produces an almost reliable placement. Bearing in mind

that, increasing the weight of the reliability will increase the reliability of the select

controller's nodes.

(D-3) The Metric for the Minimum number of Hops to the Farthest Node: This metric

indicates the reliability of the control-path between the switch and its controller.

Figure 6.11 shows that the minimum number of hops from every controller to the

farthest node (called node eccentricity in graph theory (Rosen, 2012) varies between

four and five hops. While, the minimum number of hops between the farthest two nodes

in the network (called graph diameter) is ten hops. This shows that control-path is

almost equal for all controllers. Also, it is near to the half value of the network

diameter which proves that the control-path is much shorter than the diameter. The

shorter control-path reduces the probability of node/link failure that could occur in

it. Also, keeping the length of the control-path stable is important for VN in term of

reliability and latency. That's because VN frequently changes its topology and the

present controller placement constrains the control-path within four to five hops. In

addition, this placement facilitates the reliability of assigning the backup controller

because it is placed as much as possible near to the active one.

Figure 6.10: The ratio of the controller connectivity metric of Generated-1 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 137

D) Applying the controller-failure needs to identify the fail controller, then the algorithm

picks the next controller from the controllers' list and assigns it to the required cluster.

This operation is fast and efficient because it does not cost additional computation and

the backup controller has similar characteristics to the original one in term of latency

and reliability parameters

Figure 6.12 shows that the control of the brown cluster (fourth cluster) is changed

from fail-controller at node 12 to the backup-controller at node 26 without

reconstructing or modifying the clusters of SD-WAN. Also, the figure shows that the

backup controller is still close to the cluster nodes and other controllers as well. The

detailed comparisons of latency and reliability in the failure-free and failure cases will be

(12) Fail-controller

(26) Backup-controller

Figure 6.11: The metric for the minimum number of hops to the farthest node of
Generated-1 topology.

: The metric for the minimum number of hops to the farthest node of
Generated-1 topology.

: The metric for the minimum number of hops to the farthest node of
Generated-1 topology.

Figure 6.12: The implementation of controller-failure on Generated-1 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 138

discussed in Section 6.3.4. While, this section focuses on showing that the method of the

recovering the controller- failure does not require any recalculating for the placement or

the clustering of SD-WAN.

At the end of Section 6.3.1, It is noteworthy that, this chapter will use only the

maximum, average and minimum values of the above metrics to represent them in

next comparisons instead of using the full metrics for clearer presentation and

conclusion. These three values could express these metrics fairly and make it easier

to track their changes through the comparisons.

6.3.2. The weight of Closeness against Reliability

The second category of tests is conducted to explore a method for determining the

optimal weights of the closeness and the reliability. The test strategy is summarised as

follows:

 Using four active physical controllers for all tests.

 Considering the complete topology as a single VN, which is partitioned into four

clusters for all tests.

 The COVN placement is applied to the network with five different weights of

closeness and reliability, as shown in Table 6.3.

 The maximum, average and minimum values of the latency and reliability metrics

are compared for the five tests.

 Determining the weights of the test that produces the best metrics as the optimal

weights.

 Implementing the same steps over three networks (Generated-1, Internet2 and

India), to notice how these weights could differ for every network.

A) The weights of the Generated-1 topology: Applying the previous strategy over this

network, produces the following results, in Figures 6.13 and 6.14 below:

Closeness weight Reliability weight
1.0 0.0
0.3 0.7
0.5 0.5
0.7 0.3
0.0 1.0
 Table 6.3: The weights of closeness and reliability for the second tests category.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 139

1) Describe the bar-chart of latency metrics:

Figure 6.13 introduces the minimum, average and maximum values of one latency

metric in each bar of the plot. The bar-chart includes five groups. Every group

represents the four-latency metrics of a single test with specific weights of closeness and

reliability (see Table 6.3). The four metrics of latency are the node-controller latency;

inter-controller latency; connection control-path latency; and connection flow-setup

latency.

Figure 6.13: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the closeness-reliability tests of Generated-1 topology.

Figure 6.14: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the closeness-reliability tests of Generated-1 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 140

2) Describe the bar-chart of reliability metrics:

Figure 6.14 offers the minimum, average and maximum values of one reliability metric

in each bar of the chart. The five groups of bars interpret the three-reliability metrics,

which are: the cut-nodes/links; minimum-hops to the farthest node; and the controller-

connectivity ratio (see Section "(D) Executing the Reliability statistics" above). Every

group of bars represents the reliability metrics of a single test with specific weights of

closeness and reliability (see Table 6.3).

3) Discussion of the latency metrics results:

For this topology, the latencies are smaller when the closeness weight is higher, except

the inter-controller latency, which is smaller when the closeness weight is lower. Also, it

is clear in the Figure 6.13 that the maximum value of the node-controller and the

connection control-path latencies stays fixed after the second test, while its average and

minimum values have a tiny increment. Similarly, the worst-case connection flow-setup

latency (maximum value), stops increasing after the second test, while the average and

minimum values are raised in microseconds. This indicates that it is possible to choose

any of the last four closeness ratios to have a similar effect on the latency metrics.

Even though the first closeness ratio (1.0) produces the best latency metrics, it is not

preferred one to be used because the reliability ratio equals zero.

4) Discussion of the reliability metrics results:

In general, the reliability metrics raises with increasing the reliability weight. Figure

6.14 demonstrates that the maximum value of the minimum-hops to the farthest node

(second bar) increases after the second test (reliability=0.3). Also, it exposes that the

values of the controller-connectivity ratio are not far from each other along the five

tests. This implies that the only noticeable decline in the reliability parameters appears

in test three where the maximum length of control-path (the minimum-hops to the

farthest node) becomes longer (from 5 to 6 hops).

5) Defining the optimal weights of Closeness and reliability:

According to the discussion of the point 3, the weights of the second test (closeness=0.3,

reliability=0.7) produces the second optimal latency, which does not increase even by

increasing the closeness weight. Also, from point 4, the increment of the controller-

connectivity ratio is relatively small along all tests, while after the second test the

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 141

maximum length of the control-path is increased. Therefore, the weights of the second

test are considered the optimal weights to be used in the COVN placement algorithm.

B) The weights of the Internet2 topology: Implementing the similar steps on the

Internet2 OS3E topology, generates the results which are presented in Figures 6.15 and

6.16 below (see the description of the figures in the Section "6.3.2, (A), points 1 and 2"):

Figure 6.15: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the closeness-reliability tests of Internet2 topology.

Figure 6.16: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the closeness-reliability tests of Internet2 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 142

1) Discussion of the latency metrics results:

The internet2 network is significantly different from the previous topology (Generated-

1). Although it has a very close number of nodes, Internet2 expands over a much wider

geographical area than Generated-1. Consequently, all lengths of Internet2 links are

much longer than the lengths of Generated-1 links (see Table 6.1). The three-latency

metrics (first, second and fourth metrics) in Figure 6.15 above illustrate that the

latencies do not have a regular attitude. This is because these latency metrics show high

values in the first two tests, then they become lower in the third and the fourth tests.

Finally, they go to the largest amount at the last test. They should increase duplex bus ly

with decreasing the weight of the closeness. Also, the inter-controller latency behaves

abnormally, because it retains a stable value, while it should react in opposition to the

previous three metrics. In addition, the average and minimum values of the latency

metrics have small variations.

The irregularity in the behaviour of the latency metrics occurs because, the COVN

placement algorithm is designed to find the shortest path using the hops count while it

discards the length of the link, which shows some vulnerability in the latency results

when it is applied on networks like Internet2. This result indicates that the third and

the fourth tests have the best latency results.

2) Discussion of the reliability metrics results:

Like Generated-1 network, the reliability metrics of Internet2 network escalates with

increasing the reliability weight. Figure 6.16 exposes that the maximum value of the

minimum-hops to the farthest node increases in the third test (when the reliability=0.5),

while the average and minimum values are stable, which decreases the reliability of the

control-path of the farthest switches only. In contrast, it reveals that the maximum,

average and minimum values of the controller-connectivity ratio are significantly raised

in the third test, which proves the controller reliability to all switches. Therefore, it is

possible to consider the weight of test three is the optimal weight regarding the

reliability of SD-WAN.

3) Define the optimal weights of closeness and reliability:

As discussed above, the third test with the weights (closeness=0.5, reliability=0.5)

produces the optimal latency metrics. Also, it offers the best reliability characteristics for

the placing of the physical controllers for Internet2 using the COVN algorithm.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 143

Therefore, the weights of the third test are considered the optimal weights for this

network.

C) The weights of India topology: The results of applying the strategy of the second

test category are shown in Figures 6.17 and 6.18 below (see the description of the

figures in the Section "6.3.2, (A), point 1 and point 2"):

Figure 6.17 : The comparison of the minimum, average and maximum values of the resulted
latency metrics for the closeness-reliability tests of India topology.

Figure 6.18: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the closeness-reliability tests of India topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 144

1) Discussion of the latency metrics results:

India network also extends over the wide geographical area, but it has a large number of

nodes (switches). Consequently, the majority of its links length vary between 1-100 Km,

while minority links have a longer length (see Table 6.1). The results in Figure 6.17

demonstrate that the latency metrics are raised when increasing the weight of the

closeness which is similar to the behaviour of the COVN algorithm when applied on

Generated-1topology. The first noticeable increment in these latencies occurred at the

second group of bars, after that they show similar values until the last group which again

increases these latencies by approximately 40 μs. This result introduces the probability

of using the weight of the middle three tests for better latencies or using the weights of

the last test if the reliability is improved because the last weights do not demolish the

latency metrics.

2) Discussion of the reliability metrics results:

Also, in the India network, the reliability metrics grow with the increase of the reliability

weight. Figure 6.18 exposes that the maximum and minimum values, of the minimum-

hops to the farthest node increase in the second test (when the reliability=0.3), while the

average value is stable, the reliability of control-path only declines at the farthest and

nearest switches. In contrast, it illustrates that the average and minimum value of

controller-connectivity ratio raises at the last test. This provides a greater improvement

for the reliability than optimising the lengths of the maximum and minimum control-

path. Therefore, the weights (reliability=1) of the last test is preferred and are

considered as the optimal weights for the best reliability.

3) Defining the optimal weights of Closeness and reliability:

From the previous argument, the last test with the weights (closeness=0, reliability=1)

produces the acceptable latency metrics. Also, it offers the most reliable characteristics

for placing the physical controllers using the COVN algorithm. Therefore, the weights of

the last test are considered the optimal weights for India network.

The findings of the second category of tests:

 All the previous decisions would not be considered as the optimal decision for

all cases and all implementation. The optimal decision would always depend on

the preferred parameter for the required placement. While, the decision made

in this thesis tries to balance between the latency and the reliability metrics.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 145

 The networks which have the majority of its links length less than 100 Km

produces optimal controller placement according to the latency when using the

CONV algorithm. However, the resulting placement of applying COVN algorithm

on Internt2 leads to acceptable latency metrics. This will be demonstrated

more clearly when comparing these results with the result of POCO algorithm

in Section 6.5.

 Using the controller placement to improve the network reliability is more

effective than using it to improve its latency.

6.3.3. The Clustering

The third category of tests aims to investigate two objectives, which are: the ability to

create balanced clusters; and the effect of increasing the number of clusters on the

latency and reliability metrics. The test strategy is performed using the following steps:

 The number of the physical controllers starts with a single controller; the number

of controllers is increased by one, each test, until there are six controllers.

 Considering the complete topology as a single virtual cluster, then the number of

the clusters is increased by one, until there are six clusters.

 The COVN placement is applied on the network with the optimal weights of

closeness and reliability that were identified in previous tests for every topology,

as shown in Table 6.4.

 Performing the clustering according to the node balance and the load balance

(requests per second for every switch).

 The maximum, average and minimum values of the latency and reliability metrics

are compared for the five tests.

 Investigating if the COVN algorithm can create the balanced clusters.

 Investigating the effect of increasing the number of clusters on latency and

reliability metrics.

 Implementing the same steps over the three networks (Generated-1, Internet2 and

India), to notice how these weights could differ for every network.

Topology Closeness weight Reliability weight
Generated-1 0.3 0.7
Internet2 0.5 0.5
India 0.0 1.0
 Table 6.4: The optimal weights of closeness and reliability for every topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 146

A) The clustering of the Generated-1 topology: The clustering results obtained from

applying the COVN algorithm on Generated-1 topology is presented in Table 6.5.

Table 6.5 proves the first objective of this test, which is the ability of the COVN

placement to produce balanced clusters whether using the number of nodes or the load

of the nodes as balancing criteria. Also, it reveals that, when clustering the VN with the

intention to balance the load, then the number of the switches differs for every cluster

because a load of switches should not be equal in most cases.

The second objective is explored in the comparisons of the latency and reliability

metrics of the six tests with a different number of clusters, which are presented in

Figures 6.19 and 6.20. The comparison of the latency metrics in Figure 6.19

demonstrates that, the values of the node-controller latency and connection control-path

latency decreases with the increasing number of clusters. In contrast, the inter-

controller latency raises when increasing the number of clusters. Consequently, the

flow-setup latency is affected by both. On the one hand, the connection flow-setup

latency is diminished when the effect of inter-controller latency is smaller than the

connection control path latency, as notified in the results of tests 1, 2 and 3. On the other

hand, the connection flow-setup latency grows when the effect of inter-controller

latency becomes larger than connection control path latency, as presented in the results

of tests 4, 5 and 6. Therefore, the impact of the inter-controller latency becomes

greater when the number of controllers is increased.

No. Number of
Clusters

Nodes Balance Load Balance (requests per second)

Test1 1 36 36
25451

Test2 2 18 , 18 18, 18
12857, 12594

Test3 3 12, 12, 12 12, 11 , 13
8206, 8417, 8828

Test4 4 9, 9, 9, 9 10, 9, 9, 8
6645, 6480, 6035, 6291

Test5 5 8,7, 7 ,7 ,7 8, 7, 8, 7, 6
5054, 4729, 5254, 5236, 5178

Test6 6 6, 6, 6, 6, 6, 6 7, 6, 7, 6, 5, 5
4340, 4096, 4540, 4307, 4124, 4044

 Table 6.5: The implantation of the COVN placement with a different number of clusters on
Generate-1 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 147

The comparison of the reliability metrics in Figure 6.20 illustrates that the maximum

value cut-nodes/links metric is increased by one, which optimises the reliability of some

switches. Also, it shows that the average length of the control-path (average of the

minimum-hops to the farthest path) is stable along all tests because all controllers

are in a close area, however, some variance happens when its minimum value increases

in the second test and its maximum value rises in the last two tests. Finally, the average

values of the controller-connectivity ratio is stable with a tiny decrease, but its

Figure 6.19: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the clusters tests of Generated-1 topology.

Figure 6.20: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the clusters tests of Generated-1 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 148

minimum values go down with increasing the number of the clusters because reliability

weight used for this test is 0.7 (highest reliable nodes included) and increasing the

controllers leds to additional controller locations being of lower reliability added to the

group of the active controller.

B) The clustering of the Internet2 topology: Implementing the COVN algorithm on

Internet2 topology with a different number of clusters produces the clustering, which is

displayed in Table 6.6.

