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Abstract 

This thesis collates, records and reviews pioneering studies performed by the author 

on the formulation, use, advantages, and applications of acrylic plastic embedding 

media for the histological examination of tissue using light microscopy, with 

particular emphasis on histochemical and molecular techniques.  Nine key papers by 

the author are reviewed.  The first relates to a number of modifications of an 

established method for the histological examination and investigation of metabolic 

bone diseases.  As a result it was reported that the procedure had resulted in 

significant time saving without detrimentally affecting quality, and has been used for 

investigating approximately 10,000 cases of metabolic bone diseases for diagnosis. 

In a further separate development, the enzymes lactase and sucrase were first 

reported in plastic-embedded jejunum.  Subsequently it was shown that these two 

important disaccharidases for assessing malabsorption were sensitive to specific 

processing agents and could easily be lost, resulting in false negative staining.  

However, by using a specific processing schedule and times, the author was able to 

demonstrate how best tissue could be processed to retain these and other enzymes 

in various plastic embedding media. 

 
A number of procedures were initiated for the application of IHC on plastic- 

embedded tissue that included the development of a modified plastic with new 

preparatory techniques, and changes in immunocytochemical staining protocols to 

enable IHC to be routinely performed.  Previously, this had been regarded as 

technically not possible. Later in a series of papers published, procedures were 

described where the use and evaluation of enzyme, and/or antigen retrieval 

techniques using microwave heating and/or pressure cooking were assessed.  

Numerous antigens were successfully demonstrated, and subsequently specific 

diagnostic applications on various tissues were reported, including extensive routine 

use on approximately 35,000 cases to date of bone marrow trephines. 

 
In a further development, the application of ISH techniques for the detection of mRNA 

in chick tissue for the demonstration of transcription Sox genes 11 and 21 was 

reported, which subsequently was combined with IHC for bromodeoxyuridine or 

neurofilament protein for simultaneous double staining on the same section.
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CHAPTER 1 

 

PURPOSE OF THESIS 

 

1.1  INTRODUCTION 

The purpose of this thesis was to collate, record and review how the studies 

performed by Hand on the formulation, use, advantages, limitations and 

applications of plastic embedding media have had, and continue to have a 

relevance for the histological examination of tissue using light microscopy (LM). 

Though these studies included modifications to an existing method for the 

diagnosis of metabolic bone diseases, particular emphasis has been placed on 

several other new techniques for the application of enzyme histochemistry, 

immunohistochemistry (IHC) and in situ hybridisation (ISH).  The author has 

been instrumental in publishing numerous papers and articles to describe these 

techniques with a series of pioneering and innovative developments.  In addition, 

the studies performed are reviewed and examined with various other concepts 

and techniques found in similar contemporary publications, noting how these 

developments may be related.  In another development, the author has seen the 

incorporation and application of some of these techniques in a diagnostic service 

for the management of diagnosis and subsequent therapy of patients admitted to 

hospital for medical examination.  For metabolic bone studies (see chapter 6) the 

use of 6 µm or 13 µm thick sections were used, but for high resolution LM, 2 - 4 

µm sections (commonly referred to as semithin sections) were used.  All sections 

were produced via microtomy. 
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1.1.1 Evolution of Author’s Research 

The employment record by the author of this thesis as a Biomedical Scientist 

within Histopathology in the National Health Service enabled him to gain valuable 

experience and knowledge about histological techniques and practices, including 

the embedding of undecalcified bone samples, especially for the diagnosis of 

metabolic bone diseases.  In the period 1971 – 1978, this involved using a 

polyester plastic embedding procedure that was not formally published until 1983 

by Mawhinney and Ellis.  Following a career move from the University Hospital of 

Wales (Cardiff) to Queens Medical Centre (Nottingham) in 1978, the author again 

came across a similar service in the Histopathology department, but this time the 

acrylic polymethyl methacrylate (PMMA) was used as the embedding medium. 

 

Later when the development and widespread interest in plastic embedding using 

semithin plastic sections became evident, the author was involved in setting up a 

diagnostic service for producing high resolution LM.  Many of the samples were 

bone marrow trephine biopsies for the diagnosis of various myelo and 

lymphoproliferative diseases.  The development and interest of this work 

stimulated further studies culminating in the award of a Master of Philosophy 

(Hand, 1998b), which laid the foundations for future areas of research and 

development, many of which will be discussed in this thesis. 

 
 

1.1.2 Outline of Studies Examined in this Thesis 
 
Histology of tissue is routinely examined and assessed with the aid of a 

microscope (Stevens and Lowe, 2004).  For most preparations the sample is 

required to be stained to allow structures to become visible, but first in order to 
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reach this stage, a sequence of preparatory procedures culminating in the 

embedding and subsequent production of paraffin wax sections are necessary.  

Typical procedures have been collectively described by Bancroft and Stevens 

(1982) and later updated by Bancroft and Gamble (2008) and Suvarna et al., 

(2013).  The fundamental procedures have changed little since their introduction 

during the latter part of the nineteenth century, when a series of scientific and 

technological advances (including the introduction of paraffin wax embedding by 

Bourne in 1882), each contributed and impacted on developing techniques for 

producing samples satisfactory for microscopic examination.  However, whilst 

embedding tissue in paraffin wax was and still is perfectly satisfactory for many 

examinations (Suvarna et al., 2013), other specific investigations have 

necessitated embedding instead in a plastic or resin as it is sometimes called.  

Numerous publications have been cited (some are provided in this thesis), but 

those by Burns and Bretschneider (1981), Sanderson (1997), Troiano and 

Kacena (2006) and Singhrao et al., (2012) illustrate the range and diversity of 

techniques during the last 30 years.  

 

This thesis has focussed on the studies and publications by the author that were 

associated with a range of plastic embedding procedures, with particular 

emphasis on those for enzyme, immunohistochemical and molecular techniques.  

To begin with, the histological examination and investigation of metabolic bone 

diseases such as osteoporosis, osteomalacia and Paget’s disease, has for many 

years relied on the preferred option to examine samples by preparing 

undecalcified sections of iliac crest bone biopsies (Callis, 2008; Recker, 1983; 

Sanderson, 1997).  Based on a method previously published by Difford (1974) 
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where PMMA was used to embed undecalcified bone biopsies, a number of 

modifications were described by this author (Hand, 1996).  These included 

modifying the PMMA plastic mix, non-removal of the inhibitor, a reduced 

processing time schedule, quick polymerisation of the plastic and a modified 

microtome clamp that permitted blocks to fit existing equipment without prior 

shaping for subsequent sectioning.  When investigating whether the method by 

Difford could be simplified and improved, Hand also considered whether a 

quicker turnaround time (TAT) to process biopsies and the quality could both be 

improved.  Both criteria are important national requirements for accreditation of 

diagnostic laboratories in the UK (Clinical Pathology Accreditation UK Ltd, 2010).  

The modifications described by Hand (1996) which included a reduced time for 

processing biopsies from 14 to 3 days, concluded that significant savings in time 

could be achieved without detrimentally affecting quality, and reported that at the 

time, the improvements had been used for investigating approximately 10,000 

cases of metabolic bone diseases for diagnostic purposes.  

 

In a further separate development, plastic embedding using semithin sections 

has long been suggested for high resolution LM studies (Ashley and Feder, 

1966; Burns, 1973).  Since this time, Hand and colleagues have published a 

series of articles where several pioneering techniques were developed, 

described and advocated for the application of enzyme histochemistry, IHC and 

ISH on tissue embedded in a diverse range of acrylic plastics (Hand, 1987; 

Hand, 1988a; Hand, et al., 1996; Blythe, et al., 1997; Church et al., 1997; Hand 

and Church, 1997; Church et al., 1998; Hand and Church, 1998). 
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In 1986 and 1987, the histochemical demonstration of the enzymes lactase and 

sucrase was first reported in plastic-embedded jejunum (Hand, 1986 and 1987). 

In these reports, these two important disaccharidases for assessing 

malabsorption (Lojda, 1983) were initially demonstrated in the proprietary glycol 

methacrylate (GMA) plastic JB-4 (Polysciences Inc., USA).  In a subsequent 

paper it was shown that these two enzymes were sensitive to specific processing 

and embedding agents and could easily be lost, resulting in false negative 

staining (Hand, 1988a).  By using a specific processing schedule and times, 

Hand (1988a) was able to demonstrate how best tissue could be processed to 

retain these and other enzymes in the plastic embedding media JB-4 

(Polysciences Inc., USA), Historesin / Technovit 7100 (Heraeus Kulzer, 

Germany) and Histocryl (London Resin Company, UK). 

 

The application of IHC in plastic-embedded tissue has long been acknowledged 

as troublesome and idiosyncratic (Vogt, et al., 1976; Gerrits, 1988; Hand, 1988b).  

In an effort to overcome these difficulties, a number of procedures were initiated 

by Hand that included the development of a modified plastic embedding 

procedure, together with new associated preparatory techniques, and changes in 

immunocytochemical staining protocols to enable IHC to be routinely performed 

(Hand et al., 1989; Hand and Morrell, 1990).  Previously this been regarded as 

technically not possible (van Goor et al., 1988). 

 

Later in a series of papers published, pretreatment procedures were firstly 

described where the use and evaluation of enzyme, and/or antigen retrieval 

techniques using microwave heating (Hand et al., 1996) and pressure cooking 



 
 

6 

(Hand and Church, 1998) were assessed.  Subsequently Blythe et al., (1997) 

and Hand and Church, (1997) described the successful demonstration of 

numerous antigens on various tissues for specific diagnostic applications.  In a 

separate article, Jack et al., (1993) stated that this plastic procedure was used 

routinely for embedding all bone marrow trephine biopsies received in their 

department, and acknowledged that the method had originated and was 

developed by Hand.  Jack et al., (1993) also commented on the good tissue 

morphology and high quality IHC that was achieved using this procedure, which 

is central to modern histopathological reporting of bone marrow trephine biopsies 

(Naresh et al., 2006) in the management of patients with lymphoma and 

leukaemia.  Currently this plastic embedding procedure is still used at some 

centres including the regional haematological malignancy service based in 

Leeds, UK, where to date it has been used as the method choice for 

approximately bone marrow 30,000 cases, making this probably the most prolific 

plastic embedding procedure for IHC –– a testimony to its diagnostic value (D. 

Blythe, personal communications). 

 

In a further development this author was involved with Church et al., (1997) who 

reported the application of non-isotopic ISH techniques for the detection of 

mRNA in chick tissue for the demonstration of the transcription Sox genes 11 

and 21 on tissue embedded in methyl methacrylate (MMA).  Subsequently, 

(Church et al., 1998), described sequencially the simultaneous double staining of 

both ISH for Sox 11 and 21 and IHC for bromodeoxyuridine or neurofilament 

protein on the same section.   Previously only isotopic ISH had been successfully 

performed using the same plastic medium with no reports of the application of 
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simultaneous ISH and IHC. 

Throughout the investigations by the author where techniques and applications 

for plastic embedding were developed, it was suspected that the choice and 

concentration of the amine accelerator used to induce polymerisation of the 

plastic could affect staining for IHC and ISH.  This was reported firstly as an 

observation in some papers, but later scientific evidence was produced to prove 

this hypothesis (Church et al. 1997; Hand and Church, 1997; Church et al. 1998; 

Hand and Church, 1998). 

 

1.1.3 Impact of Studies 

 
The above studies by Hand outline the publications that form the basis of this 

thesis.  In addition, the thesis examines and records collectively in chapter 11 the 

impact, significance, applications and value of these scientific publications.  Also 

included are the past, present and possible future role, uses and function of 

plastic embedding in histopathological practice.  The thesis also collectively 

collates and records numerous verbal presentations the author has been 

fortunate to be invited to give, whether they were for continuing personal 

development courses, educational teaching programmes, workshops and/or 

lectures at symposia. 
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CHAPTER 2 

 

AIMS OF THIS THESIS 

 

2.1  INTRODUCTION 

In chapter 1 it was stated that the purpose of this thesis is to collate, record and 

review studies performed by the author on formulation, use, advantages, 

limitations and applications of plastic embedding media for LM.  In addition, the 

studies performed are reviewed and examined with other contemporary 

publications, noting how these developments may be related.  Also included in 

chapter 11 are the past, present and possible future role, uses and function of 

plastic embedding in histopathological practice. 

 

All of the studies involved “thin” 6 µm (except for autofluorescence of 

tetracycline) or “semithin” (2 - 4 µm) sections for high resolution microscopy and 

were produced by microtomy using equipment from a routine laboratory that was 

readily available. This was more applicable than the use of very specialised and 

expensive equipment that is required for producing ground sections such as that 

developed and used by Donath (1990) which is only found in a few specialised 

laboratories.  However, ground sections will be briefly discussed because of their 

contribution to understanding more about plastic embedding media.  Similarly, 

some transmission electron microscopy (hereafter in this thesis referred to as 

EM) investigations have been published which have impacted on LM studies 

especially where dual purpose plastics have been used, although the main focus 

of  the  author’s  research has been  for  LM.  The overall aims of this  study  are 
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 summarised as follows:- 

 

2.1.1 Aims of this Study 

1. To collate and describe the pioneering research relating to plastic embedding 

techniques performed by the author for high resolution light microscopy.  In 

particular, the development and application of a range of 

immunohistochemical techniques that has led to their extensive routine 

diagnostic use on bone marrow trephine biopsies for investigation of 

haematological malignancies.  Previously this type of service on plastic 

embedded tissue was thought to be technically not possible. 

 

2. To critically review the impact, significance, applications and value of the 

research for tinctorial, enzyme, immunohistochemical and molecular staining 

performed by the author on tissue embedded in plastic. 

 

3. To assess current practice on the use and value of plastic embedding media 

including that performed by the author. 

 

2.2  PUBLICATIONS SUBMITTED (Chronological order) 

 
1. Hand, NM. (1987) Enzyme histochemistry on jejunal tissue embedded in 

resin. Journal of Clinical Pathology. 40:346-47. 
 
2. Hand, NM. (1988a) Enzyme histochemical demonstration of lactase and 

sucrase activity in resin sections: the influence of fixation and processing. 

Medical Laboratory Sciences. 45:125-30. 
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3. Hand, NM. (1996) Embedding undecalcified bone in polymethyl methacrylate: 

an improved method. British Journal of Biomedical Science. 53:238-240. 

 

4. Hand, NM. Blythe, D. and Jackson, P. (1996) Antigen unmasking using 

microwave heating on formalin fixed tissue embedded in methyl methacrylate. 

Journal of Cellular Pathology. 1:31-37. 

 

5. Blythe, D. Hand, NM. Jackson, P. Barrans, SL. Bradbury, RD. and Jack, AS. 

(1997) The use of methyl methacrylate resin for embedding bone marrow 

trephine biopsies. Journal of Clinical Pathology. 50:45-49. 

 

6. Hand, NM. and Church, RJ. (1997) Immunocytochemical demonstration of 

hormones in pancreatic and pituitary tissue embedded in methyl 

methacrylate. Journal of Histotechnology. 20:35-38.   

 

7. Church, RJ. Hand, NM. Rex, M. and Scotting, PJ. (1997) Non-isotopic in situ 

hybridization to detect chick Sox gene mRNA in plastic embedded tissue. 

Histochemical Journal. 29:625-629. 

 

8. Hand, NM. and Church, RJ. (1998) Superheating using pressure cooking: its 

use and application in unmasking antigens embedded in methyl methacrylate. 

Journal of Histotechnology. 21:231-236. 

 

9. Church, RJ. Hand, NM. Rex, M. and Scotting, PJ. (1998) Double labelling 

using non-isotopic in situ hybridisation and immunohistochemistry on plastic 

embedded tissue. Journal of Cellular Pathology. 3:11-16.  (Eratum 3:84). 
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CHAPTER 3 

 

EXISTING METHODS AND THE NEED FOR OTHER TECHNOLOGIES 

 

3.1  INTRODUCTION  

The study of minute anatomical structures within tissue, known as histology, 

necessitates viewing the sample with a microscope (Stevens and Lowe, 2004).  

Usually when the sample is solid tissue (as opposed to a collection of cells or 

organisms), a thin slice is prepared which is then subsequently examined.  For 

most preparations the sample is required to be stained to allow structures to 

become visible, but first in order to reach this stage a sequence of preparatory 

procedures are necessary.  These procedures are collectively described in 

standard textbooks (Kiernan, 1999; Suvarna et al., 2013) and have changed little 

since their introduction during the latter part of the nineteenth century when a 

series of scientific and technological advances each had an individual impact on 

developing techniques for producing samples satisfactory for microscopic 

examination.  None of these advances alone resolved problems in isolation, nor 

did they happen simultaneously or sequentially, but they all contributed to 

preparing tissue by the fundamental procedures of fixation, dehydration and 

embedding in paraffin wax, which nowadays are accepted routine practices.  In 

addition, equipment for producing thin slices of tissue was invented, stains and 

associated staining techniques devised, and improved optics on microscopes 

developed.  All culminated in superior histological examination of tissue, leading 

to the study of abnormalities and changes in diseases referred to as 

histopathology. 
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3.2  EXISTING METHODS 

It is not the purpose of this thesis to reiterate in chronological detail the 

developments within histological practice including those of the nineteenth 

century, but it is worth outlining the fundamental procedures required in order to 

appreciate and understand in context the background to the current study. 

  

3.2.1 Fixation 

When tissue is examined it should ideally be as close to the living state as 

possible (Hopwood, 1977; Rhodes, 2013).  Unless tissue is prepared for frozen 

sections, or cells are cultured, or a smear is produced, it is usual that it is 

required to be preserved by the process of fixation.  Fixation is a series of 

complex chemical processes that varies depending on the fixative employed and 

the chemical substances and structures present in the tissue, but in essence it 

should preserve tissue by preventing autolysis (breakdown of dead tissue by 

enzyme activity), changes in size and shape, loss of components, and should 

also allow subsequent histological staining (Baker, 1960; Hopwood, 1977; 

Rhodes, 2013). 

 

Though some knowledge of fixation and the effects of certain fixatives on tissue 

through embalming have been known for over 2,000 years, it was only when 

histological procedures were being developed and evolved in the latter part of the 

nineteenth century, along with knowledge gained from the leather tanning 

industry, that systematic investigations were carried out (Hopwood, 1977).  It was 

then realised that no one fixative was ideal so numerous mixtures were 

introduced, some of which have been recommended for specific tissues.  One of 
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the most important fixatives was formaldehyde introduced by Blum in 1893 (see 

Baker, 1960).  This is a colourless gas that is very soluble in water (40%) which 

is sold in an aqueous solution commonly referred to by the tradename formalin 

(Baker, 1960), and can be used either alone e.g. 10% formalin (4% 

formaldehyde) or in various mixtures e.g. formol saline, formol calcium, and 

neutral buffered formalin (Hopwood, 1977).  In this thesis, the papers submitted 

by this author for review have used a variety of formalin variants, partly because 

the studies often employed the routine fixative that was at the time routinely used 

by the department, and partly because in collaborative studies there was different 

usage by other departments.  In reality, for routine LM histological examination, 

there is little difference although as will be seen later in this thesis, formol calcium 

has been favoured for enzyme histochemical studies.  In addition, for non-routine 

histological practice, where the purity of formaldehyde is considered important, 

e.g. molecular studies and EM, paraformaldehyde (methanol-free formaldehyde 

has been recommended (Sterchi and Astbury, 2013; Woods and Stirling, 2013).  

     

In recent years there have been attempts to streamline and standardise the 

choice of fixative employed for routine investigations in laboratories, and 

nowadays it is unusual to find a laboratory that does not use “formalin” for their 

routine specimens (Rhodes, 2013).  Though formalin is not perfect for all 

structures, satisfactory morphology can be relatively easily and quickly be 

achieved on many tissues which will subsequently permit numerous staining 

techniques to be performed.  The details of the precise chemical reactions by all 

components for each fixative are not always known, but the general principles 

where tissue is stabilised by forming crosslinks, especially between protein, are 
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understood (French and Edsall, 1945; Baker, 1960).  This includes reactions 

between formaldehyde and amino acids of proteins, which in addition to the 

general properties of the fixative, may be particularly useful to know when 

performing histochemical and molecular studies.  An overview of fixatives and 

fixation was provided by Hopwood (1977) and subsequently updated by Grizzle 

et al., (2008) and Rhodes (2013).     

 

It is important to realise that much of histological technique depends on correct 

and good fixation as subsequent procedures are influenced by it, and ultimately if 

sub-optimal, diagnosis may be affected.  As such, fixation should therefore be 

regarded as a cornerstone in histological practice. 

 

3.2.2 Tissue Processing 

It is necessary to impregnate and embed tissue in a solid support medium to 

facilitate the production of sections for microscopy (Gordon and Bradbury, 1977), 

and this process of preparing tissue for impregnating and subsequent embedding 

is referred to as tissue processing.  Often tissue requires water to be removed as 

the embedding medium is immiscible with aqueous fixatives such as formalin, 

and therefore it is usual that a series of industrial alcohols are employed to 

dehydrate the tissue (Spencer and Bancroft, 2013a).  Paraffin wax is by far the 

most popular embedding medium, but because it too is immiscible with alcohol, 

an intermediate solvent is required such as xylene.  Other dehydrating and 

intermediate solvents can be employed, but alcohol and xylene are the most 

common pairing (Gordon and Bradbury, 1977). 
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When tissue was first processed through to molten wax, the steps required were 

manually performed, but for many years equipment has been available that is 

able to automate these activities.  In addition to the obvious time saving and 

convenience, this approach may also involve agitation, heat, vacuum of the 

tissue, all of which can improve the processing quality of the tissue (Spencer and 

Bancroft, 2013a). 

 

The quality of the processing also influences subsequent histological procedures, 

e.g. staining of tissue later will not be optimal if this is inadequate and 

unsatisfactory.  An overview of tissue processing, reagents used and 

developments has been described by Gordon and Bradbury (1977) and Spencer 

and Bancroft (2008 and 2013a). 

 

3.2.3 Embedding Media 

Control of the physical state of paraffin wax by temperature alone is simple as 

the melting point, usually about 56oC, enables easy and rapid conversion from 

solid to liquid and vice versa (Kiernan, 1999; Spencer and Bancroft, 2013a).  

Klebs (1869) introduced the process of impregnating and embedding specimens 

in paraffin wax, but the procedure did not become established until published by 

Bourne (1882).  Paraffin wax is a mixture of solid hydrocarbons, having a general 

formula CnH2n+2 and it is the proportions of these mixtures resulting in different 

melting points, which forms the basis for their classification (Gordon and 

Bradbury, 1977; Spencer and Bancroft, 2013a).  Although other types of waxes 

such as water soluble waxes and ester waxes have been introduced for 

embedding biological specimens, they have never replaced paraffin wax and are 
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seldom used nowadays.  The advantages of paraffin wax for routine histological 

use over other embedding media such as agar, celloidin and gelatin include:- 

 

(i) easy and rapid conversion from liquid to solid state and vice versa 

 through changes in temperature 

(ii) sections easily at 3 - 8 µm 

(iii) embedded blocks require no attention during storage 

(iv) permits the application of numerous staining procedures 

(v) relatively inexpensive 

 

In more recent times, embedding centres have been introduced to facilitate easy 

and rapid preparation of wax blocks by having both molten wax on tap and 

cooling areas readily available (Gordon and Bradbury, 1977; Spencer and 

Bancroft, 2008 and 2013a).  This has enabled blocks of varying sizes to be 

produced depending on the size of mould selected and is widely used in most 

laboratories.  As a result of the properties and advantages of paraffin wax for 

light microscopy studies and its widespread use, it would be appropriate to 

describe it as “The Universal Embedding Medium”. 

 

However, with the advent of EM it was soon realised that paraffin wax (despite 

the numerous types and modifications tried) was unstable in the electron beam 

and was not suitable as an embedding medium.  The poor penetrating power of 

an electron beam and the large depth of field involved in EM, make specimen 

structures difficult to interpret with sections that are over a fraction of a micron 

thick (Woods and Stirling, 2013).  In the early days of thin sectioning for EM, the 
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conventional paraffin waxes tested evaporated and were too soft to enable 

sections sufficiently thin (30-90 nm) to be cut, but some success was achieved 

using a double embedding technique of celloidin followed by paraffin wax (Pease 

and Baker, 1948) or harder ester wax (Flewett and Challice, 1951).  The most 

significant technological advance however occurred when Newman, Borysko and 

Swerdlow (1949) introduced the resin or plastic medium n-butyl methacrylate 

(BMA).  During the early 1950s several modifications of the final mix were used, 

notably those which increased the hardness of the block by the addition of ethyl 

and/or methyl methacrylate.  Although the use of these acrylic media presented 

certain difficulties, superior EM was achieved and the demise of wax as an 

embedding medium for this type of preparation became irreversible. 

 

There are many types of plastic embedding media depending on their chemical 

composition, and in 1956 Glauert, Rogers and Glauert developed the epoxy 

resin/plastic Araldite as an embedding medium for EM.  Subsequently Epon 

(Finck, 1960) and Spurr (Spurr, 1969) were also introduced, with various recipes 

and ingredients, and both Araldite and Epon such as Epon 812 still remain 

popular plastics for EM because of the quality that can be achieved.  In addition, 

several polyester resins/plastics were also introduced (Kellenberger et al., 1956; 

Ryter et al., 1958) but these are nowadays seldom used. 

 

3.2.4 Section Preparation 

For histological examination of tissue using a microscope, a thin slice or section 

is prepared and stained.  To aid production of sections of suitable thickness, 

tissue is produced as previously outlined and the resulting embedded blocks cut 
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on a microtome.  Various types of microtomes have been developed along with a 

variety of different types of knives, and though the combination employed 

depends on the application required, for paraffin blocks it is now common 

practice to use a rotary type microtome (Spencer and Bancroft, 2013b).  During 

the last 30 years the metal knives previously used have given way to disposal 

feather blades in most laboratories which allow sections to be cut at 3-8 µm by a 

skilled technician.  Paraffin sections are floated on to a heated waterbath 

(approximately 56 oC) to allow them to expand and flatten, and then picked up on 

a glass microscope slide.  When adequately dry and usually after heating the 

sections, the wax is removed prior to staining the tissue.  For cutting plastic 

sections whether semithin (LM) or especially ultrathin (approximately 50-100 nm) 

for EM, glass knives are superior (Latta and Hartmann, 1950; Bennett, et al., 

1976; Linder and Richards, 1978; Hand, 2013; Woods and Stirling, 2013). 

 

In some instances ground sections may be prepared for a few specialised 

applications when sectioning is either unsuitable or impossible by conventional 

microtomy.  Following fixation and processing, this requires embedding the 

sample in a plastic and cutting a relatively thick slice e.g. 100 µm with the aid of a 

saw, followed by “grinding” and “polishing” the section to an appropriate 

thickness.  The procedures are nowadays achieved using expensive, hi-

technology precision equipment which is found only in very few specialised 

laboratories.  Ground sections have been used for bone, tooth and implants 

(Rijke et al., 1971; Emmanual et al., 1987; van der Lubbbe, 1988; Donath, 1990; 

Sanderson, 2010).  Futher details are discussed on page 21. 
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3.2.5 Staining 

Tissue sections may be stained with dyes to permit their structure to be visible.  

There are a few natural dyes e.g. haematoxylin, and saffron, but most dyes used 

are synthetic with many produced through the textile industry.  Hundreds of 

histological staining techniques using numerous staining recipes and solutions 

have been devised, enabling tinctorial staining of tissue via chemical reactions 

(Bancroft and Cook, 1994).  In some cases, specific histochemical reactions can 

be exploited to localise specific substances such as carbohydrates and enzymes, 

although it should be noted that because enzymes are labile, most are destroyed 

or lost during paraffin wax preparations and consequently frozen sections are 

used (Nestor and Bancroft, 2008). 

  

A further type of staining involves the application of antibodies to tissue sections 

known IHC or immunocytochemistry (ICC) to detect specific antigens by selective 

attachment of a specific antibody.  The antibodies may be tagged with a marker 

that can subsequently enable their visible localisation either naturally for example 

via a fluorescent dye or more commonly through induced staining.  In the latter, 

the attached enzyme peroxidase can be easily coloured through a chemical 

reaction with the chromogen 3,3-diaiminobenzidine tetra-hydrochloride (DAB), 

giving rise to the more specific term immunoperoxidase.  As a result of numerous 

improved reagents, technologies and techniques, along with the application of 

many antibodies on routinely prepared paraffin sections, and the simultaneous 

recognition of the importance in diagnostic histopathology of IHC (Jackson and 

Blythe, 2013), its growth in recent years has been exponential. 
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More recently it has been shown that ISH may also be applicable on paraffin 

sections where specific probes are able to localise and identify specific 

DNA/RNA targets.  Though a specialised procedure, this too is becoming an 

increasingly more important diagnostic tool (Sterchi and Astbury, 2013). 

 

The above procedures describe briefly the preparatory steps required in 

producing paraffin wax sections and illustrates the vast range of techniques that 

are available to demonstrate tissue structures.  Since the introduction of paraffin 

wax as an embedding medium in the nineteenth century along with associated 

developments, the production of paraffin wax sections for histological practice 

has become a well established and routine procedure for most applications.  

Using formalin-fixed tissue embedded in paraffin wax, high quality sections can 

be achieved with satisfactory morphology for many tissue structures, although it 

should be emphasised that artefacts are still produced, so it is more a case of 

minimising these to an acceptable level.  After 150 years this approach has 

become the standardised way of producing histological sections, and is still a 

major function of every histology laboratory.   

 

3.3  THE NEED FOR OTHER TECHNOLOGIES 

Paraffin wax is an unsatisfactory embedding medium for bone in its normal 

undecalcified state (unless minute) as it does not provide adequate support for 

quality sections to be produced.  Following embedding of undecalcified bone in 

the acrylic medium MMA for autoradiography investigations by Kidman et al., 

(1952), further developments were described by Arnold and Jee (1954), 

Woodruff and Norris (1955) and Yaeger (1958) where sectioning and staining 
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were performed.  Subsequently numerous scientific papers relating to embedding 

undecalcified bone in plastic have been published.  These have included its use 

for the histological examination and investigation of metabolic bone diseases 

such as osteoporosis, osteomalacia and Paget’s disease where it is important to 

qualitatively and quantitatively assess mineralised bone, osteoid, and cellular 

activity of osteoblasts and osteoclasts (Stevens, Lowe and Scott, 2009).  If 

paraffin wax sections are used, it is necessary to first decalcify the bone to 

enable good sections to be cut, leaving bone after the removal of calcium 

unmineralised and consequently unable to be quantified by staining techniques 

such as von Kossa that depend on the presence of calcium. 

 

In a further development, bone or tooth can be embedded in plastic for ground 

sections to be produced, and is particularly useful if the sample contains an 

implant which may be too hard or too fragile to cut by conventional microtomy 

(Hand, 2013).  Several types of implant materials have been used e.g. metal, 

ceramic, polymers and though simple equipment was used in early studies 

(Emmanuel et al., 1987; van der Lubbe et al., 1988; Allison and Sugar, 1990), 

nowadays superior results are achieved with more sophisticated equipment 

(Donath, 1990; Knabe et al., 2006).  Detailed descriptions of the procedures 

required have been described by Plenk (1986), and Troiano and Kacena (2006) 

who reviewed the processing, embedding and cutting techniques used for bone 

implants.  Selection of the best monomer for implant pathology was discussed by 

Jenkins and Marcum (2006), and Alves and Therin (1997) described a plastic 

embedding procedure for assessing tissue response to biomaterials.  Another 

type of metallic implant is a vascular stent and using a modification of the plastic 
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embedding medium used by Wolf et al., (1992), sections of stent have been 

prepared by both ground sections and microtomy (Seifert et al., 2001).  A 

comparison of methodologies for arteries containing metallic stents was later 

discussed by Rippstein et al., (2006).    

 

In 1960 Rosenberg et al., and Wichterle et al., introduced the water-miscible 

acrylic monomer 2-hydroxyethyl methacrylate (HEMA) or GMA as it is more 

commonly called for EM, in the hope that its properties would produce less 

artefacts and enable tissue to resemble more closely its life-like state, so that 

histochemical studies could be performed.  In reality, tissue morphology was 

inferior to the epoxy plastics Araldite and Epon and as a result these are still the 

preferred choice for ultrastructural studies (Woods and Stirling, 2013).  The 

introduction of the higher homologue 2-hydroxypropyl methacrylate by Leduc et 

al., (1963) and Leduc and Holt, (1965) produced better results than GMA as 

reported by Leduc and Bernhard (1967), but its use for EM was only temporary.  

However, unlike epoxy plastics, GMA does permit tissue to be easily stained with 

many tinctorial stains, and consequently it was soon recommended for LM 

studies (Ashley and Feder, 1966).  In addition, it was realised that GMA could be 

polymerised at low temperature and this useful property enabled some enzymes 

to be histochemically localised and demonstrated.  Initial studies focused on 

tinctorial staining and/or enzyme histochemical staining (Feder, 1963: Ashley and 

Feder; 1966; Hoshino, 1971; Ashford et al., 1972), but later reports for IHC (e.g. 

Hoshino and Kobayashi, 1972; Spaur et al., 1975), lectins (Beckstead et al., 

1986) and ISH (Cau and Beckstead, 1989) also began to appear.  Senoo (1978) 

reported on a method for several histological investigations on a single modified 
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GMA block.  New and improved modifications of the plastic mix were beginning 

to be described (Ruddell, 1967a, 1967b), and subsequently other mixes were 

investigated (Ruddell, 1971; Gerrits and Smid, 1983; Gerrits et al., 1991) with 

some of these becoming proprietary products under the names of JB-4 

(Polyciences Inc.), Technovit 7100 and Technovit 8100 (Heraeus Kulzer). 

 

It was also observed during the 1960s that if thinner sections than the normal 5 

µm paraffin sections were cut, then semithin sections (2/3 µm) could provide 

greater information (Ashley and Feder, 1966; Zambernald et al., 1969).  This 

practice of preparing semithin sections for high resolution LM had long been 

recognised for localising specific areas and structures before subsequent EM, 

e.g. when sections are stained with Toluidine blue (Eastham and Essex, 1969; 

Zamboni, 1972; Burns, 1973; Hoffmann and Flores, 1981).  Since the properties 

and quality of paraffin wax at that time made semithin sectioning difficult, 

proprietary GMA kits soon became available, along with the introduction of heavy 

motorised microtomes suitable for sectioning plastic blocks.  Not since the 

introduction of paraffin wax in the nineteenth century had there been such a 

significant new embedding medium for LM.  Now not only was tinctorial staining 

possible, but so too was enzyme histochemistry –– something which was not 

possible with paraffin wax.  An indication of the rapid growth of plastic embedding 

with GMA can be ascertained by 53 staining techniques listed by Cole in 1982.  A 

revolution it seemed was beginning to happen with workshops being arranged 

and prompting Murray (1988) to suggest that plastic embedding could be the way 

forward in the future.  Some even dared to suggest that paraffin as an 

embedding medium was over (Murray and Ewen, 1989a). 
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CHAPTER 4 

 

DEVELOPMENT AND CHARACTERISTICS OF PLASTIC EMBEDDING  

      MEDIA 

 

4.1  INTRODUCTION 

In the previous chapter, it was stated that plastic embedding media were required 

as an alternative to paraffin wax for certain specialised techniques.  The basic 

chemical composition of epoxy, polyester and acrylic plastics vary significantly 

resulting in different characteristics, but further alterations by the incorporation of 

additional specific ingredients into the plastic mix can also have an effect, which 

as will be shown in this thesis, is probably the most obvious with acrylics.  For 

example, hardness, stability and colouration of blocks, along with the mode and 

temperature used for polymerisation of the plastic and the use of different 

ingredients can all vary.  As a consequence staining can also be affected, so it is 

important for the scientist to understand this when various histological techniques 

are required.  In this chapter and later in the thesis, it will be shown how in 

particular, the development of acrylic plastics and techniques have evolved to 

enable a diverse range of investigations to be performed. 

 

4.1.1 Resin or Plastic: Their Description 

In histological practice the terms “resin” or “plastic” have both been liberally used 

to describe appropriate embedding media.  Neither is more correct, but the use 

of the word plastic has in recent years gained more popularity, possibly because 

many publications have been from USA where the description plastic is more 
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common, and also perhaps because the term resin is often associated with 

adhesive-like properties of a substance or products obtained from the sap of 

certain plants and trees.  For the sake of clarity and consistency, the term plastic 

will from now on be used throughout this thesis. 

 

4.1.2  Types and Terms of Plastics 

Plastics are classified according to their chemical composition into epoxy, 

polyester, or acrylic (Hand, 2013). To produce suitable solid blocks, several 

chemical components are required, which can affect the properties of the 

embedding medium and may determine whether the plastic is hydrophobic 

(repels water) or hydrophilic (attracts water); sometimes referred to as non-polar 

and polar respectively (Causton, 1984; Newman, 1987).  Some of the 

components can present potential health and safety problems, and it is 

imperative that all chemicals used in the formulation of plastics are handled in 

accordance with local and legal safety requirements. The chemical reactions 

between various components in plastic embedding media and the process of 

polymerisation is complex, but it is useful to understand the fundamental role and 

limitations of particular components used in acrylic plastics to appreciate their 

properties. 

 

Simple molecules called monomers (derived from the Greek word mono 

meaning ‘single’ and mer meaning ‘part’), can be joined together to produce a 

complex macromolecule made up of repeating units termed polymer (‘many 

parts’).  The change in the physical state of an embedding medium from liquid 

to solid is called polymerisation or curing, and in order to stimulate this, a 
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catalyst (initiator) in conjunction with a polymerisation agent to speed up the 

reaction, called an accelerator (sometimes activator or hardener) or is often 

suggested or necessary (Janes, 1979). 

 

4.1.3 Epoxy Plastics 

Epoxy plastics were introduced as embedding media by Glauert, Rogers and 

Glauert (Aradite), Finck (Epon), and Spurr (Spurr) in 1956, 1960 and 1969 

respectively.  The constituents, molecular structure and properties of epoxy 

plastics including their hazards and toxicity were discussed by several authors 

(Kay, 1967; Causton, 1980; Causton, 1981; Glauert, 1984; Germaine and 

Stevens, 1996).  They have been the embedding media of choice for EM, 

especially Aradite and Epon (Woods and Stirling, 2012), because the 

polymerised plastic is sufficiently hard to permit sections as thin as 30-40 nm to 

be cut and is stable in the electron beam.  Epoxy plastics derive their name 

from the active ring structure through which they polymerise where epoxide 

groups (R-CHO=CH2) can be attached to an almost infinite number of chemical 

structures to form a three-dimensional polymer of great mechanical strength 

(Germaine and Stevens, 1996).  The three types of epoxy plastic used in 

microscopy are based on either bisphenol A (Araldite), glycerol (Epon), or 

cyclohexene dioxide (Spurr). The tradenames in parentheses are those in 

common usage by microscopists and do not convey any structural property.  

Aquon (Gibbons, 1959) and Durcupan (Stäubli, 1960) are two examples of a 

water soluble epoxy plastic that were introduced, although the former is no 

longer available. 
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Epoxy embedding media are a carefully balanced mixture of epoxy plastic, 

catalyst, and accelerator, each component having a direct impact on the 

physical and mechanical properties of the polymerised plastic. The type of 

catalyst used can influence the properties either by acting as a plasticiser to 

make blocks that are tough but flexible, or by producing hard but inflexible 

blocks by using a rigid molecule to stiffen the plastic. 

 

The rate at which each epoxy plastic infiltrates the tissue depends on the size 

(and hence the viscosity) of the diffusing molecules, and the density of the 

tissue.  Infiltration by Araldite is slow, partly because the epoxy plastic molecule 

is large, and partly because of the formation with the accelerator of three-

dimensional structures.  Epon and Spurr have lower viscosities and shrinkage 

of epoxy plastics can be as low as 2% after polymerisation (Glauert, 1984).  

The physical properties of epoxy plastics depend on the number of cross-links 

formed between polymers, which can be influenced by the polymerisation 

temperature which in turn affects the rate of polymerisation.  Care is needed to 

provide a section with the right level of cross-linking to permit subsequent 

staining of the tissue. 

 

To an experienced observer in tissue interpretation, Toluidine blue is the most 

useful and informative stain on epoxy-embedded tissue for LM (Germaine and 

Stevens, 1996).  If the stain is heated and used at high alkaline pH, it easily 

penetrates the plastic and stains various tissue components a blue colour of 

differing shades and intensities, with no appreciable staining of the embedding 

medium. Polychromatic stains, e.g. Paragon, can be used to resemble 
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Haematoxylin and Eosin (H&E) staining.  Various reagents known as “etching 

agents” including a mixture of sodium hydroxide, benzene and methanol (Mayor 

et al., 1961) and alcoholic sodium hydroxide (Lane and Europa, 1965) have 

been suggested to reduce the cross-link density which then allows expansion of 

the plastic to improve access of stains and antibodies to the tissue.  Janes 

(1979) reported that several staining techniques could be applied after the 

surface plastic has been ‘etched’ using alcoholic sodium hydroxide, but stated 

that the results were inconsistent.  Johnson and Tam (1973) were able to 

achieve successful staining of undecalcified bone embedded in Spurr using an 

unmodified H&E, von Kossa and Masson trichrome without any pretreatment. 

Another type of pretreatment consisted of oxidising osmium-fixed tissue 

sequentially with potassium permanganate and oxalic acid (Shires et al., 1969; 

Bourne and St John, 1978) so that aqueous solutions could be stained more 

consistently.  The application of several staining methods to tissue embedded 

in Araldite and Epon was described by Aparico and Marsden (1969) who 

pretreated osmium-fixed tissue sections with 15% hydrogen peroxide, but did 

not remove the plastic.  It was reported that no modifications of the staining 

methods were required other than adjusting the times to achieve maximum 

colour contrast. 

 

Several reports publications also described the application of IHC to epoxy 

sections for LM studies following treatment with sodium ethoxide/methoxide 

(Rodning et al., 1980; Dell’orto, et al., 1982; Giddings et al., 1982; Pedraza et 

al., 1984; Smart and Millard, 1985; McCluggage et al., 1995; Krenacs et al., 

1996; Krenacs et al., 2005), although this practice is now seldom used.  In 
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reality the difficulties of tinctorial and immunohistochemical staining described 

in these papers resulted in only limited success, and in general when high-

resolution LM was required, acrylic plastic sections were preferred because of 

the potential easier handling and improved tinctorial staining.  However, as will 

be seen later in this thesis (especially IHC), some techniques have still 

presented formidable challenges.  A comparison of IHC on araldite and glycol 

methacrylate sections was reported by Britten et al., (1993). 

 

4.1.4 Polyester Plastics 

These plastics were originally introduced in the mid-1950s for EM, as they 

polymerise uniformly with little shrinkage.  Originally a polyester mixture known 

as Vinox K3 was developed by Kellenberger et al., (1956) but this was 

superceded by another mixture containing Vestopal W (Ryter and Kellenberger, 

1958).  Polyester plastics are now rarely used for microscopy, although 

Mawhinney and Ellis (1983) reported using the proprietary plastic Polymaster 

1209 (Bondaglass-Voss Ltd, UK) for embedding undecalcified bone for LM 

investigations of metabolic bone diseases. 

4.1.5 Acrylic Plastics 

The acrylic plastics used for microscopy are esters of acrylic acid (CH2=CH-

COOH) or more commonly methacrylic acid (CH2=C(CH3)-COOH), and are 

often referred to as acrylates and methacrylates respectively (Janes, 1979).  

Numerous mixes have been devised to produce plastics that have provided a 

wide range of properties, with a consequence that there is a diverse range of 

potential uses. Acrylics have been used extensively for LM, but some have 
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been formulated so that EM can be performed, either in addition or exclusively.  

BMA, MMA and GMA were all introduced for EM, but are now not used for this 

purpose (unless as a component of a mix) because the plastic is unstable in the 

electron beam, although Kushida (1961) showed that by adding a cross-linking 

agent e.g. divinyl benzene to a BMA/MMA embedding mixture, a one-

dimentional structure could be changed to a more stable three-dimensional 

structure when polymerised.  For staining of semithin sections for high-

resolution LM, greater success has been achieved with acrylics, and in 

particular GMA, which is extremely hydrophilic and therefore allows many 

aqueous tinctorial staining methods to be applied without its removal, but is 

tough enough when dehydrated to section well. 

 

4.1.6 Components and Formulation of Acrylic Plastics 

To produce an acrylic plastic suitable as an embedding medium for biological 

material and its subsequent histological examination, several components are 

required.  In addition to the monomer, a catalyst for inducing polymerisation is 

required.  The most common catalyst is dibenzoyl peroxide which when dry is 

explosive and is therefore supplied damped with water, or as a paste, or as 

plasticised particles.  In some mixes, the water is required to be removed and 

care must be taken to dry aliquots away from direct sunlight or heat.  

Azobisisobutyronitrile and bis (4-tert-butylcyclohexyl) peroxydicarbonate 

(tradename Perkadox 16) are other catalysts that have been used.  In addition, 

light-sensitive photocatalysts such as benzil and benzoin (various types) can be 

used for polymerisation of some acrylics e.g. LR Gold and Lowicryl plastics 

(derscribed in more detail later in this chapter) at sub-zero temperature using 
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short    wavelength    ultraviolet   (UV)    light.     Sanderson   (1995)   described 

polymerisation of MMA containing Perkadox 16 using UV irradiation. 

 

Several other components are also often necessary in addition to the monomer 

and catalyst. To improve sectioning qualities of acrylic blocks, softeners or 

plasticisers such as 2-butoxyethanol, 2-isopropoxyethanol, polyethylene glycol 

200/400, nonlyphenol-polyglycoletheracetate (tradename Plastoid N) and dibutyl 

phthalate are often added to the mix.  Some proprietary acrylic mixes contain a 

small amount of a cross-linker such as a dimethacrylate compound.  For 

example, the cross-linking agent found in some Lowicryl plastics to stabilise the 

matrix of the plastic against physical damage caused by the electron beam is 

triethylene glycol dimethacrylate (Carlemalm et al., 1982), whereas in Technovit 

8100 ethylene glycol dimethacrylate is incorporated to provide stability against 

staining solutions (Gerrits et al., 1991).  Unlike epoxides, the viscosity of acrylics 

is low and hence short infiltration times are possible, although the size and 

nature of tissue, together with the processing and embedding temperature will 

affect the times required.  In Figs 1.1 – 1.8 (pp 32 – 35), the basic chemical 

formulae of the reagents methyl methacrylate, the higher homologue n-butyl 

methacrylate, 2-hydroxyl ethylmethacrylate, dibenzoyl peroxide and various 

amine accelerators are illustrated. 
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Fig. 1.1  Methyl methacrylate 
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Fig. 1.2  n-Butyl methacrylate 
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Fig. 1.3  2-hydroxyethyl methacrylate or glycol methacrylate 
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Fig. 1.4  Dibenzoyl peroxide 
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Fig. 1.5  N,N-dimethylaniline 
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Fig. 1.6  N,N-dimethyl para-toluidine  
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H3C           N           CH3   C10H15N      

or (CH3)2C6H3N(CH3)2 

 

 
    H3C              CH3 
 

 

Fig. 1.7  N,N-3, 5-tetramethylaniline 
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Fig. 1.8  4-tert-butyl-N,N-dimethylaniline 
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4.1.7 Polymerisation of Acrylic Plastics 

Polymerisation of acrylics occurs by the production of free radicals.  Radicals 

can also be produced by light or heat, and consequently acrylic plastics and 

their monomers should be stored in dark bottles in a cool place.  Acrylics 

contain variable quantities of the inhibitor hydroquinone or more recently 

hydroquinone monomethyl ether in the same concentration (0.01% – 0.03% / 

100 – 300 parts per million) to prevent spontaneous polymerisation, and for 

many applications this remains when preparing the embedding mixes.  The 

presence of hydroquinone prevents spontaneous polymerisation by combining 

with free radicals to produce stabilisation by resonance (Gerrits and van 

Leeuwen, 1985). 

 

The change in the physical state of an acrylic liquid to solid is synthesised by 

joining together molecules of the monomer to produce a polymer.  Acrylics are 

polymerised by a free-radical chain addition mechanism where free radicals are 

produced, in a process where polymerisation consists of the three steps: 

initiation, propagation and termination.  Dibenzoyl peroxide breaks down at 50-

60°C, but the addition of a tertiary aromatic amine, e.g. N,N-dimethylaniline 

(DMA) or dimethyl para-toluidine (DMPT), can cause the peroxide to break down 

into radicals at 0°C, so that the plastic can be polymerised at room temperature 

or lower.  As the amine stimulates polymerisation to proceed at a faster rate, 

these chemicals are often termed either activators or more commonly 

accelerators, and can be responsible for inducing discolouration of polymerised 

blocks. Gerrits et al., (1991) investigated two other amine accelerators N,N-3,5-
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tetramethylaniline (DMSX) and 4-tert-butyl-N,N-dimethylaniline (DMBA) for 

polymerisation of GMA, and sulfinic acid and some barbiturates have also been 

used (Gerrits and Smid, 1983).  A review of the properties of various amine 

accelerators for methacrylate sysytems was discussed by Bowen and Argentar 

(1971).  Polymerisation can be carried out by means of heat, UV light in the 

presence of suitable free radical producing catalysts, or by free radical producing 

agents, which can be promoted by an accelerator.  The production of free 

radicals by the decomposition of dibenzoyl peroxide in the presence of the 

accelerator DMA is shown in Fig 1.9 on page 38 (Gerrits, 1987). 