Like the previous tests the COVN algorithm shows a good balancing ability on both

balancing criteria (number or load of nodes), as seen in Table 6.6.

The second objective is investigated through two comparisons which are introduced in

Figures 6.21 and 6.22. The latency metrics which are compared in Figure 6.21 show that

the node-controller latency and connection control-path latency starts diminishing with

the increasing the number of clusters until 4 clusters and goes higher again after that (at

5 and 6 clusters). The behaviour of these two metrics differs from their behaviour on

previous topology owing to the effect of the long distances of the link which reduces the

decision optimality of COVN placement algorithm. The inter-controller latency grows

with increasing the number of a cluster similar to Generated-1 topology metric. Finally,

the connection flow-setup latency continues to get a bit larger with the increasing the

number of clusters. As a final result, the latency metrics are increased by a small value

with the increasing the number of clusters.

No. Number of
Clusters

Nodes Balance Load Balance

Test1 1 34 34
36203

Test2 2 17, 17 1 7, 17
18369, 17834

Test3 3 11, 12, 11 12, 12, 10
12540, 11934, 11729

Test4 4 9, 8, 9, 8 9, 10, 8, 7
 9111, 9567, 9323, 8202

Test5 5 7, 7, 6, 7, 7 7, 7, 9, 5, 6,
7513 7046 9607 4954 7083

Test6 6 5, 6, 6, 6, 6, 5 6, 6, 6, 6, 5, 5
6283, 5774, 6020, 6357, 6207, 5562

 Table 6.6: The implementation of the COVN placement with a different number of clusters on
Internet2 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 149

The reliability metrics of Internet2 are compared in Figure 6.22 and show the very

similar behaviour of Generated-1 topology. The length of control-path continues settled

only increasing by one in the last three tests. Also, the average value of the controller-

connectivity ratio is stable. However, its maximum value expands to 80.48 after the third

test. That is because the used reliability weight is 0.5, which means that, the algorithm

selected the controllers of medium reliability and when needing to increase the number

of controllers the algorithm adds a controller with a higher reliability to the group of

Figure 6.21: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the clusters tests of Internet2 topology.

Figure 6.22: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the clusters tests of Internet2 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 150

active controllers. Therefore, the COVN algorithm provides stable control reliability

of SD-WAN with the increment of the number of the clusters.

C) The clustering of India topology: The third clustering test is implemented on India

topology, and the resulted clusters are visible in Table 6.7.

The clustering of the last test shows a similarity to the previous two tests in term of

balancing the load of the clusters.

The latency and the reliability metrics of the above six tests are then presented in

Figures 6.23 and 6.24 in order to detect the effect of the clustering on these metrics.

Figure 6.23 discloses an identical manner to the first test (Generated-1). The node-

controller and connection control-path latencies decrease while the inter-controller

latency increasers when increasing the number of clusters. Consequently, the flow-setup

time stable along the six tests, because the increment in the inter-controller latency is

always smaller than the decrease of the connection control path latency in this

placement.

No. Number of
Clusters

Nodes Balance Load Balance (requests per second)

Test1 1 145 145
16086

Test2 2 72,73 73 , 72
8210, 7876

Test3 3 49,48,48 54, 42, 49
5701, 5279, 5106

Test4 4 37,36,36,36 43, 32, 42, 28
4307, 4062, 4202, 3515

Test5 5 34,32,24,32,23 36, 31, 21, 36, 21
3485, 3968, 2228, 4537, 1868

Test6 6 26, 26, 20, 21, 26, 26 32, 24, 22, 23, 23, 21
3018, 3051, 2343, 2872, 2934, 1868

Table 6.7: The implementation of the COVN placement with a different number of clusters on

India topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 151

Figure 6.24 illustrates that the maximum value of the Cut-nodes/links metric decreases

by one after the second test while its average and minimum values are fixed for all tests.

Also, it promotes that the average length of the longest control-path (the average value

of the minimum-hops to the farthest nodes) keep stable values between 15 and 16.

Finally, the maximum value of the controller-connectivity ratio is settled for in all tests

while, the average and minimum values of this metric descend with increasing the

number of the clusters.

Figure 6.23: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the clusters tests of India topology.

Figure 6.24: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the clusters test of India topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 152

The findings of the third category of tests:

 The COVN placement algorithm efficiently produces balanced clusters.

 The node-controller and connection control-path metrics decrease when the

number of clusters is increased.

 The inter-controller metric rises with increasing the number of clusters.

 The connection flow-setup metric is affected by the difference between the

connection-control path and inter-controller metrics. If the first is larger than

the second metric, then the connection flow-setup metric escalates, otherwise

the connection flow-setup metric declines. However, the difference between

them is minimal because the COVN placement algorithm locates all of the

controllers in the close by area.

 The cut-nodes/links and minimum-hops to the farthest node metrics are stable.

 By increasing the number of clusters: The average value of the controller-

connectivity ratio is always settled; The maximum value of this ratio increases

if the used weight of reliability is less or equal to 0.5 (like Internet2); The

minimum value of this metric decreases if the used weight of reliability is

larger than 0.5.

6.3.4. The Controller Failure

The fourth category of tests is performed to prove two objectives. First, the ability of the

quick recovery of the controller-failures by the COVN placement algorithm. Second, even

though, the VN uses the backup controllers, after using up all of the active controllers,

this does not cause significant degradation in the performance of the SD-WAN. This is

because, the COVN placement algorithm intends to locate the backup controllers close to

the original one, along with considering the reliability of the backup node. The strategy

of these tests is as follows:

 The number of the active physical controllers should always be four.

 Considering the complete topology as a single VN, which is partitioned into four

clusters.

 The COVN placement is applied on the network with the optimal weights of

closeness and reliability identified in the weight tests for every topology, as shown

in Table 6.8.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 153

 The first test starts with the free-failure case, then in every further test, one active

controller fails, and it is recovered by a backup controller, until five tests are

completed.

 The maximum, average and minimum values of the latency and reliability metrics

are compared for the five tests.

 Comparing the locations of the original and backup physical controller.

 Investigating the effect of using the backup controller on latency and reliability

metrics.

 Implementing the same steps over three networks (Generated-1, Internet2 and

India), to notice how these weights could differ for every network.

A) The controller-failure of Generated-1 topology: Implementing the COVN

placement algorithm four times to recover four controller-failures, produce the

controller placement which is presented in Figure 6.25.

Topology Closeness weight Reliability weight
Generated-1 0.3 0.7
Internet2 0.5 0.5
India 0.0 1.0

Table 6.8: The optimal weights of closeness and reliability for every topology.

Figure 6.25: The active and backup physical controllers of Generated-1 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 154

The controller placement in Figure 6.25, shows that every active controller (rectangular

shape) has been recovered by a backup controller (rhombus shape). The pairs of active-

backup controllers could be produced as the displayed pairs, only if the failing and

recovering process is implemented in the sequence, which is introduced in Table 6.9,

otherwise, different pairs of the active-backup controllers would be created if the

failures occur in different sequence.

It is clear that the process of recovering the controller failure does not cost the algorithm

additional computational complexity. This is because, the algorithm only assigns the

next backup controller to the affected cluster.

The second objective is discovered by comparing the latency and the reliability metrics

as offered in Figures 6.26 and 6.27. Figure 6.26 demonstrates that the node-controller

latency and connection control-path latency are stable, but the inter-controller latency

increases by (0.1 ms) by the last two tests. Consequently, the average value of the

connection flow setup latency is increased by (about 1ms) in the last two tests as well,

which it is not a significant increment for this latency metric.

No.

Failure- Status

Test1 Failure-Free

Fail-Controllers X

Backup-Controllers X

Active-Controllers 12, 18, 11, 26

Test2 One Failure Fail-Controllers 12

Backup-Controllers 13

Active -Controllers 18, 11, 26, 13

Test3 Two Failures Fail-Controllers 12, 18

Backup-Controllers 13, 28
Active -Controllers 11, 26, 13, 28

Test4 Three Failures Fail-Controllers 12, 18, 11

Backup-Controllers 13, 28, 17

Active -Controllers 26, 13, 28, 17

Test5 Four Failures Fail-Controllers 12, 18, 11, 26

Backup-Controllers 13, 28, 17, 8

Active -Controllers 13, 28, 17, 8

 Table 6.9: The sequence of the controller-failure and recovery process of the five tests on
Generate-1 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 155

The reliability parameters in Figure 6.27, illustrate a small increment (one hop) in the

length of the control-path (min-hops to the farthest node). Also, the maximum and

average values of the controller-connectivity ratio stay settled, while its minimum value

reduces from 41.50 to 32 in the last three tests.

Figure 6.26: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the controller-failure tests of Generated-1 topology.

Figure 6.27: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the controller-failure tests Generated-1 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 156

B) The controller-failure of Internet2 topology: The pairs of active backup

controllers that are generated by the controller failure tests, are exhibited in Figure 6.28

below.

The failure tests are performed according to the sequence which is summarised in Table

6.10.

No. Failure- Status

Test1 Failure-Free

Fail-Controllers X

Backup-Controllers X

Active-Controllers 20, 4, 6, 29

Test2 One Failure Fail-Controllers 20

Backup-Controllers 25

Active -Controllers 4,6,29, 25

Test3 Two Failures Fail-Controllers 20,4

Backup-Controllers 25, 15

Active -Controllers 6, 29, 25, 15

Test4 Three Failures Fail-Controllers 20, 4, 6

Backup-Controllers 25, 15, 33

Active -Controllers 29, 25, 15, 33

Test5 Four Failures Fail-Controllers 20, 4, 6, 29

Backup-Controllers 25, 15, 33, 1

Active -Controllers 25, 15, 33, 1

Figure 6.28: The active and backup physical controllers of Intrent2 topology.

Table 6.10: The sequence of the controller-failure and recovery process of the five tests
on Internet2 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 157

Also, the comparisons of the five tests are employed to prove the second objective.

Figure 6.29 exposes that all latency metrics increase with increasing the number of fail

controllers. The increment this time in the connection flow-setup latency is larger than

the increment of the previous tests (Generated-1 topology) due to the longer length of

links. It is about 20 ms with every further test of the first four tests, while it is similar for

the last two tests.

Figure 6.29: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the controller-failure tests of Internet2 topology.

Figure 6.30: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the controller-failure tests of Internet2 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 158

Figure 6.30 expresses that the min-hops to the farthest node mounts by one when three

failures happen. Also, it shows that the average and minimum values of the controller

connectivity ratio remain the same, while its maximum value falls from 80.48 at fourth

test to 63.42 at the fifth test.

C) The controller-failure of India topology: The third controller-failure tests are

applied on India network, and the resulted pairs of active-backup controllers are

exposed in Figure 6.31.

Figure 6.31 simply shows that COVN algorithm spawns the new backup controller

(rhombus shape) instead of the active controller (rectangular shape) if the active one is

dropped. The failure recovery is archived without re-clustering or recalculating the

controller placement in order to obtain a fast recovery.

The sequence of failing the controllers and recovering them using the backup controllers

is listed in Table 6.11 below. The table shows that, it starts with failure-free of the

controller and ends with falling the four active controllers.

Figure 6.31: The active and backup physical controllers of India topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 159

Next, the comparisons of latency and reliability are discussed to track the changes in

these metrics within the controller-failure and to prove the second objective. Figure 6.32

reveals that the latencies heighten in very small values along all tests. This is because the

used weight of reliability to apply the COVN placement was the highest value (equals

one) for this placement, which orders the controller nodes according to their reliability.

Therefore, the next controller node (backup controller) could jump to a remote location

from the original one.

The results of the reliability metrics reveal that using the highest weight of the reliability

causes a degradation in the controller-connectivity ratio of the backup controllers.

Figure 6.33 displays that the controller-connectivity ratio decreases with using more

backup controllers. However, the decrement in the average value of this metric is not

big; it is about five unit at each test. Also, Figure 6.33 shows that the maximum and

average value of the length of the control-path increases by one in the last three tests.

No. Failure- Status

Test1 Failure-Free

Fail-Controllers X

Backup-Controllers X

Active-Controllers 96, 121, 89, 88

Test2 One Failure Fail-Controllers 96

Backup-Controllers 72

Active -Controllers 121, 89, 88, 72

Test3 Two Failures Fail-Controllers 96,121

Backup-Controllers 72, 94

Active -Controllers 89, 88, 72, 94

Test4 Three Failures Fail-Controllers 96,121,89

Backup-Controllers 72, 94, 74

Active -Controllers 88, 72, 94, 74

Test5 Four Failures Fail-Controllers 96, 121, 89, 88

Backup-Controllers 72, 94, 74, 95

Active -Controllers 72, 94, 74, 95

 Table 6.11: The sequence of the controller-failure and recovery process of the five tests on
India topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 160

The findings of the fourth category of tests (controller-failure tests):

 The COVN algorithm can perform fast recovery for controller failure.

 The latency metrics receive a tiny increment in a microsecond, consequently

connection flow-setup latency only increases by milliseconds.

 The reliability metrics are degraded by an acceptable value, which does not

demolish the SD-WAN reliability.

Figure 6.32: The comparison of the minimum, average and maximum values of the resulted
latency metrics for the controller-failure tests of India topology.

Figure 6.33: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for the controller-failure tests of India topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 161

Finally, the reasons for not researching (recalculating) the nearest backup controller to

the cluster which loses its active controller, are: (1) The failure recovery should be

performed as quickly as possible (it is not about the computation time, but the next back

up controller should be configured as a backup controller for all clusters. Subsequently, if

the first backup controller is used, then the second backup controller should be configured

as the next backup controller for all clusters); (2) It is preferred that the backup

controller is placed in a reliable location and close to other controllers rather than the

cluster's nodes. Virtually always (when reliability weight higher than or equals to 0.5)

the furthest controller in the controller's list has lower reliability. Also, it always has a

longer path to communicate to all other controllers (higher inter-controller latency).

6.3.5. The Changes of the Virtual Slices (Topology or Load)

The objectives for the fifth category of the tests are: First, showing that the COVN

placement algorithm can react to the topology changes or the load changes for every VN.

Second, proving the ability of the COVN placement algorithm for providing a good

controller placement for all VNs of SD-WAN. These tests are performed in the following

procedure:

 The number of the active physical controllers should be, three in high load and two

in low load.

 Creating two different VNs for every topology:

1. Horizontal VN: includes only a group of the physical nodes which

extends/distributes horizontally for hosting the virtual switches.

2. Vertical VN: includes only a group of the physical nodes which

extends/distributes vertically for hosting the virtual switches.

 For every VN, implementing the COVN placement algorithm on four various

statues, which are:

1. Wide extension: the VN includes all the nodes of this VN.

2. Shrink extension: the VN include 65% of its nodes.

3. Heavy load: all nodes of VN work at the highest expected load (requests per

second).

4. Light load: all the nodes of VN work at 65% of the highest expected load.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 162

 The COVN placement is applied on these VNs with the optimal weights of closeness

and reliability that were identified in the weight tests for every topology, as shown

in Table 6.12.

 Presenting and comparing the graphs and the clusters' size or load for eight

statuses (2 VNs* 4 statuses).

 The maximum, average and minimum values of the connection control-path

latency and controller-connectivity ratio are compared for the eight tests to prove

that the COVN placement provides a good controller placement in various statuses.