 

In the studies by Gerrits and van Leeuwen (1985) it was shown that the 

concentration of inhibitor hydroquinone in GMA and dibenzoyl peroxide used can 

both affect the rate of polymerisation and the temperature produced during 

polymerisation.  Generally an increased concentration of dibenzoly peroxide 

and/or reduced concentrations of inhibitor resulted in an increase in the 

temperature with polymerisation occurring faster in monomer that contained a 

lower concentration of inhibitor.  
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Fig 1.9  Decompostion of dibenzoyl peroxide to produce benzoyloxy 
radicals in the presence of N,N-dimethylaniline (Gerrits, 1987). 
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During polymerisation via free-radical chain reactions, the intermediate 

chemicals formed have an incomplete number of electrons. The monomer is 

exposed to a source of phenyl (benzoyloxy) radicals which react with the double 

bond of the acrylic monomer (initiation), with a result that the electrons relocate 

to a different position on the monomer which then becomes a radical in turns.  

This now acts as an active site, attracting and joining another monomer by 

repeating the process of opening the carbon-carbon double bond and forming a 

dimeric radical via a covalent bond (propagation).  Successively more monomer 

molecules are added to produce a long aliphatic chain and form a polymer. 

These chains can entangle with each other.  Simplified schemes to demonstrate 

the reaction mechanisms of initiation and propagation of GMA are shown in Figs 

1.10 and 1.11 on page 40 (Gerrits, 1987).  Propagation is terminated on reaction 

of pairs of polymer radicals leading to dead polymer chains, and occurs by one 

of two mechanisms known as termination coupling or combination (Fig 1.12 A) 

and termination by disproportionation (Fig 1.12 B) as shown in on page 41 

(Gerrits, 1987).  Some monomers terminate by one of these mechanisms or by 

both (http//chem.chemrochester.edu/-chem421/frterm.htm). 
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Fig 1.11  Propagation of glycol methacrylate (Gerrits, 1987). 
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A. Termination by combination 
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B. Termination by disproportionation 
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Fig 1.12  Termination of the propagation of glycol methacrylate (Gerrits, 1987). 
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Brauer et al., (1956) described a mechanism for the decomposition by benzoyl 

peroxide by the accelerator DMA via a series of complex unstable intermediates 

to produce free radicals.  However, Imoto and Choe (1955) suggested the 

formation at the start of a benzoyl peroxide-dimethylaniline complex before 

proceeding via further reactions.  In spite of the different mechanisms of benzoyl 

peroxide proposed, both studies agreed that for polymerisation to occur, one or 

both of the free electrons on the nitrogen of the amine is transferred to dibenzoyl 

peroxide.  A more recent discussion on the polymerisation of different 

methacrylates was provided by Sideridou et al., (2006).  Both oxygen and 

acetone prevent attachment of radicals and should therefore be avoided during 

polymerisation. 

 

The conversion of a double bond to a single bond is accompanied by an 

exothermic “heat of polymerisation”.  The resulting acrylic polymers also become 

more dense producing shrinkage in acrylics of up to about 20% (Glauert, 1984), 

but the amount of contraction depends on the mode of polymerisation and the 

plastic.  For example, cold cure acrylic plastics produce less exothermic heat and 

consequently less shrinkage than heat cured systems (Osborne and Wilson, 

1970).  This means polymers with shorter chains and a lower molecular weight 

are produced.  According to Osborne and Wilson (1970), the hardness of cold 

cured plastics is less than if heat cured when tested immediately after 

processing, but will harden to an equal degree after a further two weeks, 

indicating that cold cured acrylics are not initially completely polymerized.  

Polymers may branch and interconnect with other branches to give structural 

rigidity, and separate polymers or part of the same polymer are attracted to each 
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 other by van der Waals forces (Rodriguezs, 1970). 

 

4.1.8 Proprietary Single and Dual Purpose Acrylic Kits 

During the last three decades or so, several proprietary plastic embedding  kits 

have become available.  Some are suitable for either LM or EM only, but others 

are dual purpose acrylics proposed for both applications.  BMA is now rarely 

used for any histological purpose unless as an ingredient in an acrylic mix, 

since it has proved unreliable and produces tissue artifact during polymerisation 

(Kay, 1967; Janes, 1979) but it is present in Bioacryl, now re-named Unicryl 

(British BioCell International, UK), introduced by Scala et al., (1992). 

    

Since Arnold and Jee (1954), MMA has been widely used as the ideal 

embedding medium for either hard tissue such as undecalcified bone, or tissue 

containing stents or implants for LM studies because of its hardness.  For these 

purposes several proprietary kits containing MMA such as Technovit 9100 now 

superceded by Technovit 9100 New (Heraeus Kulzer), Osteo-Bed/Osteo-Bed 

Plus (Polysciences Inc.), K Plast (Medim, Germany) and Acrylosin (Dorn & Hart 

Microedge Inc., USA) have been introduced.  Technovit 9100 was supplied with 

Perkadox 16, but this catalyst has now been replaced with dibenzoyl peroxide 

in Technovit 9100 New, although both kits consist of PMMA powder to stiffen 

the mix to produce a harder block.  It is polymerised via the amine accelerator 

DMSX which can be used at sub-zero temperatures.  Osteo-Bed and Osteo-

Bed Plus consists of two components, MMA monomer containing a plasticiser 

and dibenzoyl peroxide.  Osteo-Bed Plus produces harder blocks and is 

therefore more suitable for larger pieces of undecalcified bone and/or tissue 
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containing metal implants, grafts and stents (Polysciences Inc.).  Polymerisation 

of Osteo-Bed and Osteo-Bed Plus is achieved either with gentle heat or by 

mixing excess catalyst to induce polymerisation naturally.  K Plast (Meeuwsen, 

1986) and (soft and hard) Acrylosin which use dibenzoyl peroxide and 

Perkadox 16 as the catalyst repectively are similar plastics that are polymerised 

via gentle heat, and as a result of not using an amine accelerator the blocks 

produced are colourless (Medim, Germany; Dorn & Hart Microedge Inc., USA).  

 

Various GMA mixes have been reported, with a result that some may be either 

prepared from the components or purchased as a proprietary kit with several 

based on the classic recipe published by Ruddell (1967b).  All kits contain the 

monomer HEMA, but the proportion and variety of ingredients vary, leading to 

different characteristics. The monomer can be contaminated with methacrylic 

acid, which has been suggested should be removed (Frater, 1979; Franklin et 

al., 1981), but the background staining that occurs can be reduced by 

purchasing “low-acid” HEMA or a high-quality proprietary kit.  In 1967 Ruddell 

published two recipes for producing a GMA block.  In the first paper (Ruddell, 

1967a) HEMA with polyethylene glycol 400 as a plasticiser and dibenzoyl 

peroxide as the catalyst was polymerised using the accelerator DMA, whereas 

in the second paper (Ruddell, 1967b) an improved recipe using 2-butoxyethanol 

as the plasticiser was used.  The latter formulation has resulted in well known 

proprietary GMA kits becoming available such as JB-4 (Polysciences Inc.) 

which have been widely used in many laboratories.  Subsequently Ruddell 

(1971) also reported the use of pyridine as an alternative accelerator for 

polymerisation of GMA, although no proprietary kit is available that uses this 
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accelerator.  Several publications have described using individual ingredients to 

produce various GMA blocks to a specific recipe (Green, 1970; Cole and 

Sykes, 1974; Sims, 1974; Murgatroyd, 1976; Lee, 1977), whilst other preferred 

to use MMA (Cathey, 1963; Phillpotts, 1972; Potter, 1974) or BMA combined 

with paraffin wax (Engen and Wheeler, 1978; Wechbanjong et al., 1979; 

McMillan et al., 1983).  Janes (1979) reviewed three plastic embedding 

techniques using either a BMA/MMA mix, GMA or the epoxy Spurr plastic.  The 

relative ease of using GMA, together with its availability later as a kit (Sorvall 

Resin, Sorvall; JB-4, Polysciences Inc.), prompted many laboratories to begin 

using GMA as the plastic embedding medium of choice for LM purposes.  

Gerrits and Smid (1983) described a less toxic system where polymerisation of 

GMA was initiated with a barbituric acid derivative in combination with chloride 

ions and dibenzoyl peroxide.  The non-toxic catalyst system produced clear 

blocks which could be serial sectioned.  The GMA mix was marketed as a kit 

under the proprietary brand of Technovit 7100 (Heraeus Kulzer) or Historesin 

(Leica, UK).  Further studies later by Gerrits et al., (1991) suggested a safer 

alternative amine accelerator to DMA by the introduction of RES G20 which 

later became known as Technovit 8100 (Heraeus Kulzer). JB-4 Plus and 

ImmunoBed, (Polysciences Inc.) were two other kits based on GMA and similar 

to JB-4, with the manufacturers stating that the former produced clearer blocks 

at a lower polymerisation temperature, whereas the latter was more suitable for 

IHC studies. 

 

An alternative interesting hydrophilic plastic was suggested by Frater (1985) 

who formulated a mixture containing acrylonitrile, dimethyl acrylamide and 



 
 

46 

methyl methacrylate.  Dithiothreitol was added to limit the degree of 

polymerisation, which was achieved using benzoin and irradiation with UV light 

(wavelength 360 nm).  The resulting polymerised plastic was soluble in dimethyl 

formamide, although if dithiothreitol was absent from the mix, the resulting 

polymer did not completely dissolve.  The paper reported on sections stained 

with tintorial dyes. 

  

Causton et al., (1980) reported on the design of a low toxicity plastic for EM that 

consisted of a high aromatic content provided by styrene to achieve beam 

stability.  Styrene also had the advantage of low viscosity and hence rapid 

tissue penetration.  However, polystyrene was too brittle for EM sectioning and 

so a long chain chain methacrylate was added as a plasticiser.  Finally to 

reduce shrinkage during polymerisation and “craze” formation during 

sectioning, an aromatic dimethacrylate was incorporated.  Aromatic 

dimethacrylates have a very low toxicity and are used in dental filings, but also 

have very good beam stability.  It would seem from this and subsequent 

publications including information from material hazard data sheets that these 

reagents formed the basis of LR White and LR Gold manufactured by London 

Resin Company.  LR White contains catalyst dibenzoyl peroxide and may be 

polymerised by the addition of the accelerator DMPT, whereas LR Gold 

developed in 1983 (Germaine and Stevens, 1996) is cured by the addition of 

benzil and exposure to UV light using a quartz halogen lamp specifically for 

sub-zero temperature embedding at -25oC. In addition, these “aromatic 

polyhydroxy dimethacrylate resins” were supplemented by Histocryl for LM 

purposes (London Resin Co., data sheet), whereas LR White and LR Gold can 
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be used both for LM and EM since they combine hydrophilicity with electron 

beam stability (London Resin Co., data sheets). 

   

Carlemalm et al., (1982) described the development of the aliphatic Lowicryl 

plastics HM20 (hydrophobic) and K4M (hydrophilic) for low temperature 

embedding.  Subsequently HM23 (hydrophobic) and K11M (hydrophilic) were 

also developed for similar purposes (Carlmalm et al., 1985; Acetarin et al., 1986), 

and though all Lowicryl plastics were intended for EM, Al-Nawab and Davies 

(1989) reported the use of K4M for some specific LM studies.  The Lowicryls can 

be cured at low temperature by the addition of the photocatalyst benzoin and 

exposure to UV light.  Various types of benzoin were recommended depending 

on their effect at sub-zero temperatures ranging from -30oC to -80oC (Carlmalm 

et al., 1982 & 1985; Acetarin et al., 1986).  The detailed description of these 

Lowicryl plastics provided greater insight into the formulation and characteristics 

of acrylics and stimulated further developments.  Recently K4M Plus has been 

introduced for EM which is a light curable epoxy-acrylate product combining rapid 

polymerisation of an acrylic with the high strength of an epoxy (Polysciences 

Inc.).  Both benzil and benzoin decompose when subjected to UV irradiation to 

produce free-radicals that stimulates the polymerisation of the acrylic 

(Polysciences Inc., data sheet 370). 

 

Another dual purpose plastic introduced where specific components were 

incorporated to induce specific properties was Bioacryl, later renamed as 

Unicryl (Scala et al., 1992).  This plastic consisted of 2-hydroxyethyl 

methacrylate, 2-hydroxypropyl methacrylate, n-butyl methacrylate, styrene and 
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dibenzoyl peroxide.  It was suggested it should be polymerised using UV light at 

4oC over a period of 72 hours and stated that staining for both LM and EM was 

superior to that achieved with Lowicryl K4M.  

 

Various plastic embedding kits have been marketed under different names 

(especially the Technovit range), leading to confusion which this author 

attempted to clarify (Hand, 1995b).  In addition, there has been a constant 

introduction of new proprietary kits each claiming their suitability for a specific 

study, which often makes it difficult for the scientist to know which to choose. 

Currently many of these kits are available from TABB, UK and/or Polysciences 

Inc., USA. 

 

4.1.9 Designer Plastics 

Understanding the basic components of acrylic plastics has enabled the 

histologist to potentially design and create a plastic embedding medium suitable 

for a specific need.  During the last 50 years, the literature confirms that a variety 

of acrylics have been formulated and a range of techniques applied (Hand, 

2013).  For example, the flexibility of acrylics in particular has been exploited to 

produce plastics of different hardness depending on the tissue or implant to be 

embedded, and/or whether sections are to be prepared by production of sections 

cut on a microtome or by ground sections.  Other criteria that should be 

considered include the quality of sectioning possible, whether sections will “float 

out,” the ability of sections to adhere to a microscope slide and the solubility of 

the plastic, in addition to the obvious fundamental requirement of allowing good 

morphology and subsequent staining of the tissue. Additional properties of 
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acrylics have also included the ability to polymerise at low temperature for 

enzyme histochemical studies, control of the rate of polymerisation and/or the 

stabilisation of the plastic in an electron beam by the addition of specific 

ingredients such as a cross-linking agent present in Lowicryl plastics and 

Bioacryl/Unicryl. 

 

4.1.10 Health and Safety 

In recent years, the health and safety issues relating to the use of the 

components used in plastic embedding media has become increasingly 

important considerations (Janes, 1979; Causton, 1981;  et al., 1981; Tobler and 

Freiburghaus, 1990), which has been highlighted by the introduction of low 

toxicity Technovit 7100 (Gerrits and Smid, 1983) and Technovit 8100 (Gerrits et 

al., 1991).  In addition, some studies e.g. Gerrits et al., (1990) and Gerrits et al., 

(1991) have focused on discussing specific safety data of individual components.  

The plasticiser dibutyl phthalate is subject to legislative control by both the 

European Union and United States with the latter adding the chemical to the 

California Proposition 65 (1986) list of suspected teratogens in November 2006 

(http://oehha.ca.gov/prop65.html).  It is also well known that amine accelerators 

are toxic, and several components such as MMA may be flammable.  Many of 

the reagents used in plastic embedding media are unpleasant and/or harmful, so 

attention to safety must at all times be observed in their handling which should 

always be in a fume cupboard avoiding inhalation of the vapours and skin contact 

by the wearing disposable gloves.  Disposal of reagents and polymers must 

comply with local and national regulations. 
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4.1.11 Other Studies 

In addition to the numerous publications describing the formulation of various 

acrylics and the application of staining protocols on plastic-embedded tissue, 

there has been a variety of other papers that have reported on the specific 

characteristics and properties of these plastics.  Many of these reports focused 

on GMA which included assessment of the stability of sections (Gerrits and van 

Leeuwen, 1987) and variations in section thickness (Helander, 1983), as well as 

the effects on the final dimensions of the sections either as a result of using the 

monomer as a dehydration agent (Gerrits et al., 1992), or the effects of various 

plasticisers and catalyst systems (Gerrits and van Leeuwen, 1984), or through 

embedding (Hanstede and Gerrits, 1982), or from floating on a water bath 

(Gerrits et al., 1987).  Whilst it is acknowledged that these were interesting 

studies, they are not discussed further in this thesis as similar studies were not  

investigated by this author. 
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CHAPTER 5 

 

REVIEW OF PUBLICATIONS 

 

5.1  INTRODUCTION 

From the preceding two chapters, it can be seen how the development of plastic 

embedding evolved and how their properties influenced what type of plastic was 

most suitable for a particular function or study.  For LM, acrylics provided the 

best potential to achieve staining and resolution, which in the studies by the 

author included techniques beyond traditional tinctorial staining such as enzyme 

histochemistry, IHC and ISH.  During the last 20 years as the latter two in 

particular have undergone rapid development and expansion on routine frozen 

and especially paraffin sections, so too has there been a parallel evolution of 

similar techniques on plastic embedded tissue.  The author has been 

instrumental in publishing numerous papers and articles to describe and 

publicise these techniques, some of which have been utilised and integrated in to 

a diagnostic service.  In this chapter the papers central to these procedures are 

listed as shown below and will be reviewed in chapters 6 – 10.  For a copy of the 

complete manuscript of each reviewed paper, the reader is advised to refer to 

pages 164-217 in the Appendix of this thesis. 

 

5.2  PUBLICATIONS SUBMITTED  

1. Hand, NM. (1996) Embedding undecalcified bone in polymethyl 

methacrylate: an improved method. British Journal of Biomedical Science. 

53:238-240. (ISSN 0967-4845). 
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2. Hand, NM. (1987) Enzyme histochemistry on jejunal tissue embedded in 
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5.3  CLASSIFICATION OF REVIEW  

From the titles of the nine publications listed (not in chronological order) in 

section 5.2, it can be seen that whilst all were related to plastic embedding 

techniques, there were well defined and distinct specific details that enabled their 

segregation.  In this section the papers are divided as shown below according 

to:- 

(i) the plastic employed 

(ii) the type of section prepared 

(iii) a description of the investigation and use. 

For clarity, the publications listed in section 5.2 will be referred to as paper 1 – 9. 

 

5.3.1 Paper 1 

• Polymethyl methacrylate 

• Thin sections of bone (6 &13 µm) 

• Methodology and technique for metabolic bone disease 

 

 5.3.2 Papers 2 and 3 

• Glycol methacrylate and Histocryl 

• Semithin sections (3 µm) 

• Methodology and application of enzyme photochemistry 

 

 5.3.3  Papers 4 and 5  

• Methyl methacrylate 

• Semithin sections (2 µm) 

• Methodology and techniques for immunohistochemistry 
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 5.3.4 Papers 6 and 7 

• Methyl methacrylate 

• Semithin sections (2 - 4 µm) 

• Methodology and applications of immunohistochemistry on hard and soft  

 tissues 

 

 5.3.5 Papers 8 and 9  

• Methyl methacrylate 

• Semithin sections (2 & 4 µm) 

• Methodology and application of in-situ hybridisation including in combination 

with immunohistochemistry 
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CHAPTER 6 

 

REVIEW OF PAPER 1 

 

6.1 REVIEW OF PAPER 1 

6.1.1 Embedding undecalcified bone in polymethyl methacrylate: an 

improved method. (Hand, 1996; British Journal of Biomedical 

Science, 53:238 - 240). 

 

6.1.2 Introduction 

For many years the histological examination and investigation of metabolic bone 

diseases such as osteoporosis, osteomalacia and Paget’s disease has relied on 

the preferred option to examine samples by preparing undecalcified sections of 

iliac crest bone biopsies that have been embedded in plastic (Callis, 2008; 

Recker, 1983; Sanderson, 1997).  In the above paper by Hand (1996), a number 

of improvements were described for the preparation of plastic sections of 

undecalcified bone specifically for the diagnosis of metabolic bone diseases.  

Though several previous publications had reported using acrylic and polyester 

plastics e.g. Recker, (1983) and Mawhinney and Ellis, (1983) respectively, this 

paper developed further ideas using PMMA based on a recipe described by 

Difford (1974) that had previously been routinely and extensively used in the 

author’s laboratory.  To enable this author to implement all the modifications and 

improvements in a diagnostic environment, it was also necessary to consider in 

particular whether a quicker TAT to process the tissue was possible, and whether 

the quality of the morphology and staining produced could be improved. 
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6.1.3 Method 

In the preparation of undecalcified bone sections, iliac crest biopsy cores of up to 

20 mm long and 8 mm in diameter were sampled, but tissue of this size 

necessitated producing a plastic block that was sufficiently hard enough to 

enable quality sections to be produced.    In preliminary studies, various mixtures 

of the conponents were investigated to produce an optimal block, and to assist 

with hardness and ensure that the shrinkage associated with MMA was reduced, 

a partially polymerised syrup-like mix based on that described by Difford (1974) 

was preferred.  In the original mix by Difford this was created solely by the 

addition of “low molecular weight” PMMA beads, but unfortunately for 20 mm2 

blocks, this mix proved too hard cut on a Reichert-Jung 1140 Autocut, without  

producing the sectioning “chattering” artefact, and consequently the plasticiser 

dibutyl phthalate was added.  It was decided not to remove the hydroquinone 

inhibitor present (0.01% / 100 parts per million) in the MMA monomer which in 

similar bone studies both Kenner et al., (1982) and Buijs and Arend (1983) also 

did not remove.  During the time this plastic mix was being routinely used, the 

PMMA beads became no longer available and PMMA powder was instead used.  

Although the viscosity differed slightly, even following reformulation from a 

concentration of 30% PMMA beads to 40% powder, the latter dissolved more 

easily and produced similar results.   Sufficient dibenzoyl peroxide catalyst was 

added to permit rapid and controlled overnight polymerisation using a 60oC 

waterbath.  No bubble artefact was produced, which was probably assisted by 

the inclusion of the inhibitor.  However, when increased volumes of plastic were 

required for larger blocks of up to 50 mm2, polymerisation was performed in a 

waterbath at the lower temperature of 37oC over two to five days to avoid the 
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potential of a violent exothermic reaction.  These blocks were then further 

hardened at 60oC for 24 hours.  The procedures used were as follows:- 

 

Specimens were either fixed in formol calcium for at least 24 hr or 70% ethanol if 

the patient had previously been administered in vivo tetracycline drugs.  A 

processing schedule for fixed biopsies consisted of 70% ethanol 1 hr x2, 90% 

ethanol 1 hr x2, 100% ethanol 2 hr x2, 100% ethanol overnight, infiltrated firstly 

with solution 1 (previously-prepared) containing MMA monomer (70%), dibutyl 

phthalate (30%), with dried dibenzoyl peroxide (2%) 4 hr x2, and secondly 

infiltrated in solution 1 containing 40% low molecular weight PMMA powder 

(solution 2 previously-prepared) 23 hr.  (Solutions 1 and 2 were kept in the 

refidgerator at 4oC).  The specimens were processed at room temperature in 20 

mm2 diameter glass vials (vol 10 cc) which were agitated at all stages on a roller 

mixer in a fume cupboard.  Subsequently the specimens were allowed to stand at 

room temperature for 1 hr to remove air bubbles in the plastic mix, before the vial 

was capped and placed in a 60oC waterbath for polymerisation to proceed 

overnight.  Plate 1 (p 60) shows a glass vial and an iliac crest core embedded in 

a polymerised PMMA block.  In preliminary studies, attempts were made to 

produce rectangular blocks but as these were unsuccessful, circular shaped 

blocks using the glass vial as a mould were instead.  To release the colourless 

polymerised block, the vial was cooled to -20oC in the deep freeze compartment 

of a refrigerator for 15 mins, and the glass then carefully broken by tapping with a 

hammer.  For larger pieces of bone of up to 50 mm2, the above schedule was 

unsuitable and optimal results were achieved by extending each processing 

stage to 24 hr with 48 hr for the infiltration steps in solutions 1 and 2.  
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Polymerisation was as previously described but at 37oC.    Sections for tinctorial 

staining or those labelled with tetracycline were cut at 6 µm or 13 µm respectively 

either on a Reichert-Jung Autocut 1140 microtome with a specially designed 

modified block clamp (plate 2, p 61) or for larger blocks on a Jung K using a D 

profile tungsten carbide knife with 30% ethanol as a lubricant.  This solution was 

also used to store the sections until they were required for staining.  The sections 

were stained free-floating without removal of the embedding medium, and 

mounted in Picomount (R. A. Lamb, UK) on a glass microscope slide after being 

blot dried and cleared in methylcyclohexane.  To flatten the sections, the slide 

was clamped overnight in a polythene wrap.  The staining techniques used 

included von Kossa/van Gieson, Goldner’s Trichrome, Solochrome Azurine and 

tetracycline flourescence on unstained sections. 

 

6.1.4 Results 

For many years, the laboratory had used PMMA embedding which had proved a 

satisfactory embedding medium for undecalcified bone in the diagnosis of 

metabolic bone diseases, and consequently it was decided to continue its use.  

In preliminary studies it had been established that the plastic used needed to be 

suitable for large blocks and easy sectioning, whilst maintaining sufficient 

hardness to produce good morphology of undecalcified bone.  The modified 

plastic mix that incorporated the plasticiser dibutyl phthalate described in this 

paper satisfied both these criteria.  In addition, other improvements were 

investigated, which included non-removal of the inhibitor, a reduced processing 

time schedule, quick polymerisation of the plastic (concentration of dibenzoyl 

peroxide was increased from 1% - 2%) and a modified microtome clamp that 



 
 

59 

permitted blocks to be sectioned on a Reichert-Jung Autocut without prior 

shaping to see whether a quicker TAT to produce the sections could be 

achieved.  When using blocks of this type, the identification label (arched over 

the bone core) remained embedded in the block.  Previously, the blocks were 

shaped on a mechanical sander where in addition to exposure of harmful PMMA 

dust and the risk of injury, the removal of the label with the potential of an error 

occurring were serious disadvantages.  It was found in initial studies that as MMA 

reacted with substances such as silicone rubber that could be used for making a 

mould, the simplest and most effective mould for biopsies was to continue to use 

a 20 mm2 glass vial.  During polymerisation it was important that the vials were 

capped for the PMMA to cure properly. 

 

Though PMMA can be dissolved, superior results with various stains using free-

floating sections without removal of the embedding medium were achieved.  

Successful staining techniques used included von Kossa/van Gieson, Goldner’s 

Trichrome, Solochrome Azurine and tetracycline flourescence on unstained 

sections (see plates 3 - 8 on pp 61 - 64). 

 

The overall processing time for biopsies was reduced from 14 days to three, 

although for larger pieces of bone measuring up to 50 mm2 a longer processing 

and polymerisation schedule was necessary.  The modifications described 

resulted in considerable saving in time without any compromise in quality, and it 

was reported that modifications had been used for investigating approximately 

10,000 cases of metabolic bone diseases for diagnostic purposes. 
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 6.1.5  Conclusions 

This paper focussed on a number of modifications to an existing method that was 

used to create a more streamline procedure and improve the results for the 

investigation of metabolic bone diseases.  The preparation of the plastic mix was 

easier and quicker to prepare with the removal of hydroquinone unnecessary, 

and as a result exposure to harmful MMA fumes was reduced.  The overall 

processing schedule was reduced from 14 to three days and the design and use 

of the modified block holder averted the need to shape the block.  This reduced 

(i) personnel to exposure of harmful PMMA dust, (ii) the risk of error due to non-

removal of identification label and (iii) the risk of injury. The series of 

improvements that had been used for investigating approximately 10,000 cases 

of metabolic bone diseases resulted in a quicker TAT of work whilst maintaining 

high quality tissue morphology and staining. 

 

6.2 PHOTOMICROGRAPHS 

 

 

Plate 1: Glass vial with PMMA block.  Glass vial used to process and embed an 

iliac crest bone biopsy in PMMA to produce 20 mm2 plastic block 
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Plate 2: Modified clamp without and with block.  Modified clamp for Reichert-

Jung Autocut without and with PMMA block containing an iliac crest bone biopsy. 

 

 

 

Plate 3: von Kossa/van Gieson – normal bone (LP).  Iliac crest bone fixed in 

formol calcium and embedded in PMMA without decalcification showing 

mineralised bone (black) and osteoid (red).  Bone marrow is yellow. 
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Plate 4: von Kossa/van Gieson – osteomalacia (MP).  Iliac crest bone fixed in 

formol calcium and embedded in PMMA without decalcification showing 

mineralised bone (black) and excess osteoid (red).  Bone marrow is yellow. 

 

 

 

Plate 5: Goldner Trichrome – osteomalacia (MP).  Iliac crest bone fixed in formol 

calcium and embedded in PMMA without decalcification showing cellular 

components in the marrow and mineralised bone (green) with an excess of 

osteoid (red).  
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Plate 6: Goldner Trichrome – Paget’s Disease (HP).  Iliac crest bone fixed in 

formol calcium and embedded in PMMA without decalcification showing 

mineralised bone (green) and excess osteoid (red) with resoprtion of bone by 

multi-nucleated osteoclasts and deposition of new bone by osteoblasts. 

 

 

 

Plate 7: Aluminium – Solochrome Azurine (MP). Iliac crest bone fixed in formol 

calcium and embedded in PMMA without decalcification showing deposition of 

aluminium (purple) in the trabecular bone. 
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Plate 8: Tetracycline fluorescence (LP).  Iliac crest bone fixed in 70% ethanol 

and embedded in PMMA without decalcification viewed with fluorescent light and 

showing tetracycline fluorescence (yellow) in mineralised bone (green) of an 

unstained section. 
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CHAPTER 7 

 

REVIEW OF PAPERS 2 AND 3 

 

7.1 REVIEW OF PAPER 2 

7.1.1 Enzyme histochemistry on jejunal tissue embedded in resin. 
(Hand, 1987; Journal of Clinical Pathology, 40:346 - 47). 

 
7.1.2 Introduction 
It has been acknowledged earlier in chapter 3 of this thesis that the potential to 

process and polymerise acrylic plastics at low temperature had enabled the 

publication of several papers describing the demonstration of a number of 

enzymes (Litwin, 1985).  In the above paper in 1987, Hand reported on the 

histochemical demonstration of the disaccharidases lactase and sucrase, neither 

of which had previously been shown in plastic embedded tissue.  Both of these 

enzymes are important for assessing suspected malabsorption, and have 

become the most popular disaccharidases as they represent a range of 

sensitivity to injury of enterocytes (Lojda, 1983).  Based on an awareness that 

lactase and sucrase could withstand formalin post-fixation on frozen sections, 

(routine laboratory practice) Hand, (1986 and 1987) described the demonstration 

of these enzymes in plastic sections of formol calcium-fixed tissue that had been 

processed and embedded in JB-4 (Polysciences Inc.).  In addition to staining for 

lactase and sucrase, acid phosphatase, alkaline phosphatase, and leucine 

aminopeptidase were also demonstrated on semithin sections.  The above paper 

(Hand, 1987) expanded in more detail on what had previously been briefly 

reported in a poster presentation (Hand, 1986). 
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 7.1.3 Method 
Fresh jejunal tissue was received and a longitudinal edge produced if absent by 

bisecting the biopsy, so that the maximum width was 2 mm.  The tissue was fixed 

in cold (4oC) formol calcium as recommended by Dawson (1972) for 4 hr, 

followed by washing in cold (4oC) 3% sucrose in cacodylate buffer pH 7.4 for 16 

hr.  Subsequently the tissue was processed via three changes of JB-4 monomer 

at -20oC each for 30 mins, infiltrated with JB-4 monomer containing 0.4% 

dibenzoyl peroxide at -20oC for 30 mins, and then embedded in catalysed 

monomer (0.4%) and accelerator (40:1) at 4oC.  The tissue was orientated with 

pre-chilled forceps in an open plastic moulding tray (Polysciences Inc.) and 

plastic block stubs (CellPath plc, UK) used (plates 9 – 10; p 73) so that the villi 

were sectioned longitudinally.  Polymerisation of the block was achieved at 4oC 

in a dessicator containing cold water in which an open moulding tray was partially 

immersed to minimise and dissipate any heat produced, and the dessicator then 

filled with nitrogen as oxygen inhibits polymerisation (plate 11; p 74).  Following 

polymerisation, the 12 x 6 x 5 mm block (plate 12; p 74) was allowed to reach 

room temperature and 3 µm sections cut on a Reichert-Jung Autocut 1140 using 

a 10 mm width Latta-Hartmann glass knife.  The sections were floated out on an 

ambient temperature waterbath and picked up on a cover glass coated with 0.1% 

poly-L-lysine (Mol wt. 90,000) and allowed to air-dry.  Excess water on the cover 

glass was removed by careful blotting around the section to avoid delaying 

staining longer than 1 hr. 

 

Sections were stained with haematoxylin and eosin (H&E) for microanatomical 

structure, and enzyme histochemistry performed at 37oC for the demonstration of 
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lactase, sucrase, acid phosphatase, alkaline phosphatase and leucine 

aiminopeptidase using well documented techniques (see Hand, 1987).  The 

stained sections were rinsed in water, blotted, air dried and then rinsed in xylene 

before mounting in Permount. 

 

7.1.4 Results 

The results achieved showed that excellent histochemical staining of all enzymes 

including lactase and sucrase was possible on jejunum embedded in JB-4.  

Neither lactase nor sucrase had previously been demonstrated in plastic 

sections.  Unpublished observations by Hand had previously indicated that 

disccharidases were more sensitive to processing than most other hydrolytic 

enzymes, but in the current study it was shown that the opportunity to process 

tissue via the monomer produced satisfactory preservation and staining of these 

enzymes.  As expected, tissue morphology was excellent.  The paper also 

suggested that the procedure may be a practical and useful alternative to 

preparing frozen blocks, especially as the latter can sometimes be troublesome 

when handling small biopsies. Examples of sections stained for the enzymes 

including lactase and sucrase using the indigogenic and 6-Bromo-2 naphthyl-α-

D-glucoside procedures respectively are shown in plates 13 – 21 (pp 75 – 79), 

although plates 13, 15 and 16 are not JB-4. 

 
7.1.5 Conclusions 

The poster of 1986 and subsequent paper in 1987 by the author demonstrated 

that high quality enzyme histochemical staining of lactase and sucrase in jejunum 

embedded in the proprietary plastic JB-4 was possible.  Previously neither of 
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these disaccharidases had been reported in plastic sections.  In addition, high 

quality tissue morphology and excellent enzyme histochemical staining of acid 

phosphatase, alkaline phosphatase and leucine aminopeptidase were also 

demonstrated.  The paper suggested that the results offered potentially an 

alternative procedure to using frozen sections for the above enzymes.   

 
 

7.2 REVIEW OF PAPER 3 

7.2.1 Enzyme histochemical demonstration of lactase and sucrase 
activity in resin sections: the influence of fixation and processing. 
(Hand, 1988a; Medical Laboratory Sciences, 45:125 - 30). 

 
7.2.2 Introduction.   

In this paper, a closer examination of the effects that fixation, processing 

reagents and components present in different acrylic plastics had on the 

enzymes lactase and sucrase were investigated.  This was significant because in 

preliminary and hitherto unpublished studies it had been observed that the 

demonstration of lactase and sucrase appeared to be more sensitive than other 

enzymes with reduced or no staining (plate 22; p 79), which had been previously 

noted (Hand, 1987).  The above paper also commented on the effects of formol 

calcium fixation and processing had on the presence of acid and alkaline 

phosphatase –– two other enzymes that might be useful when assessing 

malabsorption.  The plastics investigated were JB-4 (Polysciences Inc.), 

Technovit 7100 / Historesin (Heraeus Kulzer) and Histocryl (London Resin Co.).  

Although further details were later extensively reported for several enzymes 

(Hand, 1988b), this paper (Hand, 1988a) together with the previous paper (Hand, 
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1987) examined whether a general approach for the optimal histochemical 

demonstration of lactase and sucrase (together with other enzymes) in various 

plastic sections could be provided. Using the knowledge gained in the first part of 

this study, staining was subsequently performed on a jejunal biopsy to test the 

theory.  This paper (Hand, 1988a) expanded in more detail on what had been 

previously briefly reported in a poster presentation (Hand, 1986). 

 

7.2.3 Method 

A series of (i) frozen tissue blocks were prepared from transverse slices of rat 

jejunum that were fixed in cold (4oC) formol calcium for various times (30, 60, 

120, and 240 mins) with and without post-fixation washing in gum sucrose (Holt 

et al. 1960) for 16 hr.  In the first part of the study, cryostat sections were then 

prepared and stained for lactase and sucrase using the indigogenic and 6-

Bromo-2 naphthyl-α-D-glucoside procedures respectively, and then subjectively 

assessed.  Unfixed frozen sections were used as controls.   

 

In the second part of the study, fixed frozen sections tissue that had been fixed in 

cold (4oC) formol calcium (60 mins) followed by gum sucrose overnight (16 hr) 

were then incubated in different processing reagents and constituents of plastic 

embedding media.  Firstly, sections were incubated in either the cold (4oC) 

processing solutions ethanol or acetone for 15, 30, 60, 120, 180, 240 mins and 

then stained for lactase and sucrase.  The results were then subjectively 

assessed.  All the results were compared against staining performed on unfixed 

frozen control sections. 
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Secondly, similar frozen sections (formol calcium 1 hr / gum sucrose 16 hr) were 

also incubated in various catalysed plastic solutions and their associated 

accelerators at 4oC for 4 hr and 16 hr, and then stained for lactase and sucrase 

which was then subjectively assessed.  The plastics investigated (JB-4, 

Historesin / Technovit 7100, and Histocryl) had 0.4% dried dibenzoyl peroxide 

(catalyst) added. 

 

To test the optimal results achieved above, fresh human jejunum samples each 

approximately 5 x 2 x 2 mm were fixed in cold (4oC) formol calcium followed by 

washing in cold (4oC) 3% sucrose in 0.2M cacodylate buffer at pH 7.4.  

(Preliminary studies had shown that gum sucrose used for frozen sections was 

too viscous to allow good processing of tissue for plastic embedding).  Tissue 

was processed at -20oC via acetone 15 min, 100% acetone/plastic 1:1, 15 min, 

monomer x2 30 min each, and monomer +0.4% dibenzoyl peroxide 30 min.  To 

produce polymerisation for JB-4 and Historesin, a ratio of 40:1 with the relevant 

accelerator was used.  For Histocryl, one drop of the accelerator was delivered 

from the specialised dropper bottle supplied with kit. Embedding and 

polymerisation procedures were at 4oC using a plastic moulding tray as 

described previously (7.1.3), and are illustrated in plates 9 – 12 (pp 73 - 74).  

Subsequently sections were prepared and stained for lactase and sucrase as 

described in section 7.1.3. 

 

7.2.4 Results 

From the results achieved with frozen sections, it was shown that lactase and 

sucrase staining decreased after 1 hr fixation, with lactase being the more 
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sensitive enzyme.  Demonstration of both enzymes was considerably improved 

following washing in gum sucrose, with tissue fixed for 1, 2, 3 and 4 hr all giving 

similar staining intensity.  The best results were achieved in tissue fixed for 1 hr 

followed by gum sucrose for 16 hr sequence and were comparable to the 

staining achieved in the unfixed control sections. 

 

In the second part of the investigation, it was shown that ethanol had a critical 

effect on enzyme activity with complete loss of lactase within 15 mins of 

exposure, but could be well demonstrated after a similar time in acetone, 

although longer exposure did progressively reduce lactase staining.  (plates 23 – 

24 on p 80 shows similar staining patterns but for clarity, staining has been 

performed on plastic sections).  The effects of ethanol and acetone on sucrase 

were less dramatic, although acetone was also superior to ethanol for the 

retention of this enzyme.  With the exception of the Historesin accelerator, all 

reagents allowed strong staining of both lactase and sucrase even after 16 hr, 

with best results achieved from Histocryl constituents.  The results clearly 

demonstrated that the schedule and reagents used for fixing and processing of 

the tissue was critical if accurate localisation of these enzymes were to be 

achieved, as staining of lactase could be easily lost and sucrase severely 

reduced.  The paper also commented on the effects of formalin fixation and 

processing had on acid and alkaline phosphatase staining –– two other enzymes 

that might be useful when assessing malabsorption, but stated that these 

enzymes were less sensitive than disccharidases. 
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When staining was tested on tissue embedded in JB-4, Historesin and Histocryl 

and processed under controlled conditions via acetone, good demonstration of 

both lactase and sucrase was shown in all plastics, (see plates 13, 15 and 16; pp 

73 - 74) although Histocryl sections tended to lift off the coverglass during 

staining.  

 

7.2.5 Conclusions 

A number of parameters were investigated in this paper relating to the effects of 

fixation, processing and polymerisation on the staining of lactase and sucrase in 

jejunum embedded in JB-4, Historesin and Histocryl.  It was shown that formol 

calcium retains the presence of lactase and sucrase, but processing could 

critically affect enzyme histochemical staining of lactase and sucrose; ethanol 

removed lactase activity even after only 15 mins exposure, but sucrase was less 

affected.  Acetone retained lactase activity although eventually this became 

diminished, whereas sucrase was well preserved.  As a result, it was stated that 

ethanol must not be used to process tissue because of potential false negative 

staining that could occur, but under controlled conditions acetone was 

satisfactory.  Both lactase and sucrase could be demonstrated in JB-4, Historesin 

and Histocryl.  The paper provided a template on how tissue should be 

processed for the demonstration of these enzymes whilst maintaining high quality 

tissue morphology. 
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7.3 PHOTOMICROGRAPHS 

 

 

Plate 9: Moulding Trays.  Proprietary polyethylene moulding trays of sizes 16 x 

12 x 5 mm and 12 x 6 x 5 mm used for embedding. 

 

 

 

Plate 10: Block stubs.  Proprietary aluminium and plastic block stubs 
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Plate 11: Dessicator being filled with oxygen-free nitrogen.  Glass dessicator 

partially filled with water and the chamber filled with oxygen-free nitrogen. 

 

 

 

 

Plate 12: Plastic blocks.  Polymerised plastic blocks of size 12 x 6 x 5 mm 

attached to plastic block stubs. 
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Plate 13: LS of villi – lactase (LP).  LS section of jejunum processed via acetone 

and embedded in Histocryl showing histochemical staining of lactase by the 

indigogenic procedure on brush border of villi. Counterstain Nuclear Fast red. 

 

 

 

 

Plate 14: LS of villi – lactase (HP).  LS section of jejunum processed via JB-4 

monomer and embedded in JB-4 showing histochemical staining of lactase by 

the indigogenic procedure on brush border of villi.  Counterstain Nuclear Fast 

red. 
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Plate 15: LS of villi – sucrase (MP).  LS section of jejunum processed via 

acetone and embedded in Historesin / Technovit 7100 showing histochemical 

staining of sucrase by the 6-Bromo-2 naphthyl-α-D-glucoside procedure on brush 

border of villi.  Counterstain methyl green. 

 

 

 

Plate 16: LS of villi – sucrase (HP).  LS section of jejunum processed via 

acetone and embedded in Historesin / Technovit 7100 showing histochemical 

staining of sucrase by the 6-Bromo-2 naphthyl-α-D-glucoside procedure on brush 

border of villi.  Counterstain methyl green. 



 
 

77 

 

 

Plate 17: LS of villi – acid phosphatase (LP).  LS section of jejunum embedded 

in JB-4 showing histochemical staining of acid phosphatase by the AS-BI 

naphthol phosphate procedure on brush border of villi.  Counterstain methyl 

green. 

 

 

Plate 18: LS of villi – acid phosphatase (HP).  LS section of jejunum embedded 

in JB-4 showing histochemical staining of acid phosphatase by the AS-BI 

naphthol phosphate procedure on brush border of villi.  Counterstain methyl 

green.  Reproduced by permission of American Society of Clinical Pathologists, 

Chicargo. 
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Plate 19: LS of villi – alkaline phosphatase (LP).  LS section of jejunum 

embedded in JB-4 showing histochemical staining of alkaline phosphatase by the 

naphthol AS phosphate and Fast blue BB procedure on brush border of villi.  

Counterstain Neutral red. 

 

 

Plate 20: LS of villi – alkaline phosphatase (HP).  LS section of jejunum 

embedded in JB-4 showing histochemical staining of alkaline phosphatase by the 

naphthol AS phosphate and Fast blue BB procedure on brush border of villi.  

Counterstain Neutral red. 
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Plate 21: LS of villi – leucine aminopeptidase (MP). LS section of jejunum 

embedded in JB-4 showing histochemical staining of leucine aminopeptidase by 

the β naphthylamine /  Fast blue B procedure on brush border of villi.  

Counterstain methyl green. 

 

 

 

Plate 22: LS of villi – lactase negative after ethanol (LP).  LS section of jejunum 

processed via ethanol and embedded in JB-4 stained for lactase by the 

indigogenic procedure.  Note the absence of staining on brush border of villi.  

Counterstain Nuclear Fast red. 
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Plate 23: TS of villi – lactase (MP).  TS section of jejunum processed via acetone 

and embedded in JB-4 stained for lactase by the indigogenic procedure.  Note 

the presence of staining on brush border of villi.  Counterstain Nuclear Fast red. 

 

 

 

Plate 24: TS of villi – lactase negative after ethanol (MP).  TS section of jejunum 

processed via acetone, embedded in JB-4 and incubated in ethanol which was 

then stained for lactase by the indigogenic procedure.  Note the absence of 

staining on brush border of villi.  Counterstain Nuclear Fast red. 
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CHAPTER 8 

 

REVIEW OF PAPERS 4 AND 5 

 

8.1 REVIEW OF PAPER 4 

8.1.1 Antigen unmasking using microwave heating on formalin fixed 
tissue embedded in methyl methacrylate. (Hand, Blythe and 
Jackson, 1996; Journal of Cellular Pathology, 1:31 - 37). 

 
8.1.2 Introduction 
Since the introduction of acrylic plastics for high resolution studies, there have 

been numerous reports relating to the application of immunohistochemisry, which 

as stated in chapter 3 began about 1972 (Hoshino and Kobayashi). Further 

papers are reviewed and discussed more fully in chapter 11.  However, it was 

evident from several sources including previous publications such as Vogt et al., 

(1976), Takimiya et al., (1980), Gerrits, (1988), (Hand, 1988b) and from several 

conversations by this author with scientific colleagues that immunohistochemistry 

on acrylic plastic embedded tissue was problematical and difficult to achieve.  As 

a result, the practicality of using MMA was explored as an alternative to the more 

popular insoluble GMA and LR White plastics as MMA can be dissolved after 

polymerisation.  A specially devised formulation of MMA had previously been 

described (Hand et al., 1989; Hand and Morrell, 1990), which had enabled blocks 

to be simply prepared and quickly polymerised using a chemical accelerator that 

could then be easily sectioned.  Following removal of the plastic from the section 

(which in this type of preparation was adhered to a glass slide), 
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immunohistochemical staining was applied.  In the above paper Hand et al., 

(1996) described the application of a pretreatment prior to immunohistocemical 

staining either using a microwave oven for the heating of sodium citrate and/or 

enzyme digestion for the unmasking of antigens in formalin-fixed tissue 

embedded in MMA.  Though these forms of pretreatment had become 

established procedures for paraffin wax sections of tissue fixed in formalin 

(Curran and Gregory, 1977; Mepham et al., 1979; Shi et al., 1991; Gerdes et al., 

1992; Cattoretti et al., 1993; Cuevas et al., 1994), and had also been reported on 

epoxy plastic sections (Pedraza, et al., 1984; Smart and Millard, 1985; 

McCluggage et al., 1995, Krenacs et al., 1996), neither had previously been 

reported on acrylic plastic sections.  The aims of the paper by Hand et al., (1996) 

were:- 

 

(i) to assess whether microwave antigen retrieval (MAR) was applicable to 

tissue embedded in MMA 

(ii) to evaluate whether MAR was useful and beneficial for immuno-

histochemical staining 

(iii) to compare immunohistochemical staining using either MAR and/or enzyme 

(trypsin) digestion 

(iv) to develop suitable pretreatment protocols for MMA-embedded tissue 

 

8.1.3 Method  

The paper reported how during a two year period, a variety of tissues including 

bone marrow, breast, kidney, lymph node, skin and uterus had been collected 

and fixed in formalin for approximately 18-24 hr.  Various formalin solutions had 
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been used including 10% formalin, 10% formol calcium and 10% formol saline as 

the samples had come from different locations.  Except for the bone marrow 

trephines, all tissues were sliced to a maximum thickness of 2 mm and manually 

processed via graded ethanol which consisted of 50%, 70%, 90% and three 

changes of 100% ethanol each for 1 hr, followed by two changes of catalysed 

MMA first for 1 hr and then overnight before embedding in a thick translucent 

polyethylene moulding cup tray (Polysciences Inc.) partially immersed in water 

inside a glass desiccator.  All samples were processed at room temperature and 

agitated on a roller mixer.  The catalysed MMA consisted of MMA monomer and 

dibutyl phthalate mixed 3:1 v/w containing 5% dried dibenzoyl peroxide.  For 

embedding, fresh catalysed MMA was used to which 125 µl of DMA was added 

to each 10 g aliquot to induce polymerisation.  Optimal polymerisation was 

achieved in an anaerobic environment by filling the dessicator with oxygen-free 

nitrogen.  The wells in the tray were filled using a Pasteur pipette so that when 

the plastic block stub (CellPath plc, UK) was placed in position, none or little of 

the embedding mix flowed on top of the stub.  All processing and polymerisation 

was carried out inside a fume cupboard to comply with safety regulations.  To 

discard waste MMA, it was first polymerised.  The procedures and equipment 

were similar to that previously used for enzyme histochemical studies shown in 

plates 9 – 12 on pp 73 – 74. 