 Implementing the same steps over three networks (Generated-1, Internet2 and

India), to notice how these statuses could differ for every network.

A) The VNs of Generated-1 topology: This section illustrates the implementation of the

COVN placement to adapt the control layer in reaction to the changes of the VNs. This is

performed by presenting the four different statuses of virtual controller placement for

every one of the two created VNs, as shown in Figure 6.34 below.

The first four graphs (A-1 to 4), introduce the different controller placements of the first

VN, while the last four graphs (B- 1 to 4) exhibit them for the second VN. Graphs (A-1)

and (A-2) show that the number of the active virtual nodes are minified from 24 to 16.

Consequently, the number of controllers is reduced to optimise the controller utilisation

regarding maintaining the same number of nodes for every virtual controller. Graphs (B-

1) and (B-2), present a similar procedure but this time, it is for the vertical VN. Both

examples demonstrate that the COVN placement achieves a good load balancing in the

number of nodes per controller. After that, graphs (A-3) and (A-4), display that the

horizontal VN keeps the same topology, but it only changes the load of the switches.

Similarly, this occurs in graphs (B-3) and (B-4) of the vertical VN. The last four graphs

illustrate that the nodes' load is fairly distributed among the controllers.

Topology Closeness weight Reliability weight
Generated-1 0.3 0.7
Internet2 0.5 0.5
India 0.0 1.0
 Table 6.12: The optimal weights of closeness and reliability for every topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 163

(A-1) Horizontal VN- Wide extension.

(A-2) Horizontal VN- Shrink extension.

(A-3) Horizontal VN- Heavy load.

(A-4) Horizontal VN- Light load.

(B-1) Vertical VN- Wide extension. (B-2) Vertical VN- Shrink extension.

(B-3) Vertical VN- Heavy load.

(B-4) Vertical VN- Light load.

C1 8
C2 8
C3 8
T 24

C1 8
C2 8
T 16

C1 8619
C2 8347
C3 8485
T 25451

C1 8936
C2 8572
T 17508

C1 6
C2 7
C3 7
T 20

C1 6
C2 5
T 11

C1 7582
C2 7268
C3 6682
T 21532

C1 7423
C2 6928
T 14351

Figure 6.34: The possible changes with the reaction of COVN algorithm for two different VN's of
Generated-1 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 164

The next step is comparing some of the resultant metrics of all the controller placements

which are presented in Figure 6.34 to investigate the second objective. The connection

control-path latency is compared for the eight statuses because it summarises the effect

of changing the controller placement, as shown in Figure 6.35 (A). The figure discloses

that the average value of the connection control-path latency is stable, while the

maximum and minimum values of this latency occupies a small variation (about 1 ms)

when changing the controller placement.

Also, Figure 6.35 (B) presents the variation of the controller-connectivity ratio for the

eight tests. It shows that this variation is restricted within the acceptable range of

connectivity ratio (between 52 and 42).

B) The VNs of the of the Internet2 topology: The second implementation of the eight

changes of the virtual topology is applied over the Internet2 topology as exposed in

Figure 6.36 below.

The eight graphs in Figure 6.36 present the eight cases of the VNs, which are similar to

those presented in the previous section. This figure reveals that the COVN placement

algorithm acquires a good balance between clusters, whether it is by optimising the

number of nodes or the load of the switches.

(A) Comparing the connection control-path latency (B) Comparing the controller-connectivity ratio

Figure 6.35: The comparisons of some latency and reliability metrics for the eight different statuses
of two VNs of Generated-1 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 165

(A-1) Horizontal VN- Wide extension.

(A-2) Horizontal VN- Shrink extension.

(A-3) Horizontal VN- Heavy load.

(A-4) Horizontal VN- Light load.

(B-1) Vertical VN- Wide extension. (B-2) Vertical VN- Shrink extension.

(B-3) Vertical VN- Heavy load.

(B-4) Vertical VN- Light load..

C1 8
C2 8
T 16

C1 8
C2 7
C3 7
T 22

C1 8202
C2 7604
C3 7930
T 23736

C1 7960
C2 7860
T 15820

C1 6
C2 5
C3 5
T 16

C1 5
C2 5
T 10

C1 5760
C2 5520
C3 5846
T 17126

C1 5999
C2 5416
T 11415

Figure 6.36: The possible changes with the reaction of COVN algorithm for two different VN's of
Internet2 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 166

The comparison of the connection control-path latency in Figure 6.37(A), expresses that

this latency varies by about 10 to 20 ms up or down when changing the VN status and

the placement of the virtual controllers. The amounts of change in latency is not large

compared to the long length of links for this topology, which is in thousands of km,

whereas the previous topology produces latency changes around 1 ms when the length

of links is limited to hundreds of km only. The abnormal behaviour of the average value

of this latency at seventh test (V-shrink) resulted from shrinking the nodes of vertical VN

towards the network boundaries (right side), which makes them farther from the virtual

controllers (see Figure 6.36(B-2) above). However, the increment does not exceed the

maximum latency of this topology. For the similar reason, the latency of the first four

test (Horizontal VN tests) is lower than the last four tests (vertical VN tests). The nodes

of the horizontal VN are closer to the virtual controllers than the nodes of the vertical

VN.

Also, Figure 6.37 indicates that the controller connectivity ratio alternates between 45 to

59, which is good connectivity for controller nodes.

C) The VNs of India topology: The third tests of VNs are applied on India network, and

the resulted graphs are presented in Figure 6.38 below.

(A) Comparing the connection control-path latency (B) Comparing the controller-connectivity ratio

Figure 6.37: The comparisons of some latency and reliability metrics for the eight different statuses
of the VNs of Internet2 topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 167

(A-1) Horizontal VN- Wide extension.

(A-2) Horizontal VN- Shrink extension.

(A-3) Horizontal VN- Heavy load.

(A-4) Horizontal VN- Light load.

(B-1) Vertical VN- Wide extension. (B-2) Vertical VN- Shrink extension.

(B-3) Vertical VN- Heavy load.

(B-4) Vertical VN- Light load..

C1 26
C2 26
T 52

C1 30
C2 29
C3 29
T 88

C1 3661
C2 3431
C3 3131
T 10223

C1 3598
C2 3200
T 6798

C1 30
C2 30
C3 30
T 90

C1 28
C2 28
T 56

C1 3701
C2 3420
C3 3170
T 10291

C1 3595
C2 3247
T 6842

Figure 6.38: The possible changes with the reaction of COVN algorithm for two different VN's of
India topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 168

Figure 6.38, displays the wide extension, shrink extension, heavy load and light load

statuses for the horizontal VN in the first four graphs, then present the same statuses for

the vertical VN in the last four graphs. The graphs show that the COVN placement

algorithm effectively responds to the changes of the VNs and successfully optimises the

controllers' load with the equitable balance of the load. This proves the validity of the

first objective of this category of tests.

The second objective is proven based on the comparison below in Figure 6.39. The

comparison of the connection control-path latency in Figure 6.39(A), demonstrates that

this latency settles with a narrow range of variation (less than 1 ms) during all the

occurring changes. However, this latency falls in the second test (H-shrink) because the

VN shrinks toward the centre of the network (nearer to the virtual controllers), which

reduces the value of this latency. This decrease in the connection control-path latency is

beneficial in this case.

Also, the comparisons of the controller-connectivity ratio in Figure 6.39(B), illustrates

that their three presented values continue in the same range of connectivity, which

regulates the reliability of the network.

The findings of the fifth category of tests:

 The COVN placement algorithm can maintain a good balance within a number of

nodes or a load of these nodes when re-clustering the VNs.

 The changes of the VN topology produces unavoidable changes in the connection

control-path latency and the connection control-path ratio. However, the COVN

(A) Comparing the connection control-path latency (B) Comparing the controller-connectivity ratio

Figure 6.39: The comparisons of some latency and reliability metrics for the eight different
statuses of the VNs of India topology.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 169

placement algorithm is designed to limit these changes to smallest values keeping

sufficient performance for all VNs of SD-WAN. This is proved by the results of the

three topologies when considering the following issues:

1. The latency variation of Generated-1 and India topologies is about 1 ms, while

the variation of the Internet2 topology is about 20 ms due to the long length of

these links, which is not related to the performance of the COVN algorithm.

2. The VN gains lower latency when it extends towards the centre of the network,

which is not lower than the minimum latency of the complete topology (see

India tests).

3. The VN obtains higher latency when it extends towards the boundary of the

network, but it does not exceed the maximum latency of the complete network

(see the tests of Internet2).

 The controller-connectivity ratio is affected by the number of the used controllers

and the number of links of the network, but it is not affected by the location of the

VN.

Finally, all the mentioned variations of latency are restricted to its maximum value. The

maximum value of latency does not exceed the latency of the connection when its length

is equal to half of the network diameter. Also, the controller-connectivity ratio is limited

by the minimum value of connectivity for the location of physical controllers, which are

in the optimal locations of the network. These restrictions regulate the performance of

all VNs at a good level and do not produce unexpected changes that demolish the

operation of the VNs.

6.3.6. The size of the network

The last category of the simulated tests intends to realize the limitation of the COVN

algorithm, through completing three objectives, these are: (1) Confirming the possibility

of increasing the number of controllers which are placed by the COVN placement

algorithm, if the network size is increased; (2) Exploring the increment of the connection

flow-setup latency with growing the size of network; (3) Investigating the increment of

the execution time for both parts (part one and part two) of the COVN placement

algorithm. The strategy which is used to apply these tests is as follows:

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 170

 Choosing a suitable number of controllers for the topology.

 Considering the complete topology as a single VN.

 Applying the COVN placement algorithm with the closeness and reliability weights

equal to 0.5 for both.

 Presenting and discussing the resulting controller placement.

 Presenting and discussing the latency and reliability metrics which resulted from

applying the controller placements.

 Calculating and viewing the computation time for applying the two parts of the

COVN placement on every topology.

 Implementing the previous steps on three topologies which are: Us-Carrier,

Generated-2 and Kentucky.

Implementing the COVN placement algorithm on the three topologies produces the

controller placements, which are presented in Figure 6.40 below. The graph of US-

Carrier network shows that the network is partitioned into seven clusters with a

balanced number of nodes (see Figure 6.40(A)). Also, Figure 6.40(B), displays that

Generated-2 topology has nine clusters and controllers. Finally, the graph in Figure

6.40(C), presents the controller placement of the Kentucky network. This network is

sectioned into eighteen clusters with a balanced number of nodes. However, there are

two clusters (C1 and C17) which received only half the number of nodes of other

clusters. This is because the nodes of these two clusters are connected linearly and

intersected with their neighbour by cut-vertices. The cut-vertex prevents a small

number of nodes from moving from the big cluster to the small cluster because

disconnecting the cut-vertex from the big cluster creates a separate group of nodes,

which generates unbalanced clusters, whether it is added to the original (big cluster) or

to the small cluster. This prevents the clustering algorithm from balancing the clusters.

Otherwise, the COVN placement algorithm is able to balance all of the clusters.

The number of the controllers is increased from six controllers in the previous three

topologies (Generated-1, Internet2 and India), into 7, 9 and 18 controllers in the last

three topologies to prove the ability of COVN placement algorithm to increase the

number of controllers when the size of the network is increased.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 171

The second objective intends to indicate the increment in the latency and reliability

metrics when the network size becomes larger. Figure 6.41 reveals that the increment of

the latency metrics is related to two factors: the size of the network and the expansion of

the network. However, the expansion of the network has a greater effect in raising the

latency metrics. For example, the second test of Generated-2 topology with 400 nodes,

C1 23

C2 22

C3 25

C4 25

C5 21

C6 24

C7 18

Total 158

(A) The controller placement
of Us-Carrier topology.

C1 49

C2 49

C3 45

C4 48

C5 48

C6 38

C7 48

C8 36

C9 39

Total 400

(B) The controller placement
of the Generated-2 topology.

C1 21 C10 46

C2 45 C11 43

C3 45 C12 50

C4 50 C13 46

C5 36 C14 31

C6 45 C15 49

C7 44 C16 41

C8 49 C17 21

C9 46 C18 46

Total 754

(C) The controller placement
of Kentucky topology.

Figure 6.40: The implementation of the COVN placement algorithm on three different size

topologies.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 172

obtains the maximum connection flow-setup latency equal to 1,253.42 ms; while, the

first test of Us-carrier with 154 nodes produces 3,014.29 ms for this latency metric due

to the larger expansion of the network. Finally, the last test of Kentucky topology, which

has the largest network size and expansion demonstrates that the maximum connection

flow-setup latency could grow up until 4,780.79 ms.

The reliability metrics, which are presented in Figure 6.42, demonstrate that the length

of the control-path (Min-hops to farthest node) is effected by increasing the network

size. For instance, the maximum value of this metric equals 23 hops for Us-carrier and

Figure 6.41: The comparison of the minimum, average and maximum values of the resulted
latency metrics for three different topologies.

Figure 6.42: The comparison of the minimum, average and maximum values of the resulted
reliability metrics for three different topologies.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 173

34 hops for Kentucky networks, while it is only ten hops for Generated-2 network. Also,

Figure 6.42 proves that controller-connectivity ratio is relevant to the connectivity of the

topology. For example, the minimum value of this metric is 14.37 for Us-Carrier

topology, while it is 59.11 for Generated-2 topology. However, Generated-2 topology has

a larger number of controllers, which reduces the value of the controller-connectivity

ratio. The reason for this, is Generated-2 network has more connection between its

nodes.

The execution times of the COVN placement algorithm in Table 6.13 are calculated, to

achieve the third objective, which aims to determine the limits of this time. This table

discloses that the execution time of the first part (the placement of physical controllers)

of the COVN placement algorithm is higher than the second part (the placement of the

virtual controllers) of the algorithm. This is corresponding to the design of this

algorithm because the second part is applied more frequently than the first part (see

Table 4.2 in chapter four). Also, the last network (Kentucky) in Table 6.13, proves that

the COVN placement algorithm has a fast exaction time because it can place

eighteen physical controllers on a large network (754 nodes) in only 49.53 seconds

and eighteen virtual controllers in 28.85 seconds (see Figure 6.40 (C)).

The findings of the sixth category of tests:

 The COVN placement algorithm can efficiently increase the number of the placed

physical and virtual controllers when the size of the network is increased.

 The latency of VN raises when the size of the network is increased. However, it

acquires a higher increment with the network of the wider expansion like Us-

carrier and Kentucky.

Topology name Number of controllers Time of physical controller

placement (Second)

Time of virtual controller

placement (Second)

Generated-1 6 5.70 4.93

Internet2 6 5.44 4.30

India 6 6.86 5.22

Us-Carrier 7 7.07 6.29

Generated-2 9 20.16 11.25

Kentucky 18 49.53 28.85

 Table 6.13: The execution time of the COVN placement algorithm for six different topologies and
a different number of controllers.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 174

 The COVN placement algorithm keeps a low execution time even when the size of

the network and number of placed controllers are increased.