 

Following polymerisation of the MMA (approximately 2 hr) the blocks (12 x 6 x 5 

mm or 16 x 12 x 5 mm) were cut either on a Reichert-Jung Autocut using a 10 or 

12 mm width Latta-Hartmann knife or Ralph knife respectively, and 2 µm sections 

floated out on a 54oC distilled waterbath.  The sections were picked up on slides 
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that had previously been coated with 2% 3-amino propyltriethoxysilane (APES), 

drained and dried either at 37oC overnight or on a 60oC hotplate for 20 mins. 

 

Prior to immunohistochemical staining, the MMA plastic was removed with two 

changes of xylene at 37oC each for 10 mins and the slides then rinsed in ethanol.  

Subsequently the sections were incubated in 0.5% hydrogen peroxide in 

methanol to block endogenous peroxidase before antigen retrieval techniques 

were commenced.  A variety of antigens were investigated and in general those 

antibodies which the supplier recommended pretreatment of the antigens in wax 

sections, also required pretreatment on MMA sections.  The following 

pretreatments were investigated:- 

 

(i) 0.025% and 0.1% trypsin digestion 

(ii) MAR using 10 mM (0.01M) sodium citrate buffer pH 6 

(iii) a combination of both procedures 

 

Both trypsin solutions were prepared in 0.1% calcium chloride made up in 

0.005M Tris buffered saline (TBS) adjusted to pH 7.4 and used at 37oC for 

various times up to 30 mins.  Different microwave ovens were used either with 

progressive heating of 10 mM (0.01M) sodium citrate buffer without stopping, or 

a heat / cool sequence.  When both trypsin and MAR were used in sequence on 

the same slide, the former was employed first.  The concentration of the trypsin 

solutions and the times used for MAR were based on routinely practices used for 

paraffin sections.  Subsequently the sections were thoroughly washed in cold 

running water before incubating with 20% normal serum (20 mins) and then 
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without washing the slide drained and primary antibody added for 1 hr.  A variety 

of immunoperoxidase methods were used including Avidin Biotin Complex (ABC) 

or Streptavidin biotin (Dako, UK) using DAB as the chromogen.  Both primary 

and secondary antibodies were diluted in 5% normal serum with incubation in 

secondary antibody (Dako, UK) and ABC each for 30 mins.  Between 

incubations, sections were washed in 0.005M TBS for 5 mins.  Staining was 

intensified with 0.5% copper sulphate and the sections counterstained with 

haematoxylin.  Immunostaining of numerous antigens using a variety of 

antibodies were investigated. 

 

8.1.4 Results 

From the results achieved, pretreatment clearly improved staining of many 

antigens, but the best protocol depended on the specific antibody employed and 

the time that had elapsed since the tissue was embedded.  The stronger 0.1% 

trypsin produced superior staining than using 0.025% trypsin.  The use of 0.1% 

trypsin or MAR produced satisfactory staining with AE1/AE3, CAM5.2 and 

vimentin, but was more reproducible with MAR particularly if the tissue had been 

embedded a while, when it was noticed antigenicity either decreased or became 

negative, but could be restored using MAR.  For the demonstration of CD45RO 

optimal staining was achieved with short (5 mins) MAR, as longer incubation 

resulted in increased nuclear and non-specific staining. 

 

Though several antigens could be demonstrated without pretreatment, staining 

was more intense and reproducible following MAR.  Similar results were not seen 

after trypsin digestion alone.  To localise Ki67 antigen using the antibody clone 
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MIB1, it was reported that positive staining using MAR alone was only possible 

within a few days after the tissue had been embedded in MMA, but strong 

staining could be retrieved if trypsin and MAR were employed in sequence.  This 

observation was not apparent with any other antibodies investigated.  Although 

the protocols suggested for bcl-2 and CD79a (MAR and 0.1% trypsin/MAR 

respectively) produced the best staining, the results were often weak or negative 

especially in archival tissue. 

 

The paper reported that MAR which had been used on over 1,000 cases, and 

had found that MAR either alone or in combination with trypsin digestion was an 

extremely useful technique for optimising the localisation of numerous antigens 

that had been fixed in formalin and embedded in MMA. The staining produced 

had been excellent and mainly consistent, and had enabled an expansion of the 

range of antibodies that could be successfully applied to MMA-embedded tissue 

for the demonstration of many antigens.  Various antigens are illustrated in plates 

25 – 44 on pp 92 – 101 including immunogold silver staining (IGSS) in plates 43 

and 44 (unpublished), although this work did not form part of the above study 

(Hand et al., 1996). 

 

8.1.5 Conclusions 

The results in this paper established that MAR with and without enzyme digestion 

was applicable to MMA-embedded tissue to enable the demonstration of a 

variety of antigens.  Previously the use of MAR and/or enzyme digestion had not 

been reported on MMA sections.  Staining was more intense and reproducible 

following MAR as similar results were not seen after trypsin digestion alone.  
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However, when trypsin was used in conjunction with MAR, the stronger 

concentration of 0.1% trypsin produced superior staining than 0.025% trypsin.  

Optimal staining of CD45RO was achieved with shorter MAR, but for Ki67 using 

MIB1 staining was only possible using MAR alone within a few days after 

embedding, although strong staining could be retrieved if trypsin and MAR were 

employed in sequence.  This observation was not seen with any other antibodies 

investigated.  For bcl-2 and CD79a the best staining produced was often weak 

and sometimes negative in archival tissue.  The results in this paper showed that 

the use of a pretreatment improved staining or enabled more antigens to be 

demonstrated as similarly experienced with paraffin sections.  Furthermore, it 

provided a framework to be able to achieve reliable immunohistochemical 

staining on MMA-embedded tissue. 

 

 

8.2 REVIEW OF PAPER 5 

8.2.1 Superheating using pressure cooking: its use and application in 
unmasking antigens embedded in methyl methacrylate. (Hand 
and Church, 1998; Journal of Histotechnology, 21:231 - 236). 

 
8.2.2 Introduction.   

In addition to the use of a microwave oven for the heating of various solutions to 

antigen unmask antigens in paraffin sections (Shi et al., 1991; Cattoretti, et al., 

1993; Cuevas, et al., 1994), it has also been suggested that the use of 

superheating using pressure cooking (PC) can either act as an alternative 

procedure, and / or produce improved staining (Norton et al., 1994; Miller et al., 

1995).  More recently Krenacs et al., (2004) described PC applied to epoxy 
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plastic sections.  In the above paper, Hand and Church (1998) investigated 

whether pressure cooking was applicable to formalin-fixed tissue embedded in 

MMA to achieve IHC, and in particular for the antigens bcl-2, CD3, CD79a and 

Ki67, which in the previous paper (Hand et al. 1996) had shown disappointing or 

unsatisfactory staining.  Furthermore, as it had been previously observed that 

immunocytochemical staining may be affected by the choice and concentration of 

the accelerator employed (unpublished), staining was applied to tissue from 

blocks that had been polymerised with different accelerators at various 

concentrations to ascertain whether differential staining could be achieved.  In 

summary therefore, the purpose of the study was to:- 

 

(i) assess whether superheating was applicable to MMA-embedded tissue. 

(ii) evaluate whether the technique was beneficial in the staining of bcl-2, CD3, 

CD79a and Ki67 

(iii) ascertain whether differential staining occurred if different accelerators were 

employed to polymerise the plastic 

  

8.2.3 Method 

A series of fresh tonsil slices were prepared and fixed in 10% formol calcium 

(routine fixative used in the department) for 24 hr.  The tissue was processed via 

graded concentrations of ethanol and infiltrated with MMA mix as described 

previously (Hand and Church, 1997).  Blocks were polymerised using either the 

amine accelerator DMA (D14,575-0, Aldrich, UK) or DMSX (T3642, Sigma, UK) 

by adding 100µl (1%), 125µl (1.25%), 150µl (1.5%), and 200µl (2%) to 10g 

aliquots of catalysed MMA.  When using these two accelerators the plastic 
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required up to 2 hr for polymerisation which was achieved in an anaerobic 

atmosphere inside a glass dessicator as previously described (Hand et al., 

1996).  Only blocks measuring 5 x 2 x 5 mm were prepared using a plastic 

moulding tray (Polysciences Inc.), and subsequently 2 µm sections cut with a 

Latta-Hartmann knife were picked up on slides coated with APES from a heated 

waterbath and dried as previously described (Hand and Church, 1997). 

 

Sections were deplasticised with two changes of xylene at 37oC each for 10 mins 

and the slides then rinsed in ethanol, endogenous peroxidase blocked using 

0.6% hydrogen peroxide in methanol for 15 mins and then subjected to either 

0.1% trypsin (37oC), or MAR or PC using a microwave oven or pressure cooker 

respectively to heat 10 mM (0.01M) sodium citrate buffer at pH 6.  Following 

preliminary studies, trypsin was employed only in conjunction with PC for the 

demonstration of CD3 antigen.  The protocols employed for pretreatment were 

identical to what was routinely used for paraffin sections and included either 

0.1% trypsin at 37oC for 20 mins, or progressive heating to boiling of 650 ml of 

sodium citrate solution for 20mins in a microwave oven (700W) or 3mins 

superheating in a pressure cooker. 

 

Following pretreatment and a thorough washing in cold running tap water, the 

sections were initially incubated in 20% normal serum made up in TBS pH 7.6 

and a Streptavidin Biotin Complex (Dako) procedure applied as previously 

described (Hand and Church, 1997), where the primary antibody, secondary 

antibody and Streptavidin were incubated for 60 mins, 30 mins and 30 mins 

respectively.  The optimal dilution for the antibodies bcl-2, CD3, CD79a and Ki67 
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(clone MIB1) had been pre-determined as referred to in a previous paper (Hand 

et al., 1996).  Peroxidase activity was detected using DAB with imidazole added, 

 and then further enhanced using copper sulphate solution both for 10 mins. 

 

8.2.4 Results 

From the results subjectively assessed, it was shown that in general the antigens 

bcl-2, CD3, CD79a and Ki67 exhibited stronger staining with PC than MAR.  In 

addition, DMSX produced superior staining than DMA which also increased as 

the concentration of the accelerator increased.  However, improved staining of 

CD3 was achieved if enzyme pretreatment with trypsin prior to pressure cooking 

was adopted.  This combination produced superior staining to trypsin followed by 

MAR, which had previously provided the best results (Hand et al. 1996).  In the 

same study it was shown that staining with MIB1 in archival tissue also required 

trypsin digestion when MAR was used, but in this investigation no similar enzyme 

pretreatment was necessary when PC was employed.  Various antigens are 

illustrated in plates 31, 34, 35 and 37 – 40 on pp 95 – 99 following pretreatment 

with PC. 

 

The paper also and confirmed the author’s views that the choice and 

concentration of accelerator used to induce polymerisation of the plastic could 

critically affect immunohistochemical staining. (see plates 38 – 40 on pp 98  –  

99) with DMSX producing superior staining to DMA.  It was suggested that a 

concentration of 1.5% DMSX produced satisfactory processing and 

polymerisation in 1-2 hr, and also subsequently enabled good IHC to be 

performed. 
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8.2.5 Conclusions 

From the results in this paper it was established that superheating using a 

pressure cooker with and without enzyme digestion was applicable to MMA-

embedded tissue to enable the demonstration of antigens studied.  Antibodies 

investigated focused on particularly those that had previously produced 

disappointing or problematic staining using MAR.  For bcl-2, CD3, CD79a and 

Ki67 the use of PC resulted in excellent stronger staining although for CD3 

improved staining was achieved if enzyme pretreatment with trypsin prior to PC 

was also adopted.  For this antibody, trypsin / pressure cooking produced 

superior staining to trypsin / MAR sequence.  No trypsin pretreatment was 

necessary when PC was employed with MIB1 in archival tissue and non-specific 

background staining was none or insignificant with the other antibodies studied.  

Antigen retrieval using superheating with a pressure cooker had previously not 

been reported on any plastic sections, but its use enabled a greater number of 

antigens to be reliably demonstrated.  The choice and concentration of 

accelerator used to induce polymerisation of the plastic was found to influence 

immunohistochemical staining, and in general higher concentrations of 

accelerator produced superior staining.  The use of the amine accelerator DMSX 

produced superior staining than DMA. 
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8.3 PHOTOMICROGRAPHS 

 

Plate 25: Smooth Muscle Actin, microwave antigen retrieval (MAR) pretreatment: 

(MP).  Formalin fixed tissue embedded in MMA polymerised with DMA and 

stained with an antibody for smooth muscle actin (Dako, clone 1A4) with a 

Streptavidin biotin procedure with DAB chromogen following pretreatment with 

citrate buffer pH 6.0 heated in a microwave oven. Counterstain Gill’s 

haematoxylin. 

 

Plate 26: Desmin, (MP).  Formalin fixed tissue embedded in MMA polymerised 

with DMA and stained with an antibody for desmin (Dako, clone D33) with a 

Streptavidin biotin procedure with DAB chromogen without pretreatment.  

Counterstain Gill’s haematoxylin 
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Plate 27: Cytokeratin 7, MAR pretreatment: (LP & HP).  Formalin fixed ovarian 

tumour embedded in MMA polymerised with DMA and stained with an antibody 

for cytokeratin 7 (Dako, clone OV-Tl 12/30) with a Streptavidin biotin procedure 

with DAB chromogen following pretreatment with citrate buffer pH 6.0 heated in a 

microwave oven.  Counterstain Gill’s haematoxylin. 

 

Plate 28: HMB-45, MAR pretreatment: (MP).  Formalin fixed melanoma 

embedded in MMA polymerised with DMA and stained with an antibody for 

melanocytes (Dako, clone HMB 45) with a Streptavidin biotin procedure with 

DAB chromogen following pretreatment with citrate buffer pH 6.0 heated in a 

microwave oven.  Counterstain Gill’s haematoxylin. 
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Plate 29: Leucocyte Common Antigen, MAR pretreatment: (LP).  Formalin fixed 

tonsil embedded in MMA polymerised with DMA and stained with an antibody for 

leucocyte common antigen (Dako, clone 2B11 + PD7/26) with a Streptavidin 

biotin procedure with DAB chromogen following pretreatment with citrate buffer 

pH 6.0 heated in a microwave oven.  Counterstain Gill’s haematoxylin. 

 

 

Plate 30: CD20, MAR pretreatment: (LP).   Formalin fixed tonsil embedded in 

MMA polymerised with DMA and stained with CD20 antibody for B lymphocytes 

(Dako, clone L26) with a Streptavidin biotin procedure with DAB chromogen 

following pretreatment with citrate buffer pH 6.0 heated in a microwave oven.  

Counterstain Gill’s haematoxylin.   
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Plate 31: CD79a, pressure cooking (PC) pretreatment: (MP).  Formalin fixed 

tonsil embedded in MMA polymerised with DMSX and stained with CD79a 

antibody for B lymphocytes (Dako, clone JCB-117) with a Streptavidin biotin 

procedure with DAB chromogen following pretreatment with citrate buffer pH 6.0 

heated in a pressure cooker.  Counterstain Gill’s haematoxylin.   

 

 

Plate 32: CD45RO, MAR pretreatment: (HP).  Formalin fixed tonsil embedded in 

MMA polymerised with DMA and stained with CD45RO antibody for T 

lymphocytes (Dako, clone UCHL1) with a Streptavidin biotin procedure with DAB 

chromogen following pretreatment with citrate buffer pH 6.0 heated in a 

microwave oven.  Counterstain Gill’s haematoxylin. 
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Plate 33: CD3, Trypsin + MAR pretreatment: (LP).  Formalin fixed tonsil 

embedded in MMA polymerised with DMA and stained with CD3 antibody for T 

lymphocytes (Dako, clone LN10) with a Streptavidin biotin procedure with DAB 

chromogen following sequencial pretreatment with trypsin (37oC) and citrate 

buffer pH 6.0 heated in a microwave oven.  Counterstain Gill’s haematoxylin. 

 

Plate 34: CD3, Trypsin + PC: (LP).  Formalin fixed tonsil embedded in MMA 

polymerised with DMA and stained with CD3 antibody for T lymphocytes (Dako, 

clone LN10) with a Streptavidin biotin procedure with DAB chromogen following 

sequencial pretreatment with trypsin (37oC) and citrate buffer pH 6.0 heated in a 

pressure cooker.  Counterstain Gill’s haematoxylin.  Note superior staining to 

plate 33. 
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Plate 35: CD3, Trypsin + PC pretreatment: (MP).  Formalin fixed tonsil 

embedded in MMA polymerised with DMA and stained with CD3 antibody for T 

lymphocytes (Dako, clone LN10) with a Streptavidin biotin procedure with DAB 

chromogen following sequencial pretreatment with trypsin (37oC) and citrate 

buffer pH 6.0 heated in a pressure cooker.  Counterstain Gill’s haematoxylin.  

Note superior staining to plate 33.   

 

Plate 36: CD34, MAR pretreatment: (HP).  Formalin fixed placenta embedded in 

MMA polymerised with DMA and stained with CD34 antibody for endothelial cells 

(Leica/Novocastra, clone QB-End/10) with a Streptavidin biotin procedure with 

DAB chromogen following pretreatment with citrate buffer pH 6.0 heated in a 

microwave oven.  Counterstain Gill’s haematoxylin.   
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Plate 37: Ki67, PC pretreatment: (MP).  Formalin fixed tonsil embedded in MMA 

polymerised with DMA and stained with Ki67 antibody for proliferating cells 

(Dako, clone MIB1) with a Streptavidin biotin procedure with DAB chromogen 

following pretreatment with citrate buffer pH 6.0 heated in a pressure cooker.  

Counterstain Gill’s haematoxylin. 

 

 

Plate 38: Bcl-2, PC pretreatment: (MP). Formalin fixed tonsil embedded in MMA 

polymerised with DMA and stained with bcl-2 (Dako, clone 124) with a 

Streptavidin biotin procedure with DAB chromogen following pretreatment with 

citrate buffer pH 6.0 heated in a pressure cooker.  Counterstain Gill’s 

haematoxylin. 
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Plate 39: Bcl-2, PC pretreatment: (LP).  Formalin fixed tonsil embedded in MMA 

polymerised with DMSX and stained with bcl-2 (Dako, clone 124) with a 

Streptavidin biotin procedure with DAB chromogen following pretreatment with 

citrate buffer pH 6.0 heated in a pressure cooker.  Note superior staining to plate 

38.  Counterstain Gill’s haematoxylin. 

 

 

Plate 40: Bcl-2, PC pretreatment: (MP).  Formalin fixed tonsil embedded in MMA 

polymerised with DMSX and stained with bcl-2 (Dako, clone 124) with a 

Streptavidin biotin procedure with DAB chromogen following pretreatment with 

citrate buffer pH 6.0 heated in a pressure cooker.  Note superior staining to plate 

38.  Counterstain Gill’s haematoxylin. 
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Plate 41: CD15, MAR pretreatment: (LP & HP).  Formalin fixed Hodgkin’s 

lymphoma embedded in MMA polymerised with DMA and stained with antibody 

CD15 for Reed Sternberg cells (Becton Dickinson, clone Leu M1) with a 

Streptavidin biotin procedure with DAB chromogen following pretreatment with 

citrate buffer pH 6.0 heated in a microwave oven.  Counterstain Gill’s 

haematoxylin.  

 

Plate 42: Lambda Light chains, Trypsin + MAR: (MP).  Formalin fixed tonsil 

embedded in MMA polymerised with DMA and stained with a polyclonal antibody 

for lambda light chains (Dako) with a Streptavidin biotin procedure with DAB 

chromogen following sequencial pretreatment with trypsin (37oC) and citrate 

buffer pH 6.0 heated in a microwave oven.  Counterstain Gill’s haematoxylin. 
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Plate 43: CD45RO / IGSS, (HP).  Acetic formalin fixed tonsil embedded in MMA 

polymerised with DMA showing surface staining of T lymphocytes with CD45RO 

demonstated by immunogold silver staining.  Counterstain with methyl green.  No 

antigen retrieval pretreatment was necessary. 

 

 

 

Plate 44: CD45RO / IGSS, (HP). Same stained section as plate 43 viewed by 

epi-polarised light. 
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CHAPTER 9 

 

REVIEW OF PAPERS 6 AND 7 

 

9.1 REVIEW OF PAPER 6 

9.1.1 The use of methyl methacrylate resin for embedding bone marrow 

trephine biopsies. (Blythe, Hand, Jackson, Barrans, Bradbury and 

Jack, 1997; Journal of Clinical Pathology, 50:45 - 49). 

 

9.1.2 Introduction 

Based on the procedure previously developed and the immunocytochemical 

staining achieved (Hand et al., 1989; Hand and Morrell, 1990; Johns et al., 1992; 

Hand et al., 1996), the above paper described a diagnostic application for 

undecalcified bone marrow trephine biopsies.  In this paper it was reported that 

the use of MMA as an embedding medium had been used for approximately 

2,500 undecalcified bone marrow trephine biopsies in the Haematological 

Malignancy Diagnostic Unit at Leeds, UK.  Though it stated that decalcified bone 

biopsy specimens embedded in paraffin wax could be used, it claimed this 

technique had the disadvantage that morphology and antigenicity may be poorly 

preserved.  It also stated that whilst both acrylic and epoxy plastic embedding 

media had previously been advocated as suitable for high resolution LM 

(Burkhardt, 1971; Moosavi et al., 1981; Beckstead, 1986; Clarke, 1991), it agreed 

with others that when using the popular GMA medium, the immunohistochemical 

techniques reported were complicated, troublesome and impractical in a routine 

laboratory (Vincic et al., 1989; Vincic, 1990).  As a consequence, this paper 
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described the procedures and experience of using MMA embedding as an 

alternative procedure based on that originally developed by Hand et al., (1989) 

and Hand and Morrell, (1990) for the diagnosis of various myelo and 

lymphoproliferative diseases using tinctorial stains and a wide range of 46 

lymphoid markers for immunocytochemical staining on bone marrow trephine 

biopsies.   

  

9.1.3 Method 

Bone marrow trephine biopsies had been fixed in several variants of formalin for 

a minimum of 18 hr with similar results and then manually processed in small 

glass vials on a roller mixer.  The tissue was dehydrated through 50%, 70%, 95% 

ethanol (1 hr each) and 100% ethanol for a minimum of 2 hr, and then infiltrated 

overnight in the plastic mix consisting of a 3:1 solution of MMA and dibutyl 

phthalate on the roller mixer.  The biopsies were embedded in thick polyethylene 

moulding cup tray with a block stub (Polysciences Inc.) and an identification label 

attached using an embedding mix that consisted of fresh infiltration solution to 

which 5% pre-dried dibenzoyl peroxide and 1% DMA had been added.  (Note: as 

this paper was written before the use of DMSX previously discussed in paper 5 

was investigated, only the accerator DMA was used).  Polymerisation occurred 

inside a dessicator with the block stub proving sufficiently satisfactory to prevent 

contact with oxygen in the air. (See plates 9 – 12, pp 71 –  72). Following 

polymerisation (approx 2 hr), sections were cut on a Ralph knife using a 

Reichert-Jung Autocut either at 3 µm for tinctorial and immunohistochemical 

staining or 4 µm for reticulum staining.  The sections were floated out on a 56oC 

waterbath and picked up on APES coated slides, drained and placed on a hot 
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plate for a minimum of 10 mins.  Other tinctorial / histochemical staining 

techniques mentioned included H&E, May-Grunward Giemsa, Ziehl-Neelsen and 

Perls Prussian blue.  For staining to occur, the plastic was first removed from the 

sections with xylene at 37oC for 20 mins, and sections then rinsed in alcohol and 

washed in water before proceeding. 

 

For immunocytochemical staining endogenous peroxidase activity was blocked 

using 0.5% hydrogen peroxide in methanol for 30 mins.  The optimal antigen 

retrieval pretreatment procedures depended on the antibodies investigated, but 

consisted of MAR using 0.01M sodium citrate (pH 6.0), or 0.025% trypsin at 37oC 

for 6 mins, or a combination of trypsin followed by MAR, or none.  Following 

antigen retrieval, sections were rinsed in 0.005M TBS (pH 7.6), incubated in 20% 

normal serum for 10 mins and then without rinsing, excess serum was drained 

prior to incubation in the primary antibody.  Over 46 antibodies were investigated, 

each incubated for 1 hr and a Streptavidin biotin horseradish peroxidase 

procedure used (Dako, Duet kit) where the secondary antibody and complex 

were both incubated for 30 mins.  Peroxidase activity was visualised with DAB / 

copper suphate sequence and sections counterstained with haematoxylin.  

Throughout the staining protocol 0.1% Tween 20 in TBS was used in the buffer 

to either wash the sections or as the antibody diluent. 

 

9.1.4 Results 

This paper described the diagnostic application of tinctorial and immuno-

histochemical staining that was used routinely for bone marrow trephines in the 

Haematological Malignancy Diagnostic Service at Leeds General Infirmary.  
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Using this procedure for the reporting of various myelo and lymphoproliferative 

diseases, it stated that approximately 2,500 undecalcifed bone biopsies had 

been embedded in MMA which produced an annual workload of about 3,000 

slides.  A wide range of lymphoid markers for immunocytochemical staining were 

employed with excellent staining achieved (plates 45 – 49, pp 110 – 112).   The 

results showed with the exception of myeloperoxidase and CD57 that trypsin, 

MAR or both were either essential, or greatly improved staining intensity and 

reproducibility.  Almost all the antibodies that were used on paraffin sections, 

also worked well on MMA sections except CD40.  In this thesis plates 47 – 49, 

(pp 111 – 112) are photomicrographs of ICC performed at a later date which 

used “high pH” antigen retrieval solution (Vector) heated with a pressure cooker. 

 

The paper also reported that no biopsy specimens embedded in MMA had been 

difficult to interpret because of technical failure.  The standard morphological 

preservation was consistently better than that on decalcified tissue embedded in 

paraffin wax, and TAT of MMA sections compared favourably with that achieved 

using decalcification followed by paraffin wax processing and embedding. 

 

9.1.5 Conclusions 

The paper reported on the experience of the using MMA for the embedding of 

2,500 undecalcifed bone marrow trephine biopsies, which was the routine 

method of choice at the Haematological Malignancy Diagnostic Service in Leeds 

General Infirmary at the time of publication.  A variety of tinctorial stains and a 

wide range of 46 lymphoid markers for immunocytochemical staining were 

employed for investigating various myelo and lymphoproliferative diseases that 



 
 

106 

produced an annual workload of about 3,000 slides.  The paper stated that 

excellent staining was achieved with all the antibodies that were used on paraffin 

sections except for CD40.  For myeloperoxidase and CD57 no pretreatment was 

necessary, but the use of trypsin, MAR or both were either essential or greatly 

improved the staining and reproducibility of the other antigens investigated.  In 

addition, it reported that morphological preservation was consistently better than 

decalcified paraffin wax sections and TATs of MMA sections compared 

favourably with the use of paraffin sections.  In conclusion, the paper stated that 

the use of MMA as an embedding medium for processing and performing 

immunocytochemical staining of bone marrow trephine biopsy specimens had 

many advantages over other embedding media and recommended its use. 

 
 

9.2 REVIEW OF PAPER 7 

9.2.1 Immunocytochemical demonstration of hormones in pancreatic 
and pituitary tissue embedded in methyl methacrylate. (Hand and 
Church, 1997; Journal of Histotechnology, 20:35 - 38). 

 
9.2.2 Introduction 

In the above paper Hand and Church described the diagnostic application of a 

broad spectrum of antibodies for the demonstration of several hormones on 

pancreas and pituitary tissue embedded in MMA.  Although several other 

investigations had previously reported the immunocytochemical demonstration of 

various hormones on plastic-embedded material, e.g. Spaur et al., (1975); 

Newman et al., (1983); and Pedraza et al., (1984), these studies did not include 

using MMA.  In this study, Hand and Church (1997) used identical antibody titres 
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and techniques as those that were routinely employed for paraffin sections, 

which also included the absence of any pretreatment required to induce antigen 

retrieval.  The paper also commented on the observation that some 

immunocytochemical staining might be affected by the choice of accelerator used 

to polymerise the plastic, and as a result both DMA and DMSX were used to 

polymerise a duplicate set of blocks to ascertain whether there was differential 

staining. 

 

9.2.3 Method 

Fresh post mortem pancreas and pituitary tissue of maximum thickness 2 mm 

was fixed in 10% formol saline for 48 hr, and then processed via graded ethanol 

and embedded as previously described Hand et al., 1996).  However, in this 

study, one set of blocks were polymerised by adding 125 µl of DMA and for a 

second set 125 µl of DMSX both to 10 g aliquots of catalysed MMA/dibutyl 

phthalate mix.  Only blocks measuring 12 x 6 x 5 mm were cast which 

polymerised in approximately 2hr at room temperature using an open moulding 

tray (Polysciences Inc.).  Subsequently 2 µm plastic sections were cut, 

deplasticised and immunocytochemical staining performed using a Streptavidin 

Biotin (Dako) immunoperoxidase procedure.  All processing, embedding 

sectioning and staining details were as previously described (Hand et al., 1996).  

The antibodies assessed were glucagon, insulin, pro-amylin N, somatostatin and 

substance P on pancreas, and adrenocorticotrophin (ACTH), beta endorphin, 

follicle-stimulating hormone (FSH), human growth hormone (HGH, luteinizing 

hormone (LH), prolactin and thyroid-stimulating hormone (TSH) on pituitary. The 

antibody titres in conjunction with a Streptavidin biotin method used was identical 
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as that used routinely for paraffin sections, which included no pretreatment to 

unmask antigenicity.  Peroxidase activity was detected using DAB with imidazole 

followed by enhancement with copper sulphate, and sections counterstained with 

haematoxylin.  It was stated that during staining it was important not to allow the 

sections to dry out, which occurred more readily than paraffin sections. 

 

 

9.2.4 Results 

Excellent staining with each hormone was easily achieved on all plastic sections 

of pancreas, although on pituitary tissue moderate non-specific background 

staining was encountered, that was significantly decreased by reducing the 

incubation time in primary antibody from 60 mins to 30 mins.  The paper also 

reported that excellent staining could also be achieved in archival material that 

had been embedded in MMA and polymerised with DMA 10 years earlier. 

 

Staining was equally strong in sections where the MMA had been polymerised 

with DMA or DMSX, and neither accelerator caused any difference in the 

morphology of the tissue.  It was suggested that the lack of differential staining by 

either accelerator may be because hormones appeared much less sensitive to 

these chemicals than other antigens. 

 

The results showed that immunocytochemical staining of hormones in the 

pancreas and pituitary could be easily and quickly achieved, (see plates 50 – 52, 

pp 112 - 113) combining excellent tissue morphology that was expected using 

plastic sections with strong staining associated with paraffin sections.  
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9.2.5 Conclusions 

This paper reported on the excellent immunocyotochemical staining achieved on 

pancreas and pituitary tissue using similar antibody titres and a methodology as 

that used in the laboratory routinely for paraffin sections.  This included the non-

requirement to use any pretreatment prior to immunostaining.  For pituitary tissue 

the higher background non-specific staining was decreased if the incubation time 

of the primary antibody was reduced.  Both the accelerators DMA and DMSX 

produced equally strong immunocytochemical staining, and as a result it 

appeared that hormones were much less sensitive to the of accelerator selected 

than other antigens.  No difference in the tissue morphology with either 

accelerator was observed 
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9.3 PHOTOMICROGRAPHS 

 

Plate 45: Prostatic Acid Phosphatase, MAR pretreatment: (LP). Formalin fixed 

bone marrow trephine embedded in MMA polymerised with DMA and stained 

with a polyclonal antibody for prostatic acid phosphatase (Dako) with a 

Streptavidin biotin procedure using DAB chromogen following pretreatment with 

citrate buffer pH 6.0 heated in a microwave oven. Counterstain Harris’s 

haematoxylin. 

 

Plate 46: CD45RO, MAR pretreatment:  (MP). Formalin fixed bone marrow 

trephine embedded in MMA polymerised with DMA and stained with an antibody 

for prostatic acid phosphatase (Dako, clone UCHL1) with a Streptavidin biotin 

procedure using DAB chromogen following pretreatment with citrate buffer pH 

6.0 heated in a microwave oven.  Counterstain Harris’s haematoxylin. 
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Plate 47: CD20, PC pretreatment: (LP). Formalin fixed undecalcified bone 

marrow trephine embedded in MMA polymerised with DMA and stained with an 

antibody for CD20  (Dako, clone L26) with a Streptavidin biotin procedure using 

DAB chromogen following pretreatment with high pH antigen retrieval solution 

(Vector) heated in a pressure cooker.  Counterstain Harris’s haematoxylin. 

 

Plate 48: Cytokeratin, PC pretreatment: (LP). Formalin fixed undecalcified bone 

marrow trephine embedded in MMA polymerised with DMA and stained with an 

antibody for cytokeratin (Dako, clone MNF116) with a Streptavidin biotin 

procedure using DAB chromogen following pretreatment with high pH antigen 

retrieval solution (Vector) heated in a pressure cooker.  Counterstain Harris’s 

haematoxylin. 
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Plate 49: Ki67, PC pretreatment: (LP). Formalin fixed undecalcified bone marrow 

trephine embedded in MMA polymerised with DMA stained with an antibody for 

Ki67 (Dako, clone MIB1) with a Streptavidin biotin procedure using DAB 

chromogen following pretreatment with high pH antigen retrieval solution (Vector) 

heated in a pressure cooker.  Counterstain Harris’s haematoxylin. 

 

 

Plate 50: Insulin, (MP).  Formol saline fixed pancreas embedded in MMA 

polymerised with DMA and stained with a polyclonal antibody for insulin (Prague 

University) with a Streptavidin biotin procedure using DAB chromogen following 

no pretreatment.  Counterstain Gill’s haematoxylin. 



 
 

113 

 

Plate 51: Glucagon, (MP).  Formol saline fixed pancreas embedded in MMA 

polymerised with DMA and stained with a polyclonal antibody for glucagon 

(Dako) with a Streptavidin biotin procedure using DAB chromogen without 

pretreatment.  Counterstain Gill’s haematoxylin. 

 

 

 

Plate 52: ACTH, (HP).  Formol saline fixed pituitary embedded in MMA 

polymerised with DMA and stained with a polyclonal antibody for ACTH (Dako) 

with a Streptavidin biotin procedure using DAB chromogen without pretreatment.  

Counterstain Gill’s haematoxylin.  
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CHAPTER 10 

 

REVIEW OF PAPERS 8 AND 9 

 

10.1 REVIEW OF PAPER 8 

10.1.1 Non-isotopic in situ hybridization to detect chick Sox gene mRNA 

in plastic embedded tissue. (Church, Hand, Rex and Scotting, 

1997; Histochemical Journal, 29:625 - 629). 

 

10.1.2  Introduction 

The above paper stated that the literature had previously contained only a few 

reports of ISH on plastic embedded tissue using either non-isotopic techniques 

(Cau and Beckstead, 1989; Kibbelaar et al., 1992; Ding et al., 1996) or isotopic 

techniques (Jamrich et al., 1984; Wide et al., 1989).  Though one of these 

studies (Jamrich et al., 1984) had used MMA, the authors of above paper 

claimed that the method was not as simple or applicable to tissue as their 

procedure.  In this publication, methods were described for the demonstration of 

two Sox gene mRNAs (Sox 11 and Sox 21) in MMA-embedded chick tissue 

using non-isotopic ISH.  Previously Uwanogho et al., (1995) had studied both 

Sox 11 and Sox 21, although the results for the latter were unpublished.  Both 

genes are members of the Sox gene family that encode transcription factors, 

which are related to the transition of cells of the nervous system from proliferation 

to differentiation and though readily detectable in frozen and paraffin sections, 

their demonstration in plastic sections was investigated to improve cellular 

resolution. 
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Church et al., (1997) also examined in this paper whether the choice of 

accelerator to polymerise the plastic, and whether pretreatment of the sections 

with proteinase K, or heat mediated techniques either with a microwave oven or 

a pressure cooker could affect ISH staining. 

 

10.1.3 Method 

Six day old chick embryo samples were fixed in 4% paraformadehyde made up 

in phosphate-buffered saline (PBS), pH 7.3 at 4oC for 24 hr, and then processed 

and embedded in MMA as described previously (Hand et al. 1996).  However, to 

induce polymerisation, either the amine accelerator DMA or DMSX was used at a 

concentration of both 150 µl per 10 g aliquot of catalysed MMA mix.  Following 

polymerisation (approximately 2 hr), the blocks were sectioned at 2 µm and 4 µm 

on a Reichert-Jung Autocut using a 10 mm wide Latta-Hartmann knife, and 

sections drained and dried as previously described (Hand et al. 1996). 

 

Riboprobes were synthesized according to the method recommended by the 

suppliers of digoxigenin-labelled nucleotides (Boehringer Mannheim).  Plasmid 

DNA was digested with single restriction enzyme to linearise, and was then 

incubated with either T3 or T7 RNA polymerase to generate sense or antisense 

riboprobe.  Probes were between 0.5 and 1.5 kb in length.  The dioxigenin-

labelled riboprobes were diluted in hybridisation solution that consisted of 50% 

formamide, 5 x saline sodium citrate (SSC), 1% sodium dodecyl sulphate (SDS), 

50 mg ml-1 yeast tRNA and 50 mg ml-1 heparin.  The optimum dilution factor was 

established empirically. 
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It was stated that during staining the sections should not be allowed to dry out.  

The sections were first deplasticised in xylene at 37oC for 30 mins, hydrated 

through decreasing concentrations of ethanol and water before undergoing 

pretreatment either using proteinase K, or heating sodium citrate solution in a 

microwave oven (Hand et al. 1996) or in a pressure cooker (Hand and Church, 

1997).  For enzyme pretreatment the slides were overlaid with approximately 100 

µl of proteinase K solution (10 mg ml-1, pre-warmed to 37oC) and left at room 

temperature for 15 mins.  Proteinase K was removed by washing for 1 min (x3) in 

PBS containing 0.1% Tween 20.  The slides were post-fixed with 4% 

paraformadehyde in PBS for 20 mins. 

 

The method for ISH was generally as described by Uwanogho et al., (1995).  A 

100 µl sample of diluted probe was added to each slide for incubation at 70oC 

overnight under a coverglass in a humidified chamber.  The slides were then 

washed twice with 50% formamide, 5x SSC, 1% SDS at 65oC for 30 mins each; 

three times with 50% formamide, 2x SSC at 65oC for 30 mins each, and finally 

three times in 1 x TBST (140 nM Tris-HCl buffer, pH 7.5, 300 nM levamisole. 

0.1% Tween 20) at room temperature for 5 mins each. 

 

For detection the slides were submerged in 1% blocking reagent for nucleic acid 

hybribridisation in TBST for 30 mins at room temperature, and then in a 1:2000 

dilution of pre-absorbed sheep anti-digoxygenin-alkaline phosphatase Fab 

fragments for incubation at 4oC overnight.  They were then washed in three 

changes of freshly prepared NTMT buffer (0.1M Tris-HCl, pH 9.5, 50 mg MgCl2, 

0.1M NaCl, 0.1% Tween 20, 2mM levamisole).  The sections were stained with 
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X-phosphate-NitroBT (45 µl of 75 mg ml-1 NitroBT in 70% dimethylformamide, 35 

µl of 50 mg ml-1 X-phosphate in dimethylformamide, 100 ml of NTMT), and the 

colour allowed to fully develop (7 days) in the dark at room temperature.  The 

reaction was stopped by incubating in 10 mM Tris-HCl, pH 7.8, containing 10 mM 

ethylenediamine tetra-acetic acid (EDTA).  The sections were mounted in Mowiol 

mounting medium (Calbiochem-Novabiochem, USA). 

 

10.1.4 Results 

The results showed that both Sox gene mRNAs were demonstrated in MMA-

embedded chick tissue using non-isotopic ISH techniques in each of the MMA 

mixes.  However, whereas Sox 21 was readily detected using any of the three 

pretreatments investigated, Sox 11 was only detected strongly after superheating 

with a pressure cooker (plate 53, p 122).  The pretreatments investigated 

produced variable staining intensity of each Sox gene with PC superior to 

proteinase K digestion and microwave heating (see plates 54 – 56, pp 122 – 

123).  Although proteinase K produced moderate staining for both probes, 

microwave heating produced strong staining only for Sox 21.  Similar staining 

intensity using either accelerator was observed for the detection of both mRNAs, 

although for Sox 11, slightly superior staining was produced with DMSX.  

Unsurprisingly stronger staining was more evident in 4 µm sections than 2 µm 

sections, and though decreased staining in archival blocks prepared six months 

earlier was seen in sections pretreated with either proteinase K or using 

microwave heating, the use of pressure cooking restored staining to an 

acceptable level. 
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As a result of differential staining for the demonstration of Sox 11 and Sox 21, 

where the choice of pretreatment (and to a lesser extent the accelerator) had a 

critical influence on the former, it was suggested that both criteria should be 

considered when ISH studies are required in the future. 

 

10.1.5 Conclusions 

This paper reported on the application of ISH for the demonstration of Sox gene 

mRNA using non-isoptopic ISH in MMA-embedded tissue. Previously such 

techniques had not been reported on MMA-embedded tissue.  Both Sox genes 

11 and 21 were demonstrated in tissue embedded in each MMA mix that had 

been polymerised using different accelerators.  Sox 21 was detected using all 

three pretreatments investigated but Sox 11 was only detected strongly after 

superheating sodium citrate with a pressure cooker.  Antigen retrevial using a 

microwave oven produced poor staining for Sox 11 and overall the use of 

pressure cooking produced best staining and was recommended.  Superior 

staining was achieved in blocks polymerised with DMSX and not unexpectedly 

stronger staining was more evident in 4 µm sections than 2 µm sections.  It was 

noticed that in archival blocks decreased staining occurred, but the use of PC 

restored ISH staining. 

 

 10.2 REVIEW OF PAPER 9 

  

 10.2.1 Double labelling using non-isotopic in situ hybridisation and 

Immunohistochemistry on plastic embedded tissue. (Church, Hand, Rex 

and Scotting, 1998; Journal of Cellular Pathology, 3:11- 16). 
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 10.2.2 Introduction 

Following reporting of the demonstration of Sox gene mRNAs in MMA-embedded 

tissue using ISH techniques (Church et al., 1997), the same authors described in 

the subsequent above paper (Church et al., 1998),  double staining consisting of 

combining ISH and IHC.  As Sox 11 and Sox 21 in the previous study were 

related to the transition of cells of the nervous system from proliferation to 

differentiation, their staining was combined with the immunocytochemical 

localisation of bromodeoxyuridine (BrdU) to demonstrate proliferation and 

neurofilament protein (NFP) to demonstrate differentiation.  The script of the 

above paper was supported by colour photomicrographs to enable differential 

staining to be easily observed. 

 

10.2.3 Method 

Briefly, 6-8 day old chick embryos were labelled with BrdU by injection with 

approximately 5-30 µg/g body weight.  The tissues were then fixed, processed 

and embedded as described previously (Church et al., 1997) using 150 µl DMSX 

to polymerise the MMA mix.  Similarly 4 µm sections from blocks measuring 12 x 

6 x 5 mm were cut, dried and the plastic removed prior to staining as reported 

(Church et al., 1997). 

 

In preliminary investigations, it had been determined that no pretreatment was 

necessary using the NFP antibody specified (Milab), whereas the BrdU (Dako) 

antibody benefitted from heat induced antigen retrieval.  As a result, a single 

pretreatment was chosen using either proteinase K for ISH and NFP, or PC to 

heat sodium citrate solution for ISH and BrdU.  The methodology used for both 
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pretreatments and ISH were as previously described (Church et al., 1997).  The 

slides were left unmounted in distilled water and then washed in 0.005M TBS to 

allow subsequent immunohistochemical staining to be applied.  For 

immunoperoxidase staining of BrdU, sections were treated with 20% normal 

serum diluted in TBS for 20 mins, drained and then incubated in 1:25 diution of 

BrdU (made up in 5% normal serum in TBS) for 1 hr.  A standard Streptavidin 

biotin (Dako) procedure was applied using reagents, protocols and detection of 

peroxidase activity using the procedures previously described (Hand et al. 1996).  

The sections were not counterstained, but washed in water, rinsed very quickly in 

ethanol, air dried and mounted in Loctite 358 fast-curing UV adhesive that was 

polymerised under UV light for 2 mins. 

 

For immunostaining of BrdU and NFP using alkaline phosphatase, a similar 

incubation and procedure as that described above for immunoperoxidase was 

employed, although the NFP antibody did not require dilution.  Following a wash 

in TBS, the sections were incubated in sheep anti-mouse biotinylated secondary 

antibody diluted 1:100 in TBS for 30 mins, washed again in TBS, and then the 

sections incubated in alkaline phosphatase streptavidin (Vector) diluted 1:500 in 

TBS for 30 mins.  After a further wash in TBS, alkaline phosphatase activity was 

detected using freshly prepared Fast red TR until the colour was satisfactory (8 

mins).  The sections were then washed in water and ethanol (quickly), air dried 

and mounted without counterstaining as described above for immunoperoxidase 

staining of BrdU. 
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10.2.4 Results 

From the results produced, excellent demonstration of Sox gene mRNA and 

tissue antigens were simultaneously achieved in MMA-embedded chick tissue 

(see plates 57 – 59, pp 124 – 125), although superior staining when combined 

with ISH was observed using alkaline phosphatase rather than peroxidase 

because it was cleaner and more intense.  Though in preliminary investigations 

BrdU had been successfully demonstrated with either pepsin digestion or MAR, 

neither produced staining as good as that achieved using PC.  The choice of 

DMSX as the accelerator to polymerise the MMA confirmed previous results for 

IHC (Hand and Church, 1997) and ISH (Church et al., 1997), where it was 

reported that DMSX produced superior staining. 

 

10.2.5 Conclusions 

This paper established that ISH and IHC could be simultaneously achieved in 

MMA-embedded tissue on the same section, which previously had been 

unreported on plastic sections.  Superior immunocytochemical staining was 

observed using alkaline phosphatase rather than peroxidase, and antigen 

retrieval using PC produced the best staining.  The best staining was achieved 

in blocks polymerised with the accelerator DMSX  
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10.3 PHOTOMICROGRAPHGS 

 

Plate 53: Sox 11, PC pretreatment: (LP).  Sox 11 staining (blue) in chick tissue 

embedded in MMA which was polymerised using DMSX.  Staining was achieved 

with TNBT following pretreatment with heated 0.001M sodium citrate pH 6 in a 

pressure cooker, which was the only pretreatment to produce strong staining for 

Sox 11. 

 

 

Plate 54: Sox 21, PC pretreatment: (MP).  Sox 21 staining (blue) in chick tissue 

embedded in MMA which was polymerised using DMSX.  Staining was achieved 

with TNBT following pretreatment with heated 0.01M sodium citrate pH 6 in a 

pressure cooker.  Note strong and superior staining to plates 55 & 56. 
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Plate 55: Sox 21, Proteinase K pretreatment: (MP).  Sox 21 staining (blue) in 

chick tissue embedded in MMA which was polymerised using DMSX.  Staining 

was achieved with TNBT following pretreatment with Proteinase K.  Note inferior 

staining to plate 54. 

 

 

 

Plate 56: Sox 21, MAR pretreatment: (MP).  Sox 21 staining (blue) in chick tissue 

embedded in MMA which was polymerised using DMSX.  Staining was achieved 

with TNBT following pretreatment with heated 0.01M sodium citrate pH 6 in a 

microwave oven. Note inferior staining to plate 54. 
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Plate 57: Sox 11 / BrdU, PC pretreatment: (MP).  Transverse section of chick 

neural tube embedded in MMA polymerised with DMSX showing Sox 11 (blue) 

stained with TNBT and immunoperoxidase staining of BrdU with DAB (brown) 

following pretreatment with heated 0.01M sodium citrate pH 6 in a pressure 

cooker.  Reproduced by permission of Greenwich Medical Media Ltd, London. 

 

 

Plate 58: Sox 11 / BrdU, PC pretreatment: (LP).  Transverse section of chick 

neural tube embedded in MMA polymerised with DMSX showing Sox 11 (blue) 

stained with TNBT and immunocytochemical staining of BrdU (red) using alkaline 

phosphatase visualised with Fast red TR following pretreatment with heated 

0.01M sodium citrate pH 6 in a pressure cooker.  Reproduced by permission of 

Greenwich Medical Media Ltd, London. 
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Plate 59: Sox 21 / BrdU, PC pretreatment: (MP).  Transverse section of chick 

neural tube embedded in MMA polymerised with DMSX showing Sox 21 (blue) 

stained with TNBT and immunocytochemical staining of BrdU (red) using alkaline 

phosphatase visualised with Fast red TR following pretreatment with heated 

0.01M sodium citrate pH 6 in a pressure cooker.  Reproduced by permission of 

Greenwich Medical Media Ltd, London. 
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CHAPTER 11 

 

GENERAL DISCUSSION 

 

11.1 INTRODUCTION 

In this thesis, it has been stated that the development of plastic embedding 

originated from the need to use an alternative embedding medium to paraffin wax 

for EM.  Originally an acrylic plastic was used (Newman et al., 1949), but this 

was superceded by epoxy (Glauert et al., 1956) and polyester plastics 

(Kellenberger et al., 1956), and for ultrastructural purposes the epoxy plastics still 

remain the embedding media of choice.  As plastics and techniques for EM were 

developed, useful applications also evolved for LM.  Many of the plastics for 

these purposes were acrylics as these were found to be the most suitable.  