6.4. The Results of Mininet Emulator

Some tests, which are performed by the COVN simulator, are reapplied on Mininet

emulator in order to prove the validity of the simulation results, namely the connection

flow-setup latency. These tests are conducted on Mininet to examine this latency

between the nearest and farthest pair of the nodes for six different numbers of

controllers (from 1 to 6 controllers). The strategy which is used to implement these tests

and validate the results of COVN simulator is as follows:

1. Building Generated-1 topology in Mininet and connecting it to the HP VAN SDN

controller as shown in Figure 6.43. This is completed by using the programmes

which are explained in chapter four (see Section "5.4.4. The Programmes of

Implementing the Mininet Developments").

2. Selecting the farthest and nearest two nodes to measure the latency between them.

For example, Figure 6.43 presents the path between the farthest two nodes (from

node 1 to node 36).

 Node1

Node36

Figure 6.43: The Generated-1 topology in the HP VAN SDN controller interface after executing it
on Mininet emulator.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 175

3. Starting the topology with a single controller and single cluster and measuring the

connection flow-setup latency of the shortest path between the two farthest and

nearest nodes of this network. The latency measurement is performed using the

ping tool.

4. Reapplying the previous step on the same network with increasing the number of

controllers and their clusters by one controller every test, until six controllers.

Figure 6.44 shows the applied controller placements, which are produced by the

COVN placement with the weights equal to 0.3 for reliability and 0.7 for closeness.

5. The results of Minimet emulator are compared with the results of the COVN

simulator.

Finally, tests are conducted with a different number of controllers to prove the ability of

adding the effects of the controllers' location in different six cases by using traffic control

(tc) and Network Emulation (netem) tools (see Chapter five Section "5.4.1. The Mininet

Limitation and The Developed Solution in Mininet"). The results of the connection flow-

Controllers
Locations

12

Clusters Size 36

(A) One controller

Controllers
Locations

12, 18

Clusters Size 18, 18

(B) Two controllers

Controllers
Locations

12, 18, 11

Clusters Size 12, 12, 12

(C) Three controllers

Controllers
Locations

12, 18, 11, 26

Clusters Size 9, 9, 9, 9

(D) Four controllers

Controllers
Locations

12, 18, 11, 26, 13

Clusters Size 8, 7, 7 , 7 , 7

(E) Five controllers

Controllers
Locations

12. 18, 11, 26, 13, 28

Clusters Size 6, 6, 6, 6, 6, 6

(F) six controllers

Figure 6.44: The six controller placements which are applied in Mininet tests.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 176

setup latency for Mininet emulator and COVN simulator are introduced in Table 6.14

below.

On the one hand, adding the effect of the control path latency is achieved successfully for

all cases according to the results of the last column in Table 6.14 for all cases. On the

other hand, the difference between these latencies is not clear in the result because the

ping tool can only find the latency in a millisecond, while changing the number and

locations of the controllers varies the latency in microseconds. The results in this table

represent the average value of 20 tests for every case.

Also, the comparison in Table 6.14 demonstrates a matching between the connection

flow-setup latency of the COVN simulator and its peer which is measured from Mininet

emulator. This proves the validity of the computations and results of COVN simulator.

Number of
controllers

Src Dst COVN
Simulator

(ms)

Mininet
Emulator

(ms)

1 Controller

1 36 Max. Connection Flow-setup latency 927.035 928

11 12 Min- Connection Flow-setup latency 280.755 279

2 Controllers

1 36 Max. Connection Flow-setup latency 926.725 928

18 19 Min- Connection Flow-setup latency 280.615 279

3 Controllers

1 36 Max. Connection Flow-setup latency 927.145 928

11 12 Min- Connection Flow-setup latency 280.735 279

4 Controllers

1 36 Max. Connection Flow-setup latency 927.73 929

13 16 Min- Connection Flow-setup latency 280.62 279

5 Controllers

1 36 Max. Connection Flow-setup latency 927.685 928

18 19 Min- Connection Flow-setup latency 280.615 280

6 Controllers

1 36 Max. Connection Flow-setup latency 926.805 929

25 26 Min- Connection Flow-setup latency 280.615 279

 Table 6.14: The comparison between the connection flow-setup latency of Mininet and COVN
simulator.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 177

6.5. The Comparison with results of POCO algorithm

To evaluate the controller placements of the COVN placement algorithm, it is compared

to the controller placements of the POCO algorithm. POCO algorithm calculates the

optimal placement of controllers by trading-off between six different objectives (Hock et

al., 2013). This algorithm and its simulator were built in 2013, and were then developed

twice more by (Hock, Hartmann, et al., 2014) and (Lange, Gebert, Zinner, et al., 2015).

The POCO algorithm is chosen for this evaluation because it provides six different

controller placements, which are used to optimise the different objectives (see Table

7.15 below). It is the most common algorithm, which is used to evaluate the controller

placement in all related work (Lange, Gebert, Spoerhase, et al., 2015) (Naning et al.,

2016) (Perrot and Reynaud, 2016) (Liao et al., 2017).

This evaluation is based on comparing three metrics, which are: First, the load

balancing; Second, the latency metrics and; Third, the reliability metrics.

The latency metrics of the POCO and COVN placement algorithms are computed for

Internet2 topology in two cases, as follow:

A) They are calculated for the real length of links of the Internet2 topology.

B) They are calculated for the minimised length of links of Internet2 topology.

Case (A) shows the difference in the performance between the two algorithms on the

real topology. While, case (B) is used to prove that the controller placement of the COVN

placement algorithm could be more beneficial than the controller placement of the POCO

algorithm with small expansion SD-WANs.

The strategy to accomplish these tests is as follows:

 Using four active physical controllers for all tests.

 Considering the complete topology as a single VN, which is partitioned into four

clusters for all tests.

 Applying the COVN placement on the network for three statuses:

1. failure-free;

2. One-failure;

3. And three-failures of the controller.

This is to create the statuses of placement which are similar to the placement statuses of

POCO algorithm. All of them using weights, which are equal to 0.5 for both closeness and

the reliability.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 178

 Applying the POCO algorithm for six different objectives, as shown in Table 6.15.

 Calculating and comparing the load of the controllers.

 Calculating and comparing the maximum, average and minimum values of the

latency and reliability metrics.

 Minimizing Internet2 topology according to Equation 6.1, which makes the maximum

length of its links less than 20 km (exactly 19.345 km).

Minimized_length_internet2 = [(1.2 * length_internet2) /100] (6.1)

 Implementing the previous steps over the Internet2 network with the minimised

length of links.

After the above presentation of the test strategy, the three evaluation comparisons are

discussed to determine whether the controller placement of COVN placement algorithm

is efficient or not.

First, the comparison analyses the load balancing of the COVN and POCO placements.

The three controller placements of the COVN placement algorithm, which are displayed

in Figure 6.45 (A, B and C) demonstrate a good load balancing for all controllers. While,

the six different controller placements of the POCO algorithm, which are exhibited in

Figure 6.45 (from D to I), introduce a poor load balancing, except the graph (E) where

the main objective is balancing the load of the controllers. Also, COVN placement

algorithm provides the load balancing according to a load of nodes (requests of the flow-

NO. POCO Objective Explanation

1. Max node to controller (failure-free) Intends to minimise the latency between the controller

and its farthest node, with failure-free of the controller.

2. Controller imbalance (failure-free) Intends to balance the number of nodes for all

controllers.

3. Max controller to controller latency

(failure-free)

Intends to minimise the maximum inter-controller

latency.

4. Controller-Less nodes (up to two

nodes failure)

Intends to optimise the number of paths between the

controller and its nodes, up to two paths.

5. Worst-Latency (failure-Up to 3

controllers)

Intends to minimise the latency between the controller

and its farthest node, with considering controller-failure.

6. Controller imbalance (failure-Up to

3 controllers)

Intends to balance the number of nodes for all

controllers, with considering controller-failure.

 Table 6.15: The six objectives of the POCO placement algorithm.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 179

rules per second), while POCO algorithm can only balance the load according to the

number of nodes.

From above the COVN placement has better load balancing capabilities than POCO

placement.

The Second comparison matches the latency metrics in two cases, as below:

Controllers
Locations

20, 4, 6, 29

Clusters Size 9, 8, 9, 8

(A) Failure-free

Controllers
Locations

4, 6, 29, 25

Clusters Size 9, 8, 9, 8

(B) One fail controller

Controllers
Locations

29, 25, 15, 33

Clusters Size 9, 8, 9, 8

(C) Three fail controllers

 The Six POCO placements

The Three COVN placements

Controllers
Locations

33, 5, 4, 16

Clusters Size 6, 6, 11, 11

(D) Max. node to controller

Controllers
Locations

33, 25, 8, 34

Clusters Size 8, 8, 9, 9

(E) Controller imbalance

Controllers
Locations

34, 10, 22, 28

Clusters
Size

21, 10, 1, 2

(F) Max. inter-controller

Controllers
Locations

21, 6, 18, 28

Clusters Size 5, 9, 10, 10

(I) Controller-less nodes

Controllers
Locations

14, 20, 4, 11

Clusters Size 10, 4, 11, 9

(G) Worst-latency, three fails

Controllers
Locations

5, 18, 24, 10

Clusters Size 12, 8, 7, 7

(H) Controller imbalance, three fails

Figure 6.45: All controller placements, which are produced by the COVN and POCO placement
algorithms to be compared together.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 180

A) Latency metrics for real length of links of Internet2 topology

In this section, the latency metrics of the two algorithms are compared, when there is no

controller failure (see Figure 6.46), and when there is a controller failure (see Figure

6.47).

Figure 6.46 shows a comparison of five different groups of the latency metrics, without

considering the controller failure cases (failure-free). The first group of the latency

metrics is produced by the COVN placement, while the other four groups are created by

Closeness & Reliability=0.5 Max node to controller Controller imbalance Max controller to controller Controller-Less nodes

One fail controller Three fail controllers Worst-latency, three fails Controller imbalance, three fails

Figure 6.46: The comparison of latency metrics between the COVN and POCO placements on the real
distances of Internet2 for the failure-free of the controller.

Figure 6.47: The comparison of latency metrics between the COVN and POCO placements on the real
distances of Internet2 for the different failures of the controller.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 181

POCO algorithm for different objectives. On the one hand, there is a similarity in the

behaviour of the latency metrics of the first group (COVN placement latencies) and the

fourth group (Max controller to controller placement latencies), although, their values

are different. On the other hand, there is a dissimilarity in the behaviour and the value

between the COVN placement latencies and the POCO placement latencies of the second,

third and fifth groups. The COVN placement latencies have the node-controller latency

larger than the inter-controller latency, but they are not far from each other (balancing

between them). The two latencies of the fourth group behave similarly, but the

difference between them is larger (unbalancing between them). In contrast, the other

three latency groups of POCO placement, have the node-controller latency smaller than

inter-controller latency. The final analysis of the latency metrics in Figure 6.46

demonstrates that:

1. Reducing the node-control latency and ignoring the optimisation of the inter-

controller latency (second group), generates the larger connection flow-setup

latency.

2. Placing the controllers on any objective that keep the node-controller latency

smaller than inter-controller latency (third and fifth groups), produces good

connection flow-setup latency. However, the high inter-controller latency

degrades the controller convergence and the resources utilisation.

3. Reducing the inter-controller latency and ignoring the optimisation of the node-

controller latency, produces the smallest connection flow-setup latency (see the

fourth group).

4. COVN placement kept balancing between the node-controller latency and inter-

controller latency to obtain a good connection flow-setup latency (higher than

the lowest latency in the fourth group by 14 ms). Also, to gain the central

location (optimal closeness), this serves the controller placement of the

dynamic VN which is not considered in the POCO placement algorithm.

After that, Figure 6.47 exposes the comparisons between the group of four tests of the

latency metrics, with considering the occurrence of the controller-failure. The first two

groups of latency metrics are calculated for the COVN placement, when one and three

controllers are failed. While, the last two groups of latency metrics introduce the POCO

placement latencies. The third group of latency metrics aims to optimise the worst-case

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 182

latency between the node and its controller. Whereas, the fourth group intends to

optimise the load balance between controllers, when the controller-failure probability is

up to the three controllers. Figure 6.47 demonstrates better latency metrics of POCO

algorithm than the COVN placement algorithm, in the failure case. However, the COVN

placement keeps a balanced load of the controller by placing the responsibility of the

failed controller to a backup controller. While, the POCO algorithm degrades the load

balance by re-distributing the load of the failed controller on the other active controllers.

Also, it is noteworthy that the connection flow-setup latency of the COVN placement

algorithm is higher than the latency of POCO algorithm by 69 ms in the worst case (the

difference between the second and third groups). The difference is large because of the

large geographical expansion of the Internet2 topology, which considers the worst-case

of implementation for COVN placement algorithm as will be demonstrated in the next

section.

B) Latency metrics for the minimised length of links of Internet2 topology

The two figures below (Figures 6.48 and 6.49) present the same previous comparisons

of latency metrics, but for the minimised length of links of Internet2 topology. The

purpose of this, was to prove that the COVN placement algorithm could present better

results of latency for this network when it had a smaller expansion. This supports the

validity of the facts that the COVN placement performs better for networks which have

restricted geographical expansion.

One circumstance shows that, the node-controller, inter-controller and connection

control-path latency metrics in Figures 6.48 and 6.49below, indicate a similarity in the

attitude of those in Figures 6.46 and 6.47 above. The network of the minimised length of

links produces smaller values of the mentioned three latency metrics, but they are

directly proportional with their peers in the network of the real length of links.

Another circumstance shows that, the connection flow-setup latency changes its

behaviour in the second case (minimised length of links). Analyzing the results in Figure

6.48 revealed that:

1. Reducing the node-control latency to be smaller than the inter-controller latency,

creates a good connection flow-setup latency (see group 2, 3 and 5).

2. Reducing the inter-controller latency and ignoring the optimisation of the node-

controller latency, produces the heights (worst) connection flow-setup latency (see

group 4).

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 183

3. COVN placement kept balancing between the node-control latency and inter-

controller latency to obtain a good connection flow-setup latency (higher than the

lowest latency in the third group by 0.45 ms).

Figure 6.49 shows that connection flow-setup latencies for COVN placement are higher

than those of POCO placement, but this time the difference in worst case is only 1.53 ms

(the difference between the second and third groups).

Closeness & Reliability=0.5 Max node to controller Controller imbalance Max controller to controller Controller-Less nodes

One fail controller Three fail controllers Worst-latency, three fails Controller imbalance, three fails

Figure 6.48: The comparison of latency metrics between the COVN and POCO placements on the
minimised distances of Internet2 for the failure-free of the controller.

Figure 6.49: The comparison of latency metrics between the COVN and POCO placements on the
minimised distances of Internet2 for the different failures of the controller.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 184

The findings from the comparison of the two cases A and B disclose that:

1) The balancing between the node-controller latency and inter-controller latency

obtains an acceptable connection flow-setup latency for both cases (A and B).

2) The performance of the COVN placement algorithm is better for the network with

smaller lengths of links.

The third evaluation comparison examines the reliability metrics of the COVN and POCO

placement algorithm as shown in Figures 6.50 and 6.51 below.

Figure 6.50 presents the five group of tests of COVN and POCO placement, without

considering the controller-failure occurrence. It demonstrates that the controller-

connectivity ratio of the COVN placement algorithm is higher (better) than the other

four of the POCO algorithm. However, the length of the control-path (Min-Hops to

Farthest node) is higher than others of POCO algorithm by one or two hops.