During the 1950s, embedding undecalcified bone in plastic was introduced 

(Kidman et al., 1952; Woodruff and Norris, 1955; Yaeger, 1958) and later in the 

1960s high resolution LM studies using semithin sections started to become a 

major area of interest and development (Feder, 1963; Ashley and Feder, 1966; 

Ruddell, 1967a, 1967b).  The author of this thesis has published several papers 

relating to the development of these two applications that forms the subject of 

this thesis and which will now be discussed. 

 

In chapters 6 - 10 an outline description of specific papers that involved the 

author was presented which included the purpose and value of the particular 

study.  Having worked in various diagnostic laboratories, there was an 

awareness of the need to develop uncomplicated procedures that would deliver 
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timely results, and therefore many of the techniques and protocols described 

were developed with this in mind.  The approach was systematic and several 

procedures evolved from similar concepts that already existed, although some of 

these did not relate specifically to plastic embedding.  Further details are 

discussed in this chapter about the techniques and methodology employed, and 

how they relate to other plastic and non-plastic publications.  The plastic 

embedding studies and publications that have been collated and collectively 

described in this thesis, include procedures for undecalcified bone, enzyme 

histochemistry, immunohistochemistry and in situ hybridisation.  

 

The development of plastic embedding procedures for LM studies led to the 

introduction of specialised equipment.  Fundamentally this consisted of 

microtomes and knives that would enable thin and semithin sections to be 

produced by microtomy.  In addition, sophisticated equipment has also been 

developed such as that manufactured by EXAKT for the production of ground 

sections (Donath, 1990), which is especially useful when the tissue is 

undecalcified bone, tooth and/or contains implants.  However, such very 

expensive equipment is only found in isolated specialised laboratories, whereas 

the studies in this thesis have focussed on using equipment suitable for 

microtomy, as this had been readily available and was more appropriate for the 

specific diagnostic applications investigated. 

 

11.1.1 Embedding Undecalcified Bone  

The histological examination and investigation of metabolic bone diseases such 

as osteoporosis, osteomalacia and Paget’s disease has utilised plastic 
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embedding to enable undecalcified bone sections to be cut and stained (Recker, 

1983; Malluche and Faugere, 1987).  Numerous procedures have been 

published describing various techniques, some of which were reviewed by 

Sanderson (1997).  Also different plastics have been suggested (Fallon and 

Teitelbaum, 1981; Mawhinney and Ellis, 1983; Recker, 1983).  Though the 

authors of many publications have stated their reasons why their technique was 

preferred, often they were developed in specialised research institutions that 

resulted in producing a time-consuming and labour-intensive methodology which 

was not compatible with a diagnostic environment.  As a consequence Stevens 

and Palmer (1985) advocated the use of frozen sections instead for bone 

biopsies in metabolic and other diseases.  However, cutting frozen sections of 

undecalcifed bone is not easy and can result in poor morphology (Pearse and 

Gardner, 1972), and as a result there have been several attempts instead to 

streamline the preferred option of using a plastic embedding procedure (Frost, 

1958; Chapman, Kirkham and Schiller, 1984; Emmanual, 1988).  In the 

experience of this author, the procedure based on using PMMA as described by 

Difford (1974) had proved satisfactory in the laboratory for routine diagnostic use, 

but it was also recognised that a number of improvements to the technique were 

necessary that could benefit the service and ultimately the patient.  Specific 

technical advantages of the modification introduced have previously been listed 

in chapter 6, but other significant merits included the presentation of a simpler 

method, reduced preparation time, reduced cost, higher throughput of cases and 

quicker diagnosis.  For example, in the paper that collectively described these 

improvements (Hand, 1996) it was reported that the inhibitor hydroquinone was 

left in the monomer, whereas Sissons (1968) and Difford (1974) recommended 



 
 

129 

its removal.  In another example, several publications that have used MMA for 

embedding bone have reported that the sections should be adhered to a 

gelatinised microscope slide and the plastic removed prior to staining (Delling, 

1972; Recker, 1983; Malluche and Faugere, 1986), whereas excellent tinctorial 

staining has been achieved “free-floating” sections by Sissons (1968) and this 

author with the plastic in situ.  When sectioning large and heavily calcified bone 

samples, this author has found through experience that to achieve good 

morphology of the tissue, it has been necessary for the plastic mix to be 

“stiffened” by using PMMA, but often the harder mix did not adhere well to glass 

slides.  An advantage of using “free-floating” sections was that the time-

consuming clamping procedures required for adherence were avoided.  In the 

paper reviewed, (Hand, 1996) it was reported that the traditional staining 

techniques of Goldners trichrome, Solochrome azurine, Toluidine blue and von 

Kossa/van Gieson, and the demonstration of tetracycline by fluorescent 

microscopy were all applicable. 

 

Though current practice for assessing and diagnosing metabolic bone diseases 

is now performed by bone densitometry, it was concluded that the modifications 

described, which evolved through service needs and were tested on a large 

number of cases (10,000), had at the time impacted significantly on the 

diagnostic service by providing greater efficiency and quicker reporting without 

compromising quality.  In addition, some of the knowledge and skills gained from 

handling MMA was to prove influencial and beneficial later in the development of 

techniques by the author for IHC and ISH studies. 
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11.1.2 High resolution studies 

The literature contains several reports on the advantages of using semithin 

plastic sections for high resolution studies (Eastham and Essex, 1969; Zamboni, 

1972; Agodoa et al., 1975; Hoffmann and Flores, 1981; Hoffmann et al., 1982; 

Woodruff and Greenfield, 1982; Lumb, 1983; Mason and Mackie, 1985; Ferrell 

and Beckstead, 1988; Casey et al., 1990a; Gerrits and Suurmeijer, 1991) with 

several of these publications focussed on the use of GMA.  Other reports 

included combining tinctorial staining procedures with more exacting enzyme 

histochemical techniques using carefully controlled fixed tissue and low 

temperature processing (Beckstead and Bainton, 1980; Beckstead et al., 1981; 

Beckstead, 1983; Islam and Henderson, 1987).  In other enzyme studies freeze 

drying (Murray, et al., 1988a; Murray and Ewen, 1989b) and freeze substitution 

(Murray and Ewen, 1991) had been used, prompting one of the authors to ask 

whether paraffin wax might be on the wane because of its limited application for 

enzyme histochemistry studies (Murray, 1988). 

 

The use of a harder embedding medium than paraffin wax attracted the obvious 

use for the application of embedding undecalcified bone marrow trephine 

biopsies for the diagnosis of non-metabolic bone diseases.  However, there have 

been several reports where decalcified bone samples embedded in paraffin wax 

have remained the preferred method for examination (Gatter et al., 1987; Vincic, 

Weston and Riddell, 1989; Schmid and Issacson, 1992), although others have 

stated their preference for plastic embedding using undecalcified cores (Hott and 

Marie, 1987; Islam and Frisch, 1985; Jack, Roberts and Scott, 1993).  Later in 
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this discussion, possible explanations will be presented to suggest the reasons 

for the differing opinions. 

 

11.1.3 Enzyme Histochemistry 

The traditional histological procedure to demonstrate enzyme activity within 

tissue is to use frozen sections (Nestor and Bancroft, 2008), and for several 

enzymes improved morphology and localisation can be achieved if the sections 

are first subjected to light fixation prior to enzyme histochemical staining.  Based 

on numerous previous studies where the effects of fixation have been 

systematically collated and assessed (Chayen et al., 1973), it was shown that 

mild fixation with a cold aldehyde fixative permitted subsequent demonstration of 

many enzymes via their histochemical activity.  Formalin has frequently been 

used and Dawson (1974) preferred formol calcium which this author had also 

found effective and satisfactory.  Subsequent washing of the tissue in gum 

sucrose for frozen sections or 3% sucrose in 0.2M cacodylate buffer for plastic 

embedded tissue produced enhanced enzyme histochemistry.  Except for a few 

hardy enzymes such as chloroacetate esterase and peroxidase, the standard 

schedules that involve fixation, processing and embedding in hot wax to produce 

paraffin blocks are not conducive for the preservation of enzyme activity (Nestor 

and Bancroft, 2008).  However, the ability to process and polymerise acrylic 

plastics at low temperature, usually following mild fixation, can be effective for 

their retention.  As a result, numerous publications, (often ultilising acrylic GMA 

sections) have described procedures for enzyme histochemistry, (Hoshino, 1971; 

Ashford et al., 1972; Troyer and Nusbickel, 1975; Brinn and Picket, 1979; 

Huguchi et al., 1979; Nusbickel and Swartz, 1979; Horton et al., 1980; Chappard, 
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1985; Murray et al., 1987; Pretlow et al., 1987a; Gruber et al., 1988).  In some 

cases useful diagnostic applications have also been suggested (Beckstead et al., 

1981; Beckstead, 1983; Soufleris, et al., 1983; Islam and Henderson, 1987; 

Murray and Ewen, 1991).  Scrutiny of the methodology reveals a wide range of 

preparatory procedures, with many (including some of those referenced above) 

based on the general approach of low temperature aldehyde fixation followed by 

processing and embedding also at low temperature.  The plastic was then 

polymerised with a chemical accelerator or irradiated with light, although in the 

studies by Höpfel-Kreiner and von Mayerbach (1978) and von Mayerbach and 

Höpfel-Kreiner (1978) it was stated that UV light caused inactivation of the 

enzymes.   

 

A further development saw the introduction of LR Gold (Thompson and 

Germaine, 1984) where unfixed tissue could be processed at sub-zero 

temperature and the plastic polymerised by irradiation with blue light.  This 

procedure enabled a range of hydrolytic enzymes in addition to the fixation-

sensitive enzyme succinic dehydrogenase to be demonstrated, although no other 

oxidative enzyme has been demonstrated using this tedious technique, which 

this author has found time-consuming and not applicable for diagnostic use.  

However, LR Gold has also been used on fixed tissue for the demonstration of 

other oxidative enzymes (Murray et al., 1988a and 1988b).  A similar procedure 

to that used by Thompson and Germaine (1984) was also described by Dilsanete 

et al., (1992) for demonstration of acid and alkaline phosphatase in fresh, unfixed 

undecalcified samples of rat tooth embedded in LR Gold.  Succinic 
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dehydrogenase has been demonstrated in fixed GMA-embedded tissue, but 

incubation in the staining solutions occurred prior to fixation (Weber, 1974).  

 

Oxidative enzymes have rarely been localised in aldehyde-fixed tissue, although 

Pretlow et al., (1987b) reported the demonstration of aldehyde dehydrogenase, 

and NADPH tetrazolium reductase, but not glucose-6-phosphate dehydrogenase.  

In a series of articles by Murray and colleagues, freeze drying (where tissue was 

immersed in liquid nitrogen and water removed at -40oC) and freeze substitution 

(where tissue was fixed at -40oC with acetone or alcohol) has produced greater 

success.  Investigations included the demonstration of several oxidative enzymes 

using both freeze drying (Murray et al., 1988a; Murray and Ewen, 1989b) and 

freeze substitution (Murray and Ewen, 1991).  A comparison of aldehyde-fixed 

tissue and freeze dried tissue was reported by Murray et al., (1988a), with the 

latter producing superior results. One notable enzyme that failed to be 

demonstrated by freeze drying was succinic dehydrogenase (Murray et al., 

1988a).  LR Gold and LR White have been used for embedding fixed tissue and 

stained for NADH dehydrogenases, but the results were inferior to those 

achieved with GMA (Murray et al., 1988b).  The authors also stated in this paper 

that GMA was the plastic of choice when enzyme histochemistry was required, 

and advocated the use of JB-4 as it has the advantage of being able to process 

tissue via the monomer/plasticiser solution.  The use of freeze drying and 

embedding in GMA had previously been investigated (Mitrenga et al., 1974; von 

Höpfel-Kreiner and Mayerbach, 1978) with variable results. 

 

Other  developments  have  seen  the  use  of  methyl  methacrylate  (MMA)  for  



 
 

134 

enzyme studies (Westen et al., 1981; Chappard et al., 1983, 1987; Bernhards et 

al., Gruber et al., 1988; 1992; Liu, 1987; Wolf et al., 1992; Erben, 1997), although 

some of these plastic mixes have also incorporated BMA or GMA.  For those 

mixtures incorporating GMA, staining occurred with the plastic in situ, whereas 

with non-GMA mixes the plastic was removed.  Ruhl-Fehlert and Ludl (1987) 

reported on the use of the MMA based plastic K-Plast (Medim) for the 

demonstration of acid and alkaline phosphatase in bone tissue. 

 

As indicated, a wide range of preparatory protocols and plastics have been 

ultilised for enzyme histochemical investigations on plastic-embedded tissue, but 

it has been shown that for some enzymes the results could be critically affected 

by specific reagents.  In this thesis, studies relating to the demonstration of 

lactase and sucrase by the author were reported on plastic-embedded tissue, 

and though these disaccharidases were known to survive mild formalin fixation 

during their routine demonstration on frozen sections, it has been shown that 

both enzymes were sensitive to certain processing reagents, and particularly 

ethanol (Hand 1988a and 1988b) when processed for plastic embedding.  Other 

studies have also demonstrated differential staining with different reagents 

(Beckstead and Bainton, 1980; Gerrits and Zuideveld 1983; Murray et al., 

1988b), although when the investigations by this author were carried out, these 

studies were unknown.  No investigations on lactase and sucrase in plastic-

embedded tissue previously existed, but as it was shown that enzyme staining 

can be influenced by the processing schedule adopted, it is imperative for 

diagnostic use that the technique and protocol employed must ensure maximum 

retention of an enzyme for the results to be valid.  This was best achieved by 
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using acetone or processing via JB-4 monomer.  Murray et al., (1988a) also 

stated that processing tissue at 4oC was less effective than embedding at -20oC 

in preserving enzyme activity.  In addition, the use of GMA sections provided 

better adherence to a glass slide or coverglass.  For confidence in the results, 

this researcher would continue to recommend the use of frozen sections on 

diagnostic cases for the demonstration of the majority of enzymes to avoid any 

inconsistency and/or potential false negative staining. 

   

11.1.4 Immunohistochemistry 

During the last 25 years, stimulated by the tens of thousands of publications 

produced, there has been a worldwide exponential growth in the use and 

applications of IHC in histopathology, with the realisation that on an increasing 

number of occasions this type of investigation has at the very least proved useful, 

and in many cases essential for diagnosis (Dabbs, 2006).  A multitude of 

techniques and reagents have been introduced that have enabled IHC to be 

routinely performed in many histopathology laboratories (Jackson and Blythe, 

2013).  Originally frozen sections were ultilsed, but as technical developments 

advanced, so too have procedures been devised that have resulted in most IHC 

now being performed routinely on formalin-fixed paraffin sections.  Such is the 

importance of IHC, that it hard to imagine a histopathology laboratory now where 

this service is not required.  In addition, there have always been research 

developments that depend on using IHC, which has assisted in the rapid and 

dynamic expansion of this speciality. 

 

As  techniques  and  applications  for  IHC,  lectins  and  ISH  have  evolved  and  
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developed on routine frozen and paraffin sections, so too has there been a 

parallel evolution of similar techniques beyond the traditional tinctorial staining 

procedures on plastic embedded tissue.  In the development of acrylic plastic 

embedding procedures, several papers have been published describing the 

application of IHC including using a BMA/paraffin wax medium (Wechbanjong et 

al., 1979), although it is probably those by Beckstead (1985) and Casey et al., 

(1988) using GMA that are the best known. However, despite several other 

reports claiming successful immunohistochemical staining on GMA-embedded 

tissue, e.g. Hoshino, and Kobayashi, (1972); van de Velde, (1980); Zerpa et al., 

(1981); Mozdzen and Keren, (1982); Casanova et al., (1983), Archimbald et al., 

(1987); Colbatzky and Hermanns, 1987; Lazzaro et al., (1988); Islam et al., 

(1988); van Goor et al., (1988); Jackson, (1989); Burgio et al., (1991); van Goor, 

(1993); (van Pelt-Verkuil, (1995), there have also been others stating that the 

methods were idiosyncratic, problematic and unreliable (Vincic et al., 1989; 

Vincic, 1990; Hand, 1993; Hand, 1995a; Blythe et al., 1997).  Curiously, in one of 

the above papers that described a method for immunostaining, van Goor et al., 

(1988) also quoted that it was “impossible to predict whether positive staining 

might be achieved.”  In early studies some of the difficulties encountered were 

discussed (Avrameas et al., 1976; Vogt, 1976; Takimiya et al., 1978; Takimya et 

al., 1979; Takimya et al., 1980) that lead to Franklin and Martin (1980 and 1981) 

to suggest the use of pre-embedding immunohistochemical staining procedures.  

In an attempt to produce post-embedding immunostaining, numerous specialised 

techniques and protocols have since been proposed, which have included 

pretreatment of the sections with proteolytic enzymes (Vogt et al., 1976; 

Takimiya et al., 1980; Casanova et al., 1983), low temperature embedding 
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(Beckstead, 1985), the addition of methyl benzoate to the infiltration solutions 

(Casey et al., 1988), replacement of the commonly used plasticiser 

butoxyethanol with butandiol monoacrylate (van Goor et al., 1988) and the use of 

immunogold silver staining (van de Kant et al., 1988; Jackson, 1989; van de Kant 

et al., 1990; Tacha et al., 1993).  Polysciences introduced the GMA based plastic 

ImmunoBed specifically for immunohistochemistry, but for this author, the 

experience has been that the results were extremely disappointing and ranged 

from poor staining to none.  Some of the possibilities and limitations were 

summarised by Gerrits (1988), but it is reasonable to say that the debate on 

whether IHC can be performed on acrylic sections has been one of the most 

controversial in recent years within histological practice. 

 

Several publications have reported the use of immunocytochemical staining on 

tissue embedded in LR White and especially those that originated from the group 

of scientists based in Cardiff, UK (Newman et al., 1982; Newman et al., 1983; 

Newman and Jasani, 1984a and 1984b; Bowdler et al., 1989; Newman and 

Hobot, 1993).  To increase optical density and ensure visualisation of 

immunostaining when using LR White, Newman, et al., (1882 and 1983); and 

Germaine (1991) suggested enhancement of DAB.  Thompson and Germaine 

(1984) also reported IHC on LR Gold sections.  Other reports have appeared 

using the Lowicryl plastic K4M (Al Nawab and Davies, 1989) and Bioacryl (Scarla 

et al., 1992).  Though many of these non-GMA plastics can also be used for EM, 

these specific studies referred to techniques for LM.  However, the complex 

procedures involved, together with their limited applications in a routine 

laboratory and a general lack of success by many scientists in achieving IHC, 



 
 

138 

has resulted in the plastics listed not being widely used in histological practice for 

LM studies.  Detailed advice and additional information for those wishing to use 

Lowicryl plastics or LR Gold/White was provided in the excellent publications by 

Newman and Jasani (1984b), Newman (1987), Newman and Hobot (1987) and 

Newman and Hobot (1993), although the paper in 1987 by Newman and Hobot 

related to electron immunohistochemistry only. 

 

A major disadvantage of many acrylics including GMA, LR Gold, LR White, 

Histocryl, Lowicryl K4M, K11M, HM20, and HM23, and Bioacryl (Unicryl) is that 

when these plastics are polymerised, they become insoluble and remain present 

during staining.  This has presented significant and formidable difficulties 

especially when large molecules are required to penetrate through the plastic 

matrix to achieve immunocytochemical staining.  Casey et al., (1988) also 

reported that the plastic matrix becomes super-polymerised over time to form a 

closer and tighter network.  In addition, as the chemical reactions between the 

ingredients are complex and not fully understood (and can vary depending on 

conditions), it is virtually impossible to consistently reproduce similarly structured 

polymerised plastic blocks leading to variations in staining.  For these reasons, 

this author has long considered it is plausible that for many of the techniques and 

protocols previously published, embedding at low temperature was beneficial 

because gentle polymerisation produced a plastic with a more loosely bound 

matrix that was more conducive for large molecules to penetrate.  The need to 

produce a less dense structure has also been noted by others (Causton, 1984; 

Newman and Jasani, 1984b; Newman, 1987; Gerrits, 1988; Newman and Hobot, 

1993).  Whilst it would be too simplistic an explanation to claim that cross-linking 
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leading to an insoluble polymer was solely responsible for poor or no 

immunostaining, it was undoubtedly an obvious and significant reason.  Gerrits 

(1988) and Gerrits et al., (1990) stated that dyes with a molecular weight less 

than 500 daltons penetrate the GMA plastic matrix quickly, but those of 1300 

daltons cannot.  Immunhistochemical procedures use macromolecules with 

molecular weights of at least 150,000 daltons (Gerrits, 1988).  In addition, some 

publications have added to the confusion with statements such as “etching is not 

required” (Scala et al., 1992), or “acrylics resins such as glycol methacrylate do 

not require etching prior to staining” (Wilkins, 1995) implying that it is optional, 

when factually due to cross-linking of the plastic, they are insoluble.  Such 

comments to those less experienced could be misleading. 

 

In an effort to overcome these difficulties, investigations into the possibilities of 

using MMA were made, because in some circumstances it can be dissolved 

when polymerised.  Several initial reports were published (Hand et al., 1989; 

Hand and Morrell, 1990; Johns et al., 1992; Hand, 1995a) where the MMA 

embedding medium was removed (rather like paraffin wax) prior to 

immunohistochemical staining.  Using a specially devised formulation where the 

MMA was polymerised quickly, new preparatory techniques for producing the 

sections were introduced and immunohistochemical staining applied.  By 

comparison with previous staining attempts, the results were spectacular.  

Originally some of the investigations utilised tissue which was not fixed in 

formalin and so did not require pretreatment techniques to unmask antigenicity 

caused by the effects of fixation.  Previously, Rodriguez et al., (1984) had 

reported the application of IHC using immunoperoxidase enhanced with silver 
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methamine staining on tissue embedded in a BMA/MMA mix although the plastic 

was polymerised using either with dibenzoyl peroxide or benzoin and UV light 

over a period of 24-36 hr. 

 

In early (unpublished) studies by Hand when immunogold silver techniques were 

topical, some success was also achieved using this technique on MMA-

embedded tissue (see plates 43 and 44, p101).  Though several other 

publications reinforced that IHC was possible on MMA-embedded tissue, 

including immunogold silver staining by van de Kant et al., (1988 and 1990), it 

was interesting to note that Islam (1987) and Frisch and Bartl (1990) have stated 

that IHC could not be performed due to the shortcomings of MMA.  Following yet 

another paper by Schmid and Issacson (1992) which continued to perpetuate this 

myth, Hand (1993) and Jack et al., (1993) replied in an attempt to correct this 

misunderstanding. 

 

It has long been known that enzyme pretreatment of formalin-fixed tissue could 

greatly enhance immunohistochemical staining on paraffin sections (Curran and 

Gregory, 1977; Mepham et al., 1979).  For many years this was an accepted 

practice, but the introduction of heat induced epitope retrieval techniques by Shi 

et al., (1991) revolutionised staining protocols, especially when rapid 

developments soon led to the use 10 mM sodium citrate and 10 mM EDTA (not 

assessed or used in the studies presented in this thesis) at pH 6 and pH 8-9 

respectively (Gerdes et al., 1992; Cattoretti et al., 1993).  These solutions which 

were safe, easy to prepare and inexpensive to use became widely adopted and 

could be conveniently heated in a microwave oven.  Though the rationale behind 
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heat pretreatment is unclear with different theories suggested (Jackson and 

Blythe, 2013), the results for paraffin sections led to significant advantages with 

enhanced staining, and microwave antigen retrieval as it became known is now 

common practice.  However, there are still occasions for certain antibodies when 

enzyme pretreatment or where other devices for producing heat induced 

pretreatments are useful and/or preferred, either as an alternative to using a 

microwave oven or to produce better staining.  One procedure described was the 

use of superheating solutions with a pressure cooker (Norton et al., 1984). 

 

Following the initial immunohistochemical studies on MMA-embedded tissue 

referred to previously in this thesis, this author and colleagues then investigated 

the application of various pretreatments to assess whether these would be 

beneficial for immunostaining.  Both microwave antigen retrieval (Hand et al., 

1996) and pressure cooking (Hand and Church, 1998) were found to be 

extremely useful and resulted in significant enhanced staining with neither 

pretreatment previously described for MMA-embedded tissue.  As a result, the 

number of antibodies that could be used to reliably demonstrate a variety of 

antigens was dramatically increased, and provided an opportunity to investigate 

whether embedding in MMA could be realistically used for diagnostic applications 

(Blythe et al., 1997; Hand and Church, 1997).   

 

One very useful and obvious application was for embedding undecalcified bone 

marrow trephine biopsies for the diagnosis of haematological malignancies.  