Figure 6.51 presents the four group of two controller placement algorithm tests,

considering the probability of the controller failure occurrence up to three failures. The

figure illustrates that the controller-connectivity ratio is better for the COVN placement

than POCO placement. Also, it expresses that the control-path is longer for the COVN

placement than POCO placement.

Closeness & Reliability=0.5 Max node to controller Controller imbalance Max controller to controller Controller-Less nodes

Figure 6.50: The comparison of reliability metrics between the COVN and POCO placements on the
real distances of Internet2 for the failure-free of the controller.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 185

In general, the COVN placement produces optimal reliability for SD-WAN which is better

than POCO algorithm.

6.6. Summary and Conclusion

This chapter shows the used topology, the reasons for using them and their

characteristics. Then it explains the objectives, the test strategy and the findings for the

six categories of the tests of the COVN simulator. Subsequently, it validates the results of

the COVN simulator by applying some similar tests on Mininet emulator and comparing

the results for both. Finally, the chapter evaluates the performance of the COVN

placement algorithm by comparing its load balancing, latency and reliability metrics

with the similar metrics which are calculated depending on the controller placement of

the POCO algorithm. The objectives and the findings of all the above sections are

summarised in Table 6.16 below.

One fail controller Three fail controllers Worst-latency, three fails Controller imbalance, three fails

Figure 6.51: The comparison of reliability metrics between the COVN and POCO placements on the
real distances of Internet2 for the different failures of the controller.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 186

Testbed Test Objectives Findings

COVN
simulator

Basic metrics:
Validate the basic
assumptions of the
COVN placement.

1. The COVN algorithm keeps a small and restricted inter-

controller latency for optimising: the connection flow-

setup latency; the controller's convergence and

resources utilisation.

2. The connection control latency has a small effect on

connection flow-setup latency.

3. The controller nodes which are selected by COVN

algorithm have the best reliability parameters in

comparison to other nodes of SD-WAN.

4. Recovering the failed controller does not lead to the

recalculating of the controller placement or clustering

the topology to occur.

Closeness and
Reliability
weights:
Exploring a method
for determining the
optimal weights of
the closeness and
the reliability.

5. The optimal weights of closeness and reliability would

always depend on the placement requirements which

serve a specific network and its services. While, the

decision made in this thesis tries to balance between the

latency and the reliability metrics.

6. The networks where the majority of its links length are

less than 100 Km produce optimal controller placement

according to the latency when using the CONV algorithm.

However, the resulted placement when applying COVN

algorithm on Internt2 resulted in acceptable latency

metrics.

7. Using the controller placement to improve the network
reliability is more effective than using it to improve its
latency.

Clustering:
Investigating: The
ability to create
balanced clusters;
And the effect of
increasing the
number of clusters
on the results.

8. The COVN placement algorithm can efficiently create

balanced clusters.

9. The node-controller and connection control-path

latencies decrease with increasing the number of

clusters, also the inter-controller latency rises with the

increasing number of clusters.

10. The connection flow-setup latency is affected by the

difference between the connection-control path and

inter-controller latency.

11. The reliability parameters are almost stable when

increasing the number of clusters.

Controller-
failure:
Investigating: The
ability of the quick
recovery of
controller-failure;

12. The COVN algorithm can perform fast recovery for

controller failure.

13. The latency metrics receive a tiny increment in a

microsecond, consequently connection flow-setup latency

increases by only some milliseconds.

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 187

Controller-
failure:
Investigating: The
ability of the quick
recovery of
controller-failure;
and the effect of
this process on the
metrics.

12. The COVN algorithm can perform fast recovery for

controller failure.

13. The latency metrics receive a tiny increment in a

microsecond, consequently connection flow-setup latency

increases by only some milliseconds.

14. The reliability metrics are degraded by an acceptable
value, which does not demolish the SD-WAN reliability.

Changes of the
VNs:
Showing the
reaction of the
COVN placement
algorithm to the
changes of the VNs
and proving the
efficiency of this
reaction.

15. The COVN placement algorithm can efficiently keep the

balance of the clusters of the VN.

16. The changes to the VN produces unavoidable changes in
latency and reliability metrics. However, the COVN
placement algorithm is designed to limit these changes
to the smallest values needed to keep sufficient
performance.

Network size:
Investigating the
limitation of the
following: the
number of the
placed controller;
the increment in
the connection
flow-setup
latency; and the
execution time of
the algorithm.

17. The COVN placement algorithm can efficiently increase

the number of the placed physical and virtual controllers

with the increasing the size of the network.

18. The latency of VN raises with the increasing size of the

network. However, it acquires a higher increment with

the network of the wider expansion like Us-carrier and

Kentucky.

19. The COVN algorithm keeps a low execution time even
when increasing the size of the network and the number
of the placed controllers.

Mininet
Emulator

Proving the
validity of the
simulation
results, namely
the connection
flow-setup
latency.

20. The comparison demonstrates a matching between the
connection flow-setup latency of the COVN simulator and
its peer in Mininet emulator. This proves the validity of
the computations and results of COVN simulator.

Comparison
with results
of POCO
algorithm

Evaluating the
controller
placements of the
COVN placement
algorithm.

21. The COVN placement produces a better balancing in the
number of nodes than the POCO placement.

22. The COVN placement also produces the load balancing,
which depends on the load of the network nodes
(requests of the flow-rule per seconds).

23. The COVN produces an acceptable connection flow-setup
latency by considering the optimisation of both the node-
controller and inter-controller latency.

24. The difference between the connection flow-setup latency
of the COVN and POCO placement is very small and can

CHAPTER SIX RESULTS AND EVALUATION OF COVN PLACEMENT

Page | 188

The findings in the above table reflect the success of achieving the objectives that are

required for implementing the COVN placement algorithm over SD-WAN with multiple

virtual networks. Also, they demonstrate that the COVN placement algorithm could

effectively place the controller for any topology, because it produces better load

balancing and reliability metrics and acceptable latency metrics. However, its optimal

performance could be gained when applying it on restricted expansion topology, which

has a dynamic load variation. Finally, it is noteworthy that this algorithm provides a new

method for placing the virtual controllers and recovering the controller-failure, which

are not presented in the previous placement algorithms.

23. The COVN produces an acceptable connection flow-setup
latency by considering the optimisation of both the node-
controller and inter-controller latency.

24. The difference between the connection flow-setup latency
of the COVN and POCO placement is very small and can
be ignored (less than 1 ms), when the length of network
links is less or equal to 20 km.

25. The COVN placement resulted in more reliable controller
placements for SD-WAN than the POCO placement.

 Table 6.16: Summary of the findings for the tests of all the sections presented in chapter seven.

Page | 189

CHAPTER SEVEN
CONCLUSION AND FUTURE WORK

This thesis acknowledges the importance of deploying the virtual slices of SD-WAN to

serve the forthcoming networks such as 5G cellular network and smart city network.

The deployment of this new model motivates the author to construct a novel controller

placement algorithm, called COVN placement, to locate the controllers of the SD-WAN

with multiple virtual networks. Although this issue has been dealt with previously, only

the physical SD-WAN was considered.

 The solution is based on a good understanding of the released standard of SDN and NFV,

which are published by verified organisations such as ONF. In addition, the solution

considers the intensive search of related works as demonstrated in chapter two. The

findings of this chapter lead to the following decisions (see Table 2.6), which are

considered in designing the algorithm: 1) Minimising the inter-controller path optimises

the end-to-end latency and network utilization (Zhang, Bianco and Giaccone, 2016)(He

et al., 2017); 2) The reliability of controller placement could be improved without

creating unsatisfactory latency (Hu et al., 2014); 3) The executive search method of the

high computation complexity (Sahoo et al., 2017) could be replaced with a new method

which uses the hop count to reduce the computational complexity. However, the third

point depends on the delay at the hop and whether this delay could be used instead of

the propagation latency of the network links.

The literature review provides some guidelines but does not offer the complete solution.

Therefore, the novel SFOP routing algorithm is built to examine whether it is possible to

optimise the network throughput by using the path of feasible bandwidth. The results

show that, the control packets are small and do not degrade the network bandwidth (see

Section 3.2).

After that, two measurement techniques are developed on physical equipment, to

investigate the value of the link and the hop delays in SD-WAN from practical tests. The

investigation leads to define two new latency metrics, which are the connection control-

path latency and connection flow-setup latency (see Section 3.3.5). These two latencies

CHAPTER SEVEN CONCLUSION AND FUTURE WORK

Page | 190

help to identify the ratio of effecting the controller placement on the end-to-end latency.

Also, it proves that the hop latency could be used instead of the link propagation latency

for small and medium expansion networks (links less or equal to 20 Km).

The design stage comes later to produce the COVN placement algorithm, which places

the controller of every VN independently with considering the status of other VNs. COVN

placement maintains low complexity by applying the new graph theorem using hop

count to place the controllers (see Section 4.7.3) and novel peripheral clustering

algorithm to distribute the nodes on the controllers. This peripheral clustering is

designed in this research too (see Section 4.8). COVN placement optimises the latency

and reliability of virtual SD-WANs according to the desired weight. Also, it optimises the

load balancing and the utilisation of the controllers.

The implementation is performed by the COVN simulator, produced in this research, and

also by the developed Mininet emulator. Furthermore, the performance of COVN

placement is validated by comparing its resulting performance metrics with the famous

POCO placement algorithm. The six different categories of tests, which are applied on

real network topology and the comparisons with POCO results prove that COVN

placement algorithm can efficiently place the controllers of this model (see Table 6.16).

Finally, COVN placement provides recovery for the controller-failure, with keeping a

minimum number of backup controllers.

Inventing COVN placement algorithm significantly contributes to optimising the control

plane of multiple virtual SD-WANs in terms of the following objectives: reliability,

latency, load balance and resources utilisation. Examining the objectives, designing

COVN placement and testing its abilities, led to several contributions, which are

demonstrated as follows.

7.1. Novel SFOP Routing Algorithm

This routing algorithm exploits the new abilities of the OpenFlow protocol and SDN

controller, which are the fine granularity statistics of all flows. Using these statistics

allows the routing algorithm to choose the shortest-path which has the feasible

bandwidth for the served flow. SFOP routing optimises the usage of the network

bandwidth without additional cost for collecting statistics but slightly increases the

computation complexity. This algorithm along with traditional routing algorithms are

CHAPTER SEVEN CONCLUSION AND FUTURE WORK

Page | 191

employed to investigate the possibility of adding specific routes between the controller

and its switches to optimise the bandwidth utilisation. However, the results reveal that

the control packets are small and do not degrade the bandwidth (see Section 3.2).

 7.2. Two Latency Measurement Technique

Measuring the latency of SDN on the physical and emulated testbeds requires finding a

measurement technique which is convenient for both and provides accurate results.

Using the controller to measure the latency of data and control flow is avoided in this

research. This is because, it was proved by previous studies (Shuo Wang et al.,

2017)(Atary and Bremler-Barr, 2016) as well as the present research that the latency of

the control-plane continuously changes and negatively affects the measurement

accuracy. Therefore, the hosts in data-plane and the traditional ping tool were used

along with a new mechanism that eliminates the additional latency in the receiver side.

Removing the latency of the second side makes the latency measurement more accurate

and then it is used to measure the latency of data and control packets (see Sections 3.3

and 3.4). The measurement produces two new latency metrics and proves that hop

latency could be used to find the shortest path for medium distance networks. Also, it

contributes to formulating the latency equation (see Section 3.3.5).

7.3. Novel Peripheral Clustering Algorithm

Before accomplishing the COVN placement, the study requires the researcher to identify

a clustering algorithm, which: has a low computation complexity; creates good load

balancing; and produces converged clusters of connected nodes. Combining these

requirements motivates the author to design the peripheral clustering algorithm, which

exploits several aspects. First, using the geographical distance instead of the length of

links to minimise the computation of determining the connected converged nodes.

Second, balancing the clusters according to the variation between them in two different

ways to produce equal loads in low computation complexity. Third, representing the

graph as a sparse matrix and forming the cluster as a single object, which reduces the

computation of the search operation. All the above steps reduce the computational

complexity and produce a clustering algorithm which uses the programming intelligence

instead of the iteration to create balanced clusters.

CHAPTER SEVEN CONCLUSION AND FUTURE WORK

Page | 192

7.4. Novel COVN Placement

COVN placement algorithm completely differs from all previous placement algorithms,

because it deals with multiple virtual networks running over single physical SD-WAN.

While, the previous works only place the controllers of a single physical SD-WAN. First,

COVN placement needs to determine the optimal nodes in the complete SD-WAN

without partitioning it, to place the physical controllers. This is because, these physical

controllers should serve all the virtual controllers of all the VNs, which have various

topologies, loads and number of controllers. Then, the controller placement of every VN

should perform independently according to its topology and load. This requires

clustering the VN according to the maximum load of every virtual controller and then

assigning it to every cluster. The positions of the virtual controllers are selected among

those of the physical controllers in order to produce minimum equal latency between

the controller and its switches for all clusters.

The placement of the physical controller intends to maximise the reliability and

minimise the latency. These two objectives are combined according to the selected

weight which is determined according to the SD-WAN requirements. The placement of

the virtual controllers concerns the load balancing and the recourses utilisation because

the most alternation occurs in the VNs.

The results of COVN placement algorithm show that: 1) It always produces a reliable

controller placement; 2) It always maintains the small path between controllers, which

optimises the connection flow-setup latency, convergence latency of the controllers and

resources utilisation; 3) It gains better latency optimisation for the network of small and

medium expansion, and also for the network which has an approximately similar length

of links. 4) It keeps the load balancing when changing the number of clusters or the

topology of the VN; 5) It provides fast recovery for the controller-failure with small

degradation in latency and reliability; and 6) It performs the controller placement for a

large size of network and a large number of controllers in small computation time

(several minutes).

Finally, comparing COVN placement with POCO algorithm revealed that COVN placement

produces better reliability and similar latency. In addition, it surpasses POCO by having

the ability to balance the load according to the number of requests per second. It also

overrides POCO by providing the solution of recovering the controller failure.

CHAPTER SEVEN CONCLUSION AND FUTURE WORK

Page | 193

7.5. COVN TestBeds

This research constructs two experimental platforms to perform the tests. It first

programs a new testbed, which is the COVN simulator. This testbed applies the two parts

of COVN placement algorithm. It also generates VN topology, its load matrix and its

bandwidth matrix. Then, it calculates the latency and reliability statistics for the

placement implementation.

Moreover, the researcher developed the Mininet emulator to be able to implement the

controller placement.

The resulting contributions can be used to improve the control plane of this new model

of the network and also to evaluate its performance and functionality. This research

contributes to serving the implementation of the future networks such as the 5G cellular

system and smart city network.

7.6. Future Work

The contributions of this research could be improved further, for instance:

1. COVN placement algorithm could be extended to improve other objectives, such

as minimising power consumption by reducing the number of active links, when

eliminating the redundant paths.

2. Developing COVN placement algorithm to be integrated with the management

applications of 5G cellular system. It can play a big role in optimising its backbone

network. This is because the backbone network serves a large number of small

cells, which have a dynamic load and connectivity.

3. Developing COVN placement algorithm to perform auto selection for the weight

of closeness against the weight of the reliability by determining the worst

threshold for latency or reliability of SD-WAN.

4. Investigating the most convenient techniques for converging the controllers,

which are placed by the COVN placement algorithm and finding out the extent to

which it is possible to minimise the convergence latency.

Page | 194

REFERENCES

Abdelaziz, A., Fong, A.T., Gani, A., Garba, U., Khan, S., Akhunzada, A., Talebian, H., Choo, K.-K.R.
(2017) Distributed controller clustering in software defined networks. PLOS ONE. 12(4),
e0174715.

Abe, J.O., Mantar, H.A., Yayimli, A.G. (2015) k -Maximally Disjoint Path Routing Algorithms for
SDN. In 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery. IEEE, pp. 499–508.

ACG RESEARCH (2014) Business Case for Cisco SDN for the WAN. www.acgresearch.net. [online].
Available from: https://www.cisco.com/c/dam/en/us/products/collateral /routers/wan-
automation-engine/business-case-for-cisco-sdn-for-the-wan.pdf [Accessed July 13, 2017].

van Adrichem, N.L.M., Doerr, C., Kuipers, F.A. (2014) OpenNetMon: Network monitoring in
OpenFlow Software-Defined Networks. In 2014 IEEE Network Operations and Management
Symposium (NOMS). IEEE, pp. 1–8.

Adrichem, V., M., N.L., Doerr, C., Kuipers, F.A. (2014) OpenNetMon: Network monitoring in
OpenFlow Software-Defined Networks. In 2014 IEEE Network Operations and Management
Symposium (NOMS). IEEE, pp. 1–8.

Agarwal, K., Rozner, E., Dixon, C., Carter, J. (2014) SDN traceroute: Tracing SDN Forwarding
without Changing Network Behavior. Proceedings of the third workshop on Hot topics in software
defined networking. ACM, 145–150.

Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P. (1998) Automatic subspace clustering of high
dimensional data for data mining applications. ACM SIGMOD Record. 27(2), 94–105.

Akyildiz, I.F., Wang, P., Lin, S.C. (2015) SoftAir: A software defined networking architecture for
5G wireless systems. Computer Networks. 85, 1–18.

Al-Jawad, A., Trestian, R., Shah, P., Gemikonakli, O. (2015) BaProbSDN: A probabilistic-based QoS
routing mechanism for Software Defined Networks. In Proceedings of the 2015 1st IEEE
Conference on Network Softwarization (NetSoft). IEEE, pp. 1–5.

Al-Sadi, A., Al-Sherbaz, A., Xue, J., Turner, S. (2016) Management of Distributed Software-Defined
Networks in Smart Cities. In School of Science and Technology Annual Research Conference, The
University of Northampton. Northampton-UK: The University of Northampton, pp. 1–6.

Alasadi, E., Al-raweshidy, H. (2018) OLC : Open-Level Control plane architecture for providing
better scalability in an SDN network. IEEE Access. PP(c), 1.

Aloul, F., Rawi, B., Aboelaze, M. (2006) Identifying the Shortest Path in Large Networks using
Boolean Satisfiability. In 2006 3rd International Conference on Electrical and Electronics
Engineering. IEEE, pp. 1–4.

Altukhov, V., Chemeritskiy, E. (2014) On real-time delay monitoring in software-defined
networks. In 2014 First International Science and Technology Conference (Modern Networking
Technologies) (MoNeTeC). IEEE, pp. 1–6.

Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J., Ankerst, M., Breunig, M.M., Kriegel, H.-P.,
Sander, J. (1999) OPTICS: ordering points to identify the clustering structure. In Proceedings of
the 1999 ACM SIGMOD international conference on Management of data - SIGMOD ’99. New York,
New York, USA: ACM Press, pp. 49–60.

Aoki, H., Nagano, J., Shinomiya, N. (2015) Network Partitioning Problem to Reduce
Shared Information in OpenFlow Networks with Multiple Controllers. In ICN 2015 : The
Fourteenth International Conference on Networks. Barcelona, Spain: IARIA, pp. 250–255

REFERENCES JULY 2018

Page | 195

Aoki, H., Shinomiya, N. (2016) Controller Placement Problem to Enhance Performance in
Multi-domain SDN Networks. In CICN 2016 : The Fifteenth International Conference on
Networks. Tokyo, Japan, pp. 108–110.

Aoki, H., Shinomiya, N. (2015) Network Partitioning Problem for Effective Management of Multi-
domain SDN Networks. International Journal on Advances in Networks and Services. 8(3–4), 62–
77.

Atary, A., Bremler-Barr, A. (2016) Efficient Round-Trip Time monitoring in OpenFlow networks.
In IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer
Communications. IEEE, pp. 1–9.

Auroux, S., Draxler, M., Morelli, A., Mancuso, V. (2014) CROWD Dynamic Network
Reconfiguration in Wireless DenseNets. In European Conference on Networks and
Communications (EuCNC’14). pp. 1–6.

Auroux, S., Draxler, M., Morelli, A., Mancuso, V. (2015) Dynamic network reconfiguration in
wireless DenseNets with the CROWD SDN architecture. In 2015 European Conference on
Networks and Communications (EuCNC). IEEE, pp. 144–148.

Awduche, D., Chiu, A., Elwalid, A., Widjaja, I., Xiao, X. (2002) Overview and Principles of Internet
Traffic Engineering. Network Working Group. [online]. Available from:
https://tools.ietf.org/html/rfc3272#page-4 [Accessed July 13, 2018].

Bannour, F., Souihi, S., Mellouk, A. (2017) Scalability and reliability aware SDN controller
placement strategies. In 2017 13th International Conference on Network and Service Management
(CNSM). IEEE, pp. 1–4.

Barbehenn, M. (1998) A note on the complexity of Dijkstra’s algorithm for graphs with weighted
vertices. IEEE Transactions on Computers. 47(2), 263.

Bari, M.F., Roy, A.R., Chowdhury, S.R., Zhang, Q., Zhani, M.F., Ahmed, R., Boutaba, R. (2013)
Dynamic Controller Provisioning in Software Defined Networks. In Proceedings of the 9th
International Conference on Network and Service Management (CNSM 2013). IEEE, pp. 18–25.

Beckhoff Automation GmbH & Co. KG, G. (2017) Infrastructure for EtherCAT/Ethernet Technical
recommendations and notes for design, implementation and testing Table of contents.

Bellaachia, A., Portnoy, D., Chen, Y., Elkahloun, A.G., Cgb, N.I.H.N. (2002) E-CAST : A Data Mining
Algorithm For Gene Expression Data. In Proceedings of the 2nd International Conference on Data
Mining in Bioinformatics. pp. 49–54.

Berkhin, P. (2006) A Survey of Clustering Data Mining Techniques. In Grouping Multidimensional
Data. Berlin/Heidelberg: Springer-Verlag, pp. 25–71.

Berrar, D.P., Dubitzky, W., Granzow, M. (2003) A practical approach to microarray data analysis.
New York: Kluwer Academic Publishers.

Bobrovs, V., Spolitis, S., Ivanovs, G. (2014) Latency causes and reduction in optical metro
networks. In Optical Metro Networks and Short-Haul Systems VI. 9008, 90080C. International
Society for Optics and Photo.

Borcoci, E., Badea, R., Obreja, S.G., Vochin, M. (2015) On Multi-controller Placement
Optimization in Software Defined Networking - based WANs. In ICN 2015, the Fourteenth
International Conferences on Networks. pp. 261–266.

Brosi, J.-M. (2008) Slow-Light Photonic Crystal Devices for High-Speed Optical Signal Processing.
Univ.-Verlag Karlsruhe.

Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C. (2015) Recent Advances in Graph
Partitioning. Lecture Notes in Computer Science. 9220, 117–158.

REFERENCES JULY 2018

Page | 196

Castro, J., Georgiopoulos, M., Demara, R., Gonzalez, A. (2005) Data-partitioning using the Hilbert
space filling curves: Effect on the speed of convergence of Fuzzy ARTMAP for large database
problems.

Cello, M., Xu, Y., Walid, A., Wilfong, G., Chao, H.J., Marchese, M. (2017) BalCon: A Distributed
Elastic SDN Control via Efficient Switch Migration. In 2017 IEEE International Conference on
Cloud Engineering (IC2E). IEEE, pp. 40–50.

Chiosi, M., Clarke, D., Willis, P., Reid, A., Feger, J., Bugenhagen, M., Khan, W., Fargano, M., Cui, C.,
Deng, H., Telekom, D., Michel, U. (2012) Network Functions Virtualisation: An Introduction,
Benefits, Enablers, Challenges & Call for Action. In SDN and OpenFlow World Congress. pp. 22–24.

Cisco (2016) Cisco SFP Modules for Gigabit Ethernet Applications Cost-effective Small Form-
factor Pluggable (SFP) transceivers for Gigabit Ethernet applications. Cisco Public Information.
C78-366584, 1–9.

Cox, J.H., Chung, J., Donovan, S., Ivey, J., Clark, R.J., Riley, G., Owen, H.L. (2017) Advancing
Software-Defined Networks: A Survey. IEEE Access. 5, 25487–25526.

Danielis, P., Altmann, V., Skodzik, J., Schweissguth, E.B., Golatowski, F., Timmermann, D. (2015)
Emulation of SDN-supported automation networks. In 2015 IEEE 20th Conference on Emerging
Technologies & Factory Automation (ETFA). IEEE, pp. 1–8.

Dempster, A.P., Laird, N.M., Rubin, D.B. (1977) Maximum Likelihood from Incomplete Data via
the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological). 39(1), 1–38.

Dhaval N. Shah, Virupaksh Honnur, Dalen, D. Bosteder (2002) System and method for measuring
round trip times in a network using a TCP packet.

Dixit, A., Hao, F., Mukherjee, S., Lakshman, T.V., Kompella, R., Dixit, A., Hao, F., Mukherjee, S.,
Lakshman, T.V., Kompella, R. (2013) Towards an elastic distributed SDN controller. ACM
SIGCOMM Computer Communication Review. 43(4), 7–12.

Donath, W.E., Hoffman, A.J. (1972) Algorithms for partitioning graphs and computer logic based
on eigenvectors of connection matrices. In IBM Technical Disclosure Bulletin, vol. 15, no. 3,pp.
938–944.

Durgin, N., Mai, Y., Randwyk, J. Van (2005) NetState : A Network Version Tracking System. In
USENIX Annual Technical Conference, FREENIX Track. pp. 19–127.

Egilmez, H.E., Civanlar, S., Tekalp, A.M. (2013) An Optimization Framework for QoS-Enabled
Adaptive Video Streaming Over OpenFlow Networks. IEEE Transactions on Multimedia. 15(3),
710–715.

Egilmez, H.E., Dane, S.T., Bagci, K.T., Tekalp, A.M. (2012) OpenQoS: An OpenFlow controller
design for multimedia delivery with end-to-end Quality of Service over Software-Defined
Networks. Signal & Information Processing Association Annual Summit and Conference (APSIPA
ASC), 2012 Asia-Pacific, 1–8.

Egilmez, H.E., Gorkemli, B., Tekalp, A.M., Civanlar, S. (2011) Scalable video streaming over
OpenFlow networks: An optimization framework for QoS routing. In 2011 18th IEEE
International Conference on Image Processing. IEEE, pp. 2241–2244.

Everitt, B.S., Landau, S., Leese, M., Stahl, D. (2011) Cluster Analysis. Chichester, UK: John Wiley &
Sons, Ltd.

Fekih Ahmed, M., Talhi, C., Cheriet, M. (2015) Towards flexible, scalable and autonomic virtual
tenant slices. In 2015 IFIP/IEEE International Symposium on Integrated Network Management
(IM). IEEE, pp. 720–726.

Fiedler, M. (1975) A property of eigenvectors of nonnegative symmetric matrices and its
application to graph theory. Czechoslovak Mathematical Journal. 25(4), 619–633.

REFERENCES JULY 2018

Page | 197

Ford, L.R., Fulkerson, D.R. (2009) Maximal Flow Through a Network. In Classic Papers in
Combinatorics. Boston, MA: Birkhäuser Boston, pp. 243–248.

Foundation, O.N. (2015) Software-Defined Networking (SDN) Definition. Open Networking
Foundation. [online]. Available from: https://www.opennetworking.org/sdn-resources/sdn-
definition [Accessed December 2, 2018].

George, A., Liu, J.W.H. (1984) Computer solution of large sparse positive definite systems. Society
for Industrial and Applied Mathematics. 26(2), 289–291.

Goil, S., Nagesh, H., Choudhary, A. (1999) MAFIA: Efficient and scalable subspace clustering for
very large data sets. In Proceedings of the 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, pp. 443–452.

Guha, S., Rastogi, R., Shim, K. (2000) Rock: A robust clustering algorithm for categorical
attributes. Information Systems. 25(5), 345–366.

Guha, S., Rastogi, R., Shim, K., Guha, S., Rastogi, R., Shim, K. (1998) CURE: an efficient clustering
algorithm for large databases. In Proceedings of the 1998 ACM SIGMOD international conference
on Management of data - SIGMOD ’98. New York, New York, USA: ACM Press, pp. 73–84.

Guo, M., Bhattacharya, P. (2013) Controller Placement for Improving Resilience of Software-
Defined Networks. In 2013 Fourth International Conference on Networking and Distributed
Computing. IEEE, pp. 23–27.

Gustaf Jan Gunnar Nilstadius (2016) Software defined networks with high availability. D. of T. E.
Czech technical university, ed. Czech technical university, Department of Telecommunication
Engineering.

Han, J., Kamber, M., Tung, A.K.H. (2001) Spatial Clustering Methods in Data Mining: A Survey.
Geographic Data mining and knowledge discovery. 2, 188–217.

Han, L., Li, Z., Liu, W., Dai, K., Qu, W. (2016) Minimum Control Latency of SDN Controller
Placement. In 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE, pp. 2175–2180.

He, M., Basta, A., Blenk, A., Kellerer, W. (2017) Modeling flow setup time for controller placement
in SDN: Evaluation for dynamic flows. In 2017 IEEE International Conference on Communications
(ICC). IEEE, pp. 1–7.

Hegde, S., Ajayghosh, R., Koolagudi, S.G., Bhattacharya, S. (2017) Dynamic controller placement in
edge-core software defined networks. In TENCON 2017 - 2017 IEEE Region 10 Conference. IEEE,
pp. 3153–3158.

Heller, B. (2013) Reproducible Network Research With High-Fidelity Emulation. (Doctoral
dissertation, Stanford University).

Heller, B., Sherwood, R., McKeown, N. (2012) The controller placement problem. In ACM, ed.
Proceedings of the first workshop on Hot topics in software defined networks - HotSDN ’12. New
York, New York, USA: ACM Press, pp. 7–12.

Hendrickson, B., Leland, R. (1995) An Improved Spectral Graph Partitioning Algorithm for
Mapping Parallel Computations. SIAM Journal on Scientific Computing. 16(2), 452–469.

Hinneburg, A., Keim, D.A. (1998) An Efficient Approach to Clustering in Large Multimedia
Databases with Noise. Proceedings of the 4th ACM SIGKDD Knowledge Discovery and Data Mining
AAAI Press, Menlo Park. 5865(c), 58–65.

Hock, D., Gebert, S., Hartmann, M., Zinner, T., Tran-Gia, P. (2014) POCO-framework for Pareto-
optimal resilient controller placement in SDN-based core networks. In 2014 IEEE Network
Operations and Management Symposium (NOMS). IEEE, pp. 1–2.

Hock, D., Hartmann, M., Gebert, S., Jarschel, M., Zinner, T., Tran-Gia, P. (2013) Pareto-optimal
resilient controller placement in SDN-based core networks. In Proceedings of the 2013 25th
International Teletraffic Congress (ITC). IEEE, pp. 1–9.

REFERENCES JULY 2018

Page | 198

Hock, D., Hartmann, M., Gebert, S., Zinner, T., Tran-Gia, P. (2014) POCO-PLC: Enabling dynamic
pareto-optimal resilient controller placement in SDN networks. In 2014 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). IEEE, pp. 115–116.

Hollinghurst, J., Ganesh, A., Bauge, T. (2016) Controller placement methods analysis. In 2016 6th
International Conference on Information Communication and Management (ICICM). IEEE, pp.
239–244.

Hu Bo, Wu Youke, Wang Chuan’an, Wang Ying (2016) The controller placement problem for
software-defined networks. In 2016 2nd IEEE International Conference on Computer and
Communications (ICCC). IEEE, pp. 2435–2439.

Hu, Y., Luo, T., Beaulieu, N.C., Deng, C. (2017) The Energy-Aware Controller Placement Problem
in Software Defined Networks. IEEE Communications Letters. 21(4), 741–744.

Hu, Y., Wang, W., Gong, X., Que, X., Cheng, S. (2014) On reliability-optimized controller placement
for Software-Defined Networks. China Communications. 11(2), 38–54.

Hu, Y., Wendong, W., Gong, X., Que, X., Shiduan, C. (2013) Reliability-aware Controller Placement
for Software-Defined Networks. In Proceedings of the 2013 IFIP/IEEE International Symposium on
Integrated Network Management (IM 2013) : 27-31 May 2013, Ghent, Belgium. p. 1418.

Huang, D.Y., Yocum, K., Snoeren, A.C. (2013) High-Fidelity Switch Models for Software-Defined
Network Emulation. Proceedings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking. ACM,.

Huddiniah, E.R., Safitri, E.M., Priyambada, S.A., Nasrullah, M., Angresti, N.D. (2018) Optimasi Rute
Untuk Software Defined Networking-Wide Area Network (SDN-WAN) Dengan Openflow
Protocol. Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer. 13(1), 7.

Ibn-Khedher, H., Abd-Elrahman, E., Afifi, H., Forestier, J. (2015) Network issues in virtual
machine migration. In 2015 International Symposium on Networks, Computers and
Communications (ISNCC). IEEE, pp. 1–6.

Ingale, V., Kakade, S. (2014) Optimization of Network. Department of Electrical Engineering, San
Jose State university, San Jose, California.

V. Jacobson, R. Braden, D. Borman (1992) TCP extensions for high performance. RFC 1323, 1–38.
[online]. Available from: https://www.ietf.org/rfc/rfc1323.txt [Accessed May 7, 2017].

Jain, R., Paul, S. (2013) Network virtualization and software defined networking for cloud
computing: a survey. IEEE Communications Magazine. 51(11), 24–31.

Jalili, A., Ahmadi, V., Keshtgari, M., Kazemi, M. (2015) Controller placement in software-defined
WAN using multi objective genetic algorithm. In 2015 2nd International Conference on
Knowledge-Based Engineering and Innovation (KBEI). IEEE, pp. 656–662.

Jimenez, Y., Cervello-Pastor, C., Garcia, A.J. (2013) Defining a network management architecture.
In 2013 21st IEEE International Conference on Network Protocols (ICNP). IEEE, pp. 1–3.

Jimenez, Y., Cervello-Pastor, C., Garcia, A.J. (2014) On the controller placement for designing a
distributed SDN control layer. In 2014 IFIP Networking Conference. IEEE, pp. 1–9.

Jin, H., Pan, D., Liu, J., Pissinou, N. (2013) OpenFlow-Based Flow-Level Bandwidth Provisioning
for CICQ Switches. IEEE Transactions on Computers. 62(9), 1799–1812.

Johnson, M. (2009) Optical Fibres, Cables and Systems. International Telecommunications Union.

Kaibel, V., Peinhardt, M. (2006) On the bottleneck shortest path problem. Konrad-Zuse-Zentrum f.
Informationstechnik. (Technical Report), 06-22.

Karypis, G., Eui-Hong Han, Kumar, V. (1999) Chameleon: hierarchical clustering using dynamic
modeling. Computer. 32(8), 68–75.

Kaufman, L., Rousseeuw, P.J. (2009) Finding groups in data : an introduction to cluster analysis.
Vol. 344. John Wiley & Sons.

REFERENCES JULY 2018

Page | 199

Kawanishi, T., Kanno, A., Yamamoto, N. (2012) Low latency data transmission using wireless and
wired communications. In International Conference on Space Optical Systems and Applications
(ICSOS) 2012. pp. 1–5.

Kawanishi, T., Kanno, A., Yoshida, Y., Kitayama, K.-I. (2013) Impact of wave propagation delay on
latency in optical communication systems. In Optical Metro Networks and Short-Haul Systems V.
8646, 86460C. International Society for Optics and Photo.

Keti, F., Askar, S. (2015) Emulation of Software Defined Networks Using Mininet in Different
Simulation Environments. In 2015 6th International Conference on Intelligent Systems, Modelling
and Simulation. IEEE, pp. 205–210.

Killi, B.P.R., Rao, S.V. (2017) Capacitated Next Controller Placement in Software Defined
Networks. IEEE Transactions on Network and Service Management. 14(3), 514–527.

Killi, B.P.R., Rao, S.V. (2016) Controller placement with planning for failures in software defined
networks. In 2016 IEEE International Conference on Advanced Networks and Telecommunications
Systems (ANTS). IEEE, pp. 1–6.

Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M. (2011) The Internet Topology Zoo.
IEEE Journal on Selected Areas in Communications. 29(9), 1765–1775.

Koerner, M., Kao, O. (2014) Evaluating SDN based Rack-to-Rack Multi-path Switching for Data-
center Networks. Procedia Computer Science. 34, 118–125.

Korkmaz, T., Krunz, M. (2003) Bandwidth-delay constrained path selection under inaccurate
state information. IEEE/ACM Transactions on Networking. 11(3), 384–398.

Kreutz, D., Ramos, F.M. V., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S. (2015a)
Software-Defined Networking: A Comprehensive Survey. Proceedings of the IEEE. 103(1), 14–76.

Kuang, H., Qiu, Y., Li, R., Liu, X. (2018) A hierarchical K-means algorithm for controller placement
in SDN-Based WAN architecture. In Proceedings - 10th International Conference on Measuring
Technology and Mechatronics Automation, ICMTMA 2018. IEEE, pp. 263–267.

Kuniar, M., Perešíni, P., Kosti, D. (2014) What you need to know about SDN control and data
planes. No. EPFL-REPORT-199497.

Lange, S., Gebert, S., Spoerhase, J., Rygielski, P., Zinner, T., Kounev, S., Tran-Gia, P. (2015)
Specialized Heuristics for the Controller Placement Problem in Large Scale SDN Networks. In
2015 27th International Teletraffic Congress. IEEE, pp. 210–218.

Lange, S., Gebert, S., Zinner, T., Tran-Gia, P., Hock, D., Jarschel, M., Hoffmann, M. (2015) Heuristic
Approaches to the Controller Placement Problem in Large Scale SDN Networks. IEEE
Transactions on Network and Service Management. 12(1), 4–17.

Lara, A. (2015) Using Software-Defined Networking to Improve Campus, Transport and Future
Internet Architectures. University of Nebraska-Lincoln, USA.

Leiner, B.M., Cerf, V.G., Clark, D.D., Kahn, R.E., Kleinrock, L., Lynch, D.C., Postel, J., Roberts, L.G.,
Wolf, S. (2009) A Brief History of the Internet. ACM SIGCOMM Computer Communication Review.
39(5), 22–31.

Li, T., Gu, Z., Lin, X., Li, S., Tan, Q. (2018) Approximation algorithms for controller placement
problems in software defined networks. In Proceedings - 2018 IEEE 3rd International
Conference on Data Science in Cyberspace, DSC 2018. IEEE, pp. 250–257.

Liao, J., Sun, H., Wang, J., Qi, Q., Li, K., Li, T. (2017) Density cluster based approach for controller
placement problem in large-scale software defined networkings. Computer Networks. 112, 24–
35.

Liu, J., Liu, J., Xie, R. (2016) Reliability-based controller placement algorithm in software defined
networking. Computer Science and Information Systems. 13(2), 547–560.

REFERENCES JULY 2018

Page | 200

Loffreda, D. (2015) SDN and NFV: The brains behind the “smart” city | Network World. [online].
Available from: http://www.networkworld.com/article/3000819/software-defined-
networking/sdn-and-nfv-the-brains-behind-the-smart-city.html [Accessed January 4, 2016].

Lu, Y.-T. (2003) An Efficient Hilbert Curve-based Clustering Strategy for Large Spatial Databases.
PhD diss., National Sun Yat-sen University.

Ma, Q., Steenkiste, P. (1998) Routing Traffic with Quality-of-Service Guarantees in Integrated
Services Networks. in Proceedings of NOSSDAV ’98, Cambridge, UK,.

Márton Zubor , Attila Kőrösi, András Gulyás, G.R. (2014) On the Computational Complexity of
Policy Routing. In Y. Kermarrec, ed. Lecture Notes in Computer Science. Cham: Springer
International Publishing.

Matlab (2017) Measure node importance - MATLAB centrality - MathWorks United Kingdom.
[online]. Available from: https://uk.mathworks.com/help/matlab/ref/graph.centrality.html
[Accessed May 6, 2018].

MATLAB (2017) Constructing Sparse Matrices. [online]. Available from:
https://uk.mathworks.com/help/matlab/math/constructing-sparse-matrices.html [Accessed
October 20, 2017].

Al Mhdawi, A.K., Al-Raweshidy, H.S. (2018) IPRDR: Intelligent power reduction decision routing
protocol for big traffic flood in hybrid-SDN architecture. IEEE Access. 6, 10944–10955.

Mijumbi, R., Serrat, J., Gorricho, J., Latre, S., Charalambides, M., Lopez, D. (2016) Management and
orchestration challenges in network functions virtualization. IEEE Communications Magazine.
54(1), 98–105.

Miller, G.L., Teng, S.-H., Vavasis, S.A. (1991) A unified geometric approach to graph separators. In
Proceedings 32nd Annual Symposium of Foundations of Computer Science. IEEE Comput. Soc.
Press, pp. 538–547.

Mininet Team (2016) Mininet Overview. [online]. Available from: http://mininet.org/overview/
[Accessed June 4, 2016].

Muller, L.F., Oliveira, R.R., Luizelli, M.C., Gaspary, L.P., Barcellos, M.P. (2014) Survivor: An
enhanced controller placement strategy for improving SDN survivability. In 2014 IEEE Global
Communications Conference. IEEE, pp. 1909–1915.

Nagano, J., Shinomiya, N. (2015) Efficient information sharing among distributed controllers of
OpenFlow network with bi-connectivity. In 2015 International Conference on Computing,
Networking and Communications (ICNC). IEEE, pp. 320–324.

Nakao, A., Yamada, K. (2016) Research and Development on Network Virtualization
Technologies in Japan: VNode and FLARE Projects. In The GENI Book. Cham: Springer
International Publishing, pp. 563–588.

Nakibly, G., Cohen, R., Katzir, L. (2012) On the Trade-Off between Control Plane Load and Data
Plane Efficiency in Software Defined Networks. Tehnical Report, Technion, Computer Science
Department.

Naning, H.S., Munadi, R., Effendy, M.Z. (2016) SDN controller placement design: For large scale
production network. In 2016 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob).
IEEE, pp. 74–79.

Ng, R.T., Han, J. (1994) Efficient and Effective Clustering Methods for Spatial Data Mining. In
Proceedings of the 20th International Conference on Very Large Data Bases. pp. 144–155.

Open Network Foundation (2009) OpenFlow Switch Specification Version 1.0.0. [online].
Available from: http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf [Accessed
February 18, 2015].

REFERENCES JULY 2018

Page | 201

Open Networking Foundation (2013) OpenFlow Switch Specification Version 1.4.0. [online].
Available from: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf [Accessed February 20, 2015].

OpenvSwitch (2016a) ovs-appctl (8) - utility for configuring running Open vSwitch daemons.
[online]. Available from: http://openvswitch.org/support/dist-docs/ovs-appctl.8.txt [Accessed
July 1, 2016].

OpenvSwitch (2016b) ovs-dpctl (8) - administer Open vSwitch datapaths. [online]. Available
from: http://openvswitch.org/support/dist-docs/ovs-dpctl.8.txt [Accessed June 18, 2016].

OpenvSwitch (2016c) ovs-ofctl(8) - administer OpenFlow switches. [online]. Available from:
http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt [Accessed July 2, 2016].

OpenvSwitch (2016d) ovs-vsctl(8) - utility for querying and configuring ovs-vswitchd. [online].
Available from: http://openvswitch.org/support/dist-docs/ovs-vsctl.8.txt [Accessed July 10,
2016].

Ordonez-Lucena, J., Ameigeiras, P., Lopez, D., Ramos-Munoz, J.J., Lorca, J., Folgueira, J. (2017)
Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and Challenges. IEEE
Communications Magazine. 55(5), 80–87.

Orlin, J.B. (2013) Max flows in O(nm) time, or better. In Proceedings of the 45th annual ACM
symposium on Symposium on theory of computing - STOC ’13. New York, New York, USA: ACM
Press, p. 765.

Packard Enterprise, H. (2016a) HPE VAN SDN Controller 2.7 Administrator Guide. [online].
Available from: http://h20564.www2.hpe.com/hpsc/doc/public /display?docId=c05028095
[Accessed July 27, 2016].

Packard Enterprise, H. (2016b) Aruba 3810M Switches Installation and Getting Started Guide.
[online]. Available from: https://support.hpe.com/hpsc/doc/public
/display?docId=c04948676[Accessed July 27, 2016].

Penna, M.C., Jamhour, E., Miguel, M.L.F. (2014) A Clustered SDN Architecture for Large Scale
WSON. In 2014 IEEE 28th International Conference on Advanced Information Networking and
Applications. IEEE, pp. 374–381.

Perrot, N., Reynaud, T. (2016) Optimal placement of controllers in a resilient SDN architecture. In
2016 12th International Conference on the Design of Reliable Communication Networks (DRCN).
IEEE, pp. 145–151.

Pfaff, B., Lantz, B., Heller, B. (2012) OpenFlow Switch Specification, version 1.3. 0. Open
Networking Foundation.

Phemius, K., Bouet, M. (2013) Monitoring latency with OpenFlow. Network and Service
Management (CNSM), 2013 9th International Conference on. IEEE.

Prieto, I., Izal, M., Magaña, E., Morato, D. (2015) A Simple Passive Method to Estimate RTT in High
Bandwidth-Delay Networks. In The Seventh International Conference on Evolving Internet.

Pujolle, G. (2015) Software Networks Virtualization, SDN, 5G and Security. First. London, UK and
Hoboken, USA: ISTE Ltd and John Wiley & Sons, Inc.

Rao, S. (2014) SDN and Its Use-Cases NV and NFV. In NEC Technologies India Limited. p. Network,
2, H6.

Rath, H.K., Revoori, V., Nadaf, S.M., Simha, A. (2014) Optimal controller placement in Software
Defined Networks (SDN) using a non-zero-sum game. In Proceeding of IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks 2014. IEEE, pp. 1–6.

Rosen, K.H. (2012) Discrete mathematics and its applications. American Mathematics
Competitions (AMC),10(12), p.688-690.

REFERENCES JULY 2018

Page | 202

Ruiz-Rivera, A., Chin, K.-W., Soh, S. (2015) GreCo: An Energy Aware Controller Association
Algorithm for Software Defined Networks. IEEE Communications Letters. 19(4), 541–544.

Sabidussi, G. (1966) The centrality index of a graph. Psychometrika. 31(4), 581–603.

Sahoo, K.S., Sahoo, S., Sarkar, A., Sahoo, B., Dash, R. (2017) On the placement of controllers for
designing a wide area software defined networks. In TENCON 2017 - 2017 IEEE Region 10
Conference. IEEE, pp. 3123–3128.

Sallahi, A., St-Hilaire, M. (2017) Expansion Model for the Controller Placement Problem in
Software Defined Networks. IEEE Communications Letters. 21(2), 274–277.

Sallahi, A., St-Hilaire, M. (2015) Optimal Model for the Controller Placement Problem in Software
Defined Networks. IEEE Communications Letters. 19(1), 30–33.

Sanner, J.-M., Hadjadj-Aoufi, Y., Ouzzif, M., Rubino, G. (2016) Hierarchical clustering for an
efficient controllers’ placement in software defined networks. In 2016 Global Information
Infrastructure and Networking Symposium (GIIS). IEEE, pp. 1–7.

Sans, F., Gamess, E. (2013) Analytical Performance Evaluation of Different Switch Solutions.
Journal of Computer Networks and Communications. 2013, 1–11.

Saraee, A., Saraee, M., Ahmadian, N., Narimani, Z. (2007) Data mining process using clustering: a
survey Title Data mining process using clustering: a survey Data Mining Process Using
Clustering: A Survey. In Proceedings of IDMC’07. pp. 1–8.

SDxCentral (2015) SDN and NFV Market Size Report. SDxCentral. [online]. Available from:
https://www.sdxcentral.com/reports/%0Asdn-nfv-market-size-forecast-report-2015/
[Accessed May 30, 2018].

Service Providers (2017) Network Slicing the Key that Unlocks 5G Revenue Potential - Where 5G
meets SDN/NFV. [online]. Available from: https://www.strategyanalytics.com/access-
services/service-providers/networks-and-service-platforms/reports/report-detail/network-
slicing-the-key-that-unlocks-5g-revenue-potential-where-5g-meets-sdn-nfv#.WnO5Ta5l9aQ.

sFlow.org (2012) sFlow: Software defined networking. [online]. Available from:
http://blog.sflow.com/2012/05/software-defined-networking.html [Accessed May 7, 2017].

Sharan, R., Shamir, R. (2000) CLICK: a clustering algorithm with applications to gene expression
analysis. Proceedings International Conference on Intelligent Systems for Molecular Biology. 8,
307–16.

Sheikholeslami, G., Chatterjee, S., Zhang, A. (1998) Wavecluster: A multi-Resolution Clustering
Approach for Very Large Spatial Databases. The VLDB Journal : The International Journal on Very
Large Data Bases. 98, 428–439.

SHESHADRI, S.K. (2004) Multi-constrained node-disjoint multipath QoS routing algorithms for
status dissemination networks. Doctoral dissertation,Washington State University.

Simon, H.D. (1991) Partitioning of unstructured problems for parallel processing. Computing
Systems in Engineering. 2(2–3), 135–148.

Sinha, D., Haribabu, K., Balasubramaniam, S. (2015) Real-time monitoring of network latency in
Software Defined Networks. In 2015 IEEE International Conference on Advanced Networks and
Telecommuncations Systems (ANTS). IEEE, pp. 1–3.

Soewito, B., Andy, Gunawan, F.E., Mansuan, M.S. (2017) WAN Optimization to Speed up Data
Transfer. In Procedia Computer Science. Elsevier, pp. 45–53.

Sonchack, J., Aviv, A.J., Keller, E. (2016) Timing SDN Control Planes to Infer Network
Configurations. Proceedings of the 2016 ACM International Workshop on Security in Software
Defined Networks & Network Function Virtualization. ACM.

Sood, K., Xiang, Y. (2017) The controller placement problem or the controller selection problem?.
Journal of Communications and Information Networks. 2(3), 1–9.

REFERENCES JULY 2018

Page | 203

Stallings, W. (2013) Software-Defined Networks and OpenFlow. The Internet Protocol
Journal,. 16(1).

Steenkiste, P., Ma, Q. On path selection for traffic with bandwidth guarantees. In Proceedings
1997 International Conference on Network Protocols. IEEE Comput. Soc, pp. 191–202.

Tadinada, V.R. (2014) Software defined networking: Redefining the future of internet in IoT and
cloud era. In Proceedings - 2014 International Conference on Future Internet of Things and Cloud,
FiCloud 2014. IEEE, pp. 296–301.

Tanha, M., Sajjadi, D., Pan, J. (2016) Enduring Node Failures through Resilient Controller
Placement for Software Defined Networks. In 2016 IEEE Global Communications Conference
(GLOBECOM). IEEE, pp. 1–7.

Tanha, M., Sajjadi, D., Ruby, R., Pan, J. (2018) Capacity-aware and Delay-guaranteed Resilient
Controller Placement for Software-Defined WANs. IEEE Transactions on Network and Service
Management, 1–1.

Tim De Backer (2014) Use Linux Traffic Control as impairment node in a test environment.
[online]. Available from: https://www.excentis.com/blog/use-linux-traffic-control-impairment-
node-test-environment-part-1.

Tootoonchian, A., Ghobadi, M., Ganjali, Y. (2010) OpenTM: Traffic Matrix Estimator for OpenFlow
Networks. In A. Krishnamurthy & B. Plattner, eds. 11th Int. Conf. Passive Active Meas. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, p. 201–210.

Trimintzios, P., G. Pavlou, Andrikopoulos, I. (2000) Providing Traffic Engineering Capabilities in
IP Networks Using Logical Paths. , Eighth IFIP Workshop on Performance Modelling and
Evaluation of ATM and IP Networks (IFPM ATM and IP 2000), Ilkey, UK July (2000).

Tseng, L.Y., Yang, S.B. (2001) A genetic approach to the automatic clustering problem. Pattern
Recognition. 34(2), 415–424.

Tuncer, D., Charalambides, M., Clayman, S., Pavlou, G. (2015a) Adaptive Resource Management
and Control in Software Defined Networks. IEEE Transactions on Network and Service
Management. 12(1), 18–33.

Tuncer, D., Charalambides, M., Clayman, S., Pavlou, G. (2015b) On the placement of management
and control functionality in software defined networks. In 2015 11th International Conference on
Network and Service Management (CNSM). IEEE, pp. 360–365.

Turull, D., Hidell, M., Sjodin, P. (2014) Performance evaluation of openflow controllers for
network virtualization. In 2014 IEEE 15th International Conference on High Performance
Switching and Routing (HPSR). IEEE, pp. 50–56.

Van, J., Craig, L., Steven, M., Lawrence Berkeley National Laboratory, University of California,
Berkeley, CA (2016) Manpage of TCPDUMP. [online]. Available from:
http://www.tcpdump.org/tcpdump_man.html [Accessed July 2, 2016].

Veness, C. (2016) Vincenty solutions of geodesics on the ellipsoid. Movable Type Scripts. [online].
Available from: https://www.movable-type.co.uk/scripts/latlong-vincenty.html [Accessed May
15, 2017].

Walshaw, C.H., Cross, M., Everett, M.G. (1995) A Localized Algorithm for Optimizing Unstructured
Mesh Partitions. The International Journal of Supercomputer Applications and High Performance
Computing. 9(4), 280–295.

Wang, G., Zhao, Y., Huang, J., Duan, Q., Li, J. (2016) A K-means-based network partition algorithm
for controller placement in software defined network. In 2016 IEEE International Conference on
Communications (ICC). IEEE, pp. 1–6.

Wang, G., Zhao, Y., Huang, J., Wu, Y. (2018) An Effective Approach to Controller Placement in
Software Defined Wide Area Networks. IEEE Transactions on Network and Service Management.
15(1), 344–355.

REFERENCES JULY 2018

Page | 204

Wang, J., Zhou, M., Li, Y. (2004) Survey on the End-to-End Internet Delay Measurements. In
Springer, Berlin, Heidelberg, pp. 155–166.

Wang, S.-Y. (2014) Comparison of SDN OpenFlow network simulator and emulators: EstiNet vs.
Mininet. In 2014 IEEE Symposium on Computers and Communications (ISCC). IEEE, pp. 1–6.

Wang, S., Zhang, J., Huang, T., Liu, J., Liu, Y., Yu, F.R. (2017) FlowTrace: measuring round-trip time
and tracing path in software-defined networking with low communication overhead. Frontiers of
Information Technology & Electronic Engineering. 18(2), 206–219.

Wang, T., Liu, F., Guo, J., Xu, H. (2016) Dynamic SDN controller assignment in data center
networks: Stable matching with transfers. In IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications. IEEE, pp. 1–9.

Wang, T., Liu, F., Xu, H. (2017) An Efficient Online Algorithm for Dynamic SDN Controller
Assignment in Data Center Networks. IEEE/ACM Transactions on Networking. 25(5), 2788–2801.

Wang, W., Yang, J., Muntz, R. (1997) STING : A Statistical Information Grid Approach to Spatial
Data Mining. In The 23rd VLDB Conference Athens. pp. 186–195.

Williams, R.D. (1991) Performance of dynamic load balancing algorithms for unstructured mesh
calculations. Concurrency: Practice and Experience. 3(5), 457–481.

Wireshark (2016a) tshark - The Wireshark Network Analyzer 2.0.0. [online]. Available from:
https://www.wireshark.org/docs/man-pages/tshark.html [Accessed July 12, 2016].

Wireshark (2016b) Wireshark Go Deep. [online]. Available from: https://wireshark.org/
[Accessed July 3, 2016].

Wu, S. (2012) Data Fusion in Information Retrieval. Springer Publishing Company, ed. Springer
Publishing Company.

Xiao, P., Li, Z., Guo, S., Qi, H., Qu, W., Yu, H. (2016) A K self-adaptive SDN controller placement for
wide area networks. Frontiers of Information Technology & Electronic Engineering. 17(7), 620–
633.

Xiao, P., Qu, W., Qi, H., Li, Z., Xu, Y. (2014) The SDN controller placement problem for WAN. In
2014 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, pp. 220–224.

Xu, R., WunschII, D. (2005) Survey of Clustering Algorithms. IEEE Transactions on Neural
Networks. 16(3), 645–678.

Yalda, K.G., Hamad, D.J., Okumus, I.T. (2015) Design and Implementation of an Intra-domain
routing module for an SDN controller for Traffic Engineering in SDN environment. In 2015
International Conference on Advances in Software, Control and Mechanical Engineering (ICSCME-
2015) Sept. 7-8, 2015 Antalya (Turkey). p. 93.

Yanyu Chen, Qing Li, Yuan Yang, Qi Li, Yong Jiang, Xi Xiao (2015) Towards adaptive elastic
distributed Software Defined Networking. In 2015 IEEE 34th International Performance
Computing and Communications Conference (IPCCC). IEEE, pp. 1–8.

Yao, G., Bi, J., Li, Y., Guo, L. (2014) On the Capacitated Controller Placement Problem in Software
Defined Networks. IEEE Communications Letters. 18(8), 1339–1342.

Yao, L., Hong, P., Zhang, W., Li, J., Ni, D. (2015) Controller placement and flow based dynamic
management problem towards SDN. In 2015 IEEE International Conference on Communication
Workshop (ICCW). IEEE, pp. 363–368.

Yu, C., Lumezanu, C., Sharma, A., Xu, Q., Jiang, G., Madhyastha, H. V (2015) Software-defined
Latency Monitoring in Data Center Networks. International Conference on Passive and Active
Network Measurement. Springer International Publishing, 360–372.

Zeng, D., Teng, C., Gu, L., Yao, H., Liang, Q. (2015) Flow setup time aware minimum cost switch-
controller association in software-defined networks. In Heterogeneous Networking for Quality,
Reliability, Security and Robustness (QSHINE), 2015 11th International Conference. p. 259–264.
IEEE.

REFERENCES JULY 2018

Page | 205

Zhang, A. (2006) Advanced analysis of gene expression microarray data. 1st ed. World Scientific
Publishing Company.

Zhang, B., Wang, X., Huang, M. (2018) Multi-objective optimization controller placement problem
in internet-oriented software defined network. Computer Communications. 123, 24–35.

Zhang, T., Bianco, A., De Domenico, S., Giaccone, P. (2016) The Role of Inter-Controller Traffic in
the Placement of Distributed SDN Controllers. CoRR,vol. abs/1605.09268.

Zhang, T., Bianco, A., Giaccone, P. (2016) The role of inter-controller traffic in SDN controllers
placement. In 2016 IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN). IEEE, pp. 87–92.

Zhang, T., Ramakrishnan, R., Livny, M., Zhang, T., Ramakrishnan, R., Livny, M. (1996) BIRCH. In
Proceedings of the 1996 ACM SIGMOD international conference on Management of data - SIGMOD
’96. New York, New York, USA: ACM Press, pp. 103–114.

Zhang, Y., Beheshti, N., Tatipamula, M. (2011) On Resilience of Split-Architecture Networks. In
2011 IEEE Global Telecommunications Conference - GLOBECOM 2011. IEEE, pp. 1–6.

Zhu, L., Chai, R., Chen, Q. (2017) Control plane delay minimization based SDN controller
placement scheme. In 2017 9th International Conference on Wireless Communications and Signal
Processing (WCSP). IEEE, pp. 1–6.

Zilong Ye, Patel, A.N., Ji, P.N., Chunming Qiao, Ting Wang (2013) Virtual infrastructure
embedding over software-defined flex-grid optical networks. In 2013 IEEE Globecom Workshops
(GC Wkshps). IEEE, pp. 1204–1209.

Zoher Bholebawa, I., Dalal, U.D. (2016) Design and Performance Analysis of OpenFlow-Enabled
Network Topologies Using Mininet. International Journal of Computer and Communication
Engineering 5.6, 419.

Zumbusch, G. (2000) On the Quality of Space-Filling Curve Induced Partitions.
Sonderforschungsbereich 256.