Traditionally this type of investigation has been performed on decalcified tissue 

which is then embedded in paraffin wax, and though reported by many as 
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satisfactory (Gatter et al., 1987; Schmid and Issacson 1992; Naresh et al., 2006), 

others have stated that the use of plastic embedding offers superior morphology 

(Burkhardt, 1971; Green, 1970; Islam and Frisch, 1985; Frisch and Bartl, 1990; 

Blythe et al., 1997; Jack et al., 1993).  However, a major disadvantage of many 

plastic embedding procedures as has been discussed is the restriction of not 

being able to routinely perform IHC, but this author has shown that by using 

MMA in a specified procedure, high quality IHC can be achieved.  As a result of 

combining plastic embedding with IHC, Jack et al., (1993) stated that in their 

opinion the use of MMA was the method of choice for embedding bone marrow 

trephine biopsies. 

 

However, it is acknowledged that the use of MMA has also been used by others 

for IHC studies (Rodrigues et al., 1984; Schröder and Delling, 1986; Hahn et al., 

1991; Bernhards et al., 1992; Wolf et al., 1992; Erben, 1997).  All have stated the 

advantages and merits of using MMA for IHC, but the procedures described were 

far more complicated and time-consuming than those advocated by this author 

and the range of antibodies investigated less comprehensive.  When discussing 

the use of methacrylate embedding media for early EM studies Nunn (1970) 

reported the “polymerisation damage” that occurred to various tissue structures.  

Using the mild preparatory procedures described in this thesis with MMA, no 

obvious morphological abnormalities or defects have been noticed. 

 

Producing MMA sections that adhere easily and readily to glass slides can be 

challenging, and in some procedures lengthy clamping of the sections has been 

suggested (Delling, 1972; Islam and Frisch, 1985; Schröder and Delling, 1986; 
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Hahn et al., 1991; Erben, 1997) often using gelatinised slides.  In addition, Seifert 

(personal communication) reported that when Haupt’s gelatin/fixative was used, 

excessive background staining resulted.  However, when using the MMA 

formulation described in the papers by Hand and colleagues, the sections which 

were easily flattened on a heated water-bath and subsequently picked up on 

slides remained attached, although the use of slides coated with APES was 

recommended (Hand et al., 1996; Blythe et al., 1997; Church et al., 1997).  

Naturally some tissues e.g. undecalcified bone, presented additional challenges, 

but the routine use of the procedure for bone marrow trephine biopsies in the 

Haematological Malignancy Diagnostic Unit in Leeds is evidence that it can be 

reliably performed.  The use of the readily available solvent xylene to deplasticise 

(sometimes called deacrylation) MMA sections has been found satisfactory, 

although other workers have suggested in conjunction with xylene the use of 1-

acetoxy-2-methoxy-ethane (Yang et al., 2003) or 2-methoxyacetate (Wittenburg 

et al., 2009) when using the proprietary MMA kit Technovit 9100 New (Heraeus 

Kulzer).  According to Seifert (personal communication) Technovit 9100 New 

requires the deplasticising solutions to be heated which results in producing 

wrinkled sections.  In a study by Bernhards et al., (1992) where a modified MMA 

was used, both acetone and methoxyethyl acetate were investigated as a solvent 

and though neither affected the reactivity after incubation for 6 and 12 hours of 

the enzyme chloroacetate esterase and various antigens investigated, patchy 

residential polymer was present after acetone alone. 

 

In the studies by Hand, the ability also to mimic similar well-established 

immunohistochemical staining protocols has been advantageous and fortuitous 
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in being able to develop a technique applicable in a routine laboratory.  Originally 

ABC procedures were used but later in line with modern practice, immunological 

polymer detections systems for the localisation of antigens have been 

successfully employed (D. Blythe, personal communication). The introduction of 

heat mediated procedures for formalin-fixed plastic sections, which other authors 

did not consider, has certainly assisted in extending the repertoire of antibodies 

(except CD64; D. Blythe, personal communication) and improving the quality of 

staining achieved on MMA-embedded tissue.   However, more recent studies by 

Howat et al., (2005) and Howat and Wilson (2010) have used heat mediated 

antigen retrieval procedures on formalin-fixed tissue microarrays (TMAs) 

embedded in GMA.  Good immunostaining was achieved on both formalin fixed 

and acetone-fixed material (no antigen retrieval required) and represented the 

first application of plastic embedding for TMA.  For MMA-embedded tissue, 

Blythe (personal communication) now routinely uses 1% Vector high pH 

unmasking solution (Vector Laboratories, UK) heated for 6 mins in a pressure 

cooker at 15 psi.  

 

11.1.5 In Situ Hybridisation 

The results that Hand and colleagues achieved with IHC on MMA-embedded 

tissue prompted investigations into whether ISH was applicable.  Based on 

previous studies by co-workers using paraffin sections (Uwanogho et al., 1998), it 

was shown that Sox genes 11 and 21 could be demonstrated in chick tissue 

embedded in MMA.  Previously MMA had only been reported for isotopic ISH 

(Jamrich et al., 1984).  In the studies by Church et al., (1997) it was shown that 

the choice of accelerator used to polymerise the plastic mix and pretreatment 
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used prior to ISH could affect staining.  These were important findings which 

could impact significantly if diagnostic investigations are required.  In a 

subsequent paper, simultaneous ISH and IHC were demonstrated on the same 

MMA section (Church et al., 1998), when the best results were achieved using 

the same pretreatment and accelerator as previously used.  Consequently, it 

would appear that generally both pressure cooking and the accelerator DMSX 

offer the potential to produce the best staining for ISH and IHC on MMA-

embedded tissue. 

 

11.1.6 Development of Designer Plastics 

In chapter 3, it was described how acrylic plastics evolved from being initially 

used for EM to extensive use for LM studies.  As the properties and 

characteristics that were outlined in chapter 4 became better understood, leading 

to a plethora of publications describing various applications for tinctorial, enzyme 

and immunohistochemical techniques, so too was there a realisation that acrylics 

could be formulated to numerous permutations that could reflect specific 

characteristics.  From this, it is plausible that a plastic could be made which might 

be more appropriate for a particular function or requirement.  In this thesis, this 

knowledge has been capitalised to formulate either an improved plastic e.g. for 

metabolic bone studies (Hand, 1996) or new modifications for specific IHC and 

ISH techniques (Hand et al., 1988; Hand and Morrell, 1989; Blythe et al., 1997; 

Church et al., 1997; Hand and Church, 1997; Church et al., 1998).  Previously for 

EM studies, Causton, et al., (1980), Carlemalm et al., (1982) and Scala et al., 

(1992) have presented descriptions and reasoning relating to the formulation of 

LR White, Lowicryl plastics and Bioacryl (Unicryl) respectively.  These 
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publications which provided a valuable insight into polymer chemistry and their 

formation have assisted this author in initiating concepts for IHC studies. 

 

The fundamental process in plastic embedding is to convert a monomer into a 

polymer by the process of polymerisation.  This can be induced by incorporating 

a catalyst which reacts with an agent such as heat, a chemical accelerator or 

light.  However, for a plastic to be a suitable embedding medium for histological 

investigations, many other features are required that include the ability to allow 

tissue to become properly processed, or the ability to produce a plastic of 

suitable hardness for the tissue, or the ability to produce suitable sections, or the 

preservation of tissue structures and substances, or the stability of the plastic 

against either reagents and/or an electron beam, or the ability to be able to 

perform histological staining techniques, or the ability to produce stable blocks 

within an appropriate time scale.  In more recent times other issues such as the 

colour of the plastic and the toxicity of the reagents have also become important 

and relevant (Gerrits and Smid, 1983; Gerrits et al., 1991). 

 

The plastic mixes suggested by Hand for embedding undecalcified bone with 

PMMA (Hand, 1996) and those for IHC/ISH studies (Hand et al., 1989, Church et 

al., 1997) incorporated the plasticiser dibutyl phthalate.  Another way to produce 

a softer block would have been to include in the mix a softer monomer such as 

butyl methacrylate, but this author considered that the co-polymer could 

adversely affect tissue structures more and/or create additional problems during 

polymerisation.  For semithin sections of bone marrow trephine biopsies where 

IHC studies may be required, Blythe (personal communication) has since 
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increased the MMA content from 15ml per 20 ml aliquot to 17 ml per 22 ml 

aliquot.  The MMA monomer contains 0.01% (100 parts per million) of the 

inhibitor hydroquinone monomethyl ether. 

 

A range of accelerators have been used for GMA systems which have included 

the use of pyridine (Ruddell, 1971), although Green (1977) found this 

unsatisfactory.  Gerrits et al., (1991) assessed various plasticisers and 

accelerators with the emphasis on producing a low toxicity GMA embedding 

medium for various histological and histochemical staining procedures.  The 

accelerators examined by Gerrits et al., (1991) were DMA, DMPT, DMSX and 

DMBA, which the author of this thesis along with colleagues have also utilised 

and assessed in the development of specialised MMA mixes. In preliminary 

(unpublished) studies by Hand, DMBA was found to be unsatisfactory with MMA, 

which also agreed with similar conclusions that Gerrits et al., (1991) found with 

GMA.  However, both DMA and later DMSX have been shown to be excellent 

accelerators in a MMA system, where the plastic was polymerised similarly to 

GMA, but also had the significant advantage of being dissolved.  This proved to 

be extremely useful and beneficial especially for IHC and ISH studies, and the 

use of these accelerators has been a major factor in designing a suitable plastic 

practical for these purposes.  Also, the studies by Church et al., (1997), Hand 

and Church, (1997) and Church et al., (1998) have shown that improved staining 

could be achieved using DMSX. 

   

According to Casey and Beckstead (1990) Technovit 7100 (Historesin) did not 

perform consistently for IHC.  However, in the development of various GMA 
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media, different formulations have been suggested in the literature to improve 

immunocytochemical staining such as the replacement of the plasticiser 2-

butoxyethanol with butandiol monoacrylate (van Goor et al., 1988), and the 

introduction of ImmunoBed and Technovit 8100 by Polysciences Inc. and 

Heraeus Kulzer respectively.  For Technovit 8100, known as RES G20 during 

development, (Gerrits et al., 1991) this was evident from several 

photomicrographs in a later publication (van Goor, 1993; van Pelt-Verkuil, 1995).  

  

The use of 5% dibenzoyl peroxide has in the author’s experience also produced 

consistent and reliable immunostaining on MMA-embedded tissue, prompting 

initial thoughts about whether this high concentration of catalyst provided a 

similar protection to tissue antigens as the inclusion of methyl benzoate during 

processing with GMA as suggested by Casey et al., (1988).  As Blythe (personal 

communication) currently only adds the catalyst to the embedding MMA mix, this 

would appear not to be a correct hypothesis.  The high concentration of 

dibenzoyl peroxide has been retained as lower concentrations had in preliminary 

unpublished studies by the author indicated variable immunostaining.  

 

A major disadvantage of many of the ingredients in plastic embedding media 

relates to the safety and toxicity of the reagents.  In some cases, especially kits 

of unknown composition, this can present problems, and certainly the chemicals 

employed in the production of MMA blocks used in the studies by this author are 

no exception.  MMA monomer has a strong pungent odour and is flammable, and 

dibenzoyl peroxide is an irritant that is potentially explosive, although the non-

explosive Perkadox 16 has been used in MMA systems (Buijs and Arend, 1983).  
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Gerrits et al., (1990) investigated several plasticisers used in GMA embedding 

and described a numerical procedure for selecting a low toxicity reagent based 

on a range of physical and chemical parameters. The plasticiser dibutyl phthalate 

is subject to legislative control by both the European Union and United States 

with the latter adding the chemical to the California Proposition 65 (1986) list of 

suspected teratogens in November 2006 (http://oehha.ca.gov/prop65.html).  

Hard and soft grades of Acrylosin contain 3% and 10% w/v of dibutyl phthalate 

(J. Ratliff, personal communication).  It is also well known that amines are toxic 

and based on the hydrophobicity of a compound (Dearfield et al., 1989), it has 

been suggested that DMA would be the most toxic and DMSX would be the least 

(Gerrits et al., 1991).  It is thought therefore that DMSX should be used in the 

future with MMA, especially as the results with Technovit 8100 and those 

presented in this thesis, also indicate superior immunostaining than DMA.  

 

The use of an accelerator provides control over the rate of polymerisation and in 

conjunction with the concentration of catalyst dibenzoyl peroxide, an effective 

and practical time to achieve curing can be established.  In the author’s 

experience, approximately two hours is suitable as a decreased time has 

resulted in inadequately processed tissue.  Also if polymerisation is too rapid, 

there is a likelihood that the temperature produced during the exothermic 

reaction will increase to an undesirable level.  Several studies have been 

published to illustrate the conditions and factors which influence this (Gerrits and 

van Leeuwen, 1985; Hand, 1988b; Bernhards et al., 1992; Gerrits et al., 1991), 

and Spijker (1978) described a specially designed mould when using MMA, but 

unlike many GMA studies when either enzyme histochemistry was required 
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and/or producing a loose plastic matrix for IHC was important, neither were 

significant in the studies by Hand when the plastic was removed prior to staining.  

This author has over many years been challenged about whether deplasticised 

sections are indeed really plastic sections, but he has argued that this is a matter 

of perception, as paraffin wax sections which also require the removal of the 

embedding medium are universally called “paraffin sections” or “wax sections.” 

 

In the paper by Gerrits et al., (1991), the hardness of GMA blocks was also 

considered where it was suggested that the ability of Technovit 7100 (Historesin) 

to produce ribbons of sections was due to the softer surface layer of this plastic.  

A further consideration is the discolouration of polymerised blocks, which was 

influenced in GMA blocks by the choice of accelerator used (Gerrits et al., 1991) 

with DMA producing a yellowish colour which developed in to a deep brown after 

a short period exposed to daylight.  The other accelerators investigated (DMBA, 

DMPT and DMSX) also produced a light yellow which darkened to deeper shade, 

with DMSX the palest.  This author has found similar colouration produced with 

MMA but the high concentration of dibenzoyl peroxide did produce further 

intensification.  Both Technovit 7100 which ultilises a non-amine accelerator and 

JB-4 Plus produce clear or pale yellow blocks respectively. 

 

11.1.7 Diagnostic Uses of Plastic Embedding 

This thesis has provided details on how plastics have evolved as embedding 

media for the use of histological techniques.  The properties of acrylics allow 

many LM techniques to be performed, and these are therefore the plastics of 

choice for this purpose.  Though dual purpose plastics such as the Lowicryls, 
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Bioacryl and LR Gold/White can in some instances be used also for EM, their 

formulation is more restrictive than some other acrylics for many LM techniques.  

Incorporation of a crosslinking agent for electron beam stability, not 

unexpectedly reduces usage for certain procedures, although over the years (as 

it has been reported in this thesis) numerous attempts have been published 

where a methodology has been contrived that could produce results.  

Unfortunately many of these methods are far too complex, time-consuming and 

unreliable for widespread application in a routine diagnostic laboratory. 

 

For over 50 years, undecalcified bone has been embedded in a plastic to enable 

histological assessment of metabolic bone diseases.  This has proved a valuable 

procedure, but as discussed earlier in this thesis, many of the techniques 

published were cumbersome, prompting this author to consider refinement.  As a 

result numerous modifications were introduced to streamline an existing method 

so that it was more applicable for a diagnostic service.  In this environment, TAT 

and reduced costs through greater efficiency, in addition to high quality, were 

constant drivers and consequently publication of an improved technique was 

justified.  The paper by Hand (1996) reported its use on a large number of cases 

(10,000) and obviously this figure has increased in the past 17 years, although 

nowadays assessment and diagnosis of bone for metabolic diseases is 

performed by bone densitometry. 

 

The introduction of GMA in the early 1960s for originally EM (Rosenberg et al., 

1960; Wicherle et al., 1960) and later for LM (Ashford and Feder, 1966) provided 

an embedding procedure where semithin tissue sections could be easily 
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produced and stained with many existing tinctorial techniques.  At the time, the 

concept of being able to deliver semithin sections with improved morphology 

seemed an attractive option, especially as high resolution was considered 

increasingly useful for diagnosis (Burns, 1973; Chi and Smuckler, 1976; Ferrell 

and Beckstead, 1990).  In addition, the recognition that GMA could be 

polymerised at low temperature and potentially provide a procedure that could 

allow enzyme histochemistry to be performed was another significant attractive 

advantage (Litwin, 1985).  

 

In 1967 the papers by Ruddell (1967a, 1967b) on improved formulations of GMA 

mixes were a major stimulus for high resolution plastic embedding, and soon 

proprietary GMA kits and specialised equipment started to become available.  

Later other acrylic plastics were developed, either for LM or EM alone or in 

combination.  Until this time, equipment was limited to what was then available 

for handling paraffin and epoxy (EM) blocks, which was illustrated by articles 

published describing how existing equipment could be used or improvised to 

produce plastic blocks and/or cut semithin sections (Cole and Sykes, 1974; 

Murgatroyd, 1976; Green, 1977; Semba, 1979) or offer a cheaper alternative 

(Janes, 1980).  The introduction of a motorised microtome such as the Reichert-

Jung Autocut, glass knife makers for triangular (Latta-Hartmann) and extended 

edge (Ralph) knives, moulds and block holders, together with packaged 

embedding kits containing all the reagents necessary to produce plastic blocks 

stimulated interest and provided a ready and easy means of implementing a 

plastic embedding service.  Soon a new age of plastic embedding was 

widespread as many laboratories adopted such practices to supplement their 
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core paraffin work (Cole and Sykes, 1974).  Bennett et al., (1976) encapsulated 

the mood of the time with their detailed paper describing the preparation of 

sections of tissue embedded in GMA.  Subsequently many details relating to the 

principles and trouble-shooting of using GMA were reviewed by Gerrits and 

Horobin (1996) with further advice about its use in diagnostic pathology (Gerrits 

and Suurmeijer, 1991). 

 

Many tinctorial staining techniques could be applied to GMA-embedded tissue 

with some only requiring slight modifications (Burns and Bretschneider, 1981), 

although other procedures such as silver impregnation for reticulin and 

trichromes proved more problematic (Geritts, 1981).  Frozen sections were still 

predominantly used for routine enzyme histochemical staining, but plastic 

sections were suggested for diagnostic applications (Beckstead and Bainton, 

1980; Beckstead et al., 1981; Beckstead, 1983; Soufleris, et al., 1983; Islam and 

Henderson, 1987; Murray and Ewen, 1991), and also employed by some for 

specialised research activities e.g. Burnett, (1982).  As an alternative to GMA, 

the polyhydroxy aromatic dimethacrylate plastics Histocryl, LR White and LR 

Gold were introduced by the London Resin company, with the latter two also 

suitable for EM.  However, as demand for molecular techniques that could be 

applied to paraffin sections began increasing, due to their diagnostic importance, 

it was a natural progression that similar techniques would also be wanted on 

plastic sections (Beckstead et al., 1986; Casey et al., 1990).  As has been shown 

in this thesis, this presented formidable difficulties to many workers, and 

prompted some to suggest that plastic embedding should be abandoned in 

favour of paraffin wax either because plastic embedding was an unnecessary 
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departure from normal routine paraffin processing since special equipment, 

different preparatory protocols and technical expertise were required, or because 

the difficulties encountered in performing IHC proved too unattractive to consider 

using (Gatter et al., 1987; Vincic et al., 1989; Vincic, 1990).  Even though from 

time-to-time the merits of superior morphology were publicised, especially for 

bone, (Gatter et al., 1987; Murray and Ewen, 1989a; Kingsley and King, 1989; 

Schmid and Issacson, 1992) it seemed that the current decline of plastic 

embedding was inevitable.  It is however, interesting to note that in an effort to 

overcome these difficulties, Islam (1987) suggested that bone marrow cores 

should be divided so that one half could be processed into MMA “for optimal 

morphology” and the other half into GMA “for enzyme or immunohistology.”  

Other important considerations for the decline in plastic embedding are likely to 

have been that the quality of paraffin waxes and microtomes have improved 

considerably during the last 40 years to the point that now 2 and 3 µm semithin 

sections are able to be reliably cut, which previously was much more challenging. 

 

In a unique study by Hillmann et al., (1991), staining for enzyme, lectin and 

immunohistochemistry was performed on undecalcified bone and tooth 

embedded in the (one component) plastic Technovit 7200 (Heraeus Kulzer) 

based on isobornyl methacrylate that was polymerised with blue light.  Ground 

sections of 10 µm were produced and successful staining achieved.  (Further 

technical information about the component is unavailable). 

 

This author has shown that by using a new approach where the plastic was 

removed prior to staining, both excellent tissue morphology and the ability to 
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perform molecular staining techniques were possible.   A plastic based on MMA 

was produced using reagents, equipment and rationale that in many ways 

resembled GMA procedures, but whereas the latter formed cross-links during 

polymerisation that prevented it from being dissolved, the use of MMA in a simple 

formulation as suggested by Hand provided an alternative and practical 

technique for high resolution where the plastic could be removed from the 

section.  Recognition of the advantages of MMA and the feasibility of integrating 

the technique in to a diagnostic laboratory led to its adoption by some 

laboratories including the Haematological Malignancy Diagnostic Service in 

Leeds, UK.  Since the start of this service in 1991, approximately 30,000 bone 

marrow trephine samples up to 2013 have been processed (currently 

approximately 7,000 blocks per annum; D. Blythe, personal communication), 

which their consultant medical staff have advocated is the method of choice for 

the histopathological reporting of these biopsies in the management and therapy 

of patients with lymphoma and leukaemia.  The same procedure has also been 

extensively used since 1992 at Aberdeen Royal Infirmary and currently (2013) 

processes approximately 370 bone marrow trephine biopsies per annum (L. 

Doverty, personal communication).  For a plastic to be useful medium for 

embedding tissue for diagnosis, it is imperative nowadays that IHC can be 

reliably performed, which the studies by this author referred to in this thesis and 

the continued routine use of the procedure are testimony to its feasibility and 

practicality.  Although other diagnostic applications for plastic embedding have 

been suggested by Hand and Church (1997), Randall and Foster (2007) and 

Doverty (corneal biopsies and epiretinal membranes, personal communication), it 

is however  probably  for  undecalcified  bone  marrow  trephine  biopsies, where  
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MMA is most beneficial and useful.  

 

11.1.8 Impact of Studies 

The existence of paraffin wax as a routine embedding medium for tissue has 

remained a widely used and accepted universal practice.  However, it was 

realised 40 years ago, that severe deficiencies of wax existed at that time in 

being both unsuitable for providing semithin sections and inadequate for 

supporting hard tissue such as undecalcified bone (Green, 1970; Burkhardt, et 

al.; 1971).  The introduction in the 1950s and 1960s of plastic embedding for light 

microscopy studies, which combined thin sectioning of initially epoxy plastics 

(Burns, 1973) and later with acrylics, was an attempt to resolve these issues, and 

for many years the associated procedures, especially for acrylics were topical 

and frequently used for a variety of studies (Te Velde et al., 1977; Ferrell and 

Beckstead, 1990; Randall and Foster, 2007; Callis, 2008; Singhrao et al., 2012).  

Many studies focussed on using plastic embedding for undecalcified bone 

marrow cores e.g. Islam and Henderson, (1987); Islam et al., (1988); Burgio et al. 

(1991).  So attractive was the versatility and results that could be achieved with 

acrylic plastics, that some suggested that plastic embedding would be the way 

forward and could perhaps even replace paraffin wax (Murray, 1988; Murray and 

Ewen, 1989).  The frequent publications that soon became available was an 

indication of the euphoria of an alternative embedding medium to paraffin wax 

after 100 years. 

  

In reality it has transpired that the use of plastic sections in histological practice 

has declined.  For the assessment and diagnosis of metabolic bone diseases, 
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non-histological procedures using bone densitometry are instead nowadays 

performed, although the studies by Hand (1996) have still proved a useful 

reference in several later studies such as that on murine bone specimens 

(Kacena et al., 2004 and 2006).  The usefulness of providing thinner sections has 

led to the introduction of proprietary waxes that have been reinforced by the 

inclusion of polymers to enable quality semithin sections to be produced.  As a 

result, for the examination of leukaemia and other non-metabolic bone diseases 

in bone marrow trephine biopsies, it has become a routine practice to now use 

decalcified samples embedded in wax (Naresh et al., 2006).  Also as outlined 

previously, there were significant problems in being able to perform the essential 

requirement of IHC on plastic sections, and this undoubtedly had a major impact 

on many scientists to abandon plastic embedding (Vincic et al., 1989; Vincic, 

1990).  Other factors that have contributed to a decrease in the use of plastic 

embedding have included the health and safety concerns of specific reagents, 

the need for specialised equipment and skilled staff, along with higher costs 

(Vincic et al., 1989).  However, the fact that some of the techniques developed 

and pioneered by this author are still being extensively used, indicate the 

advantages and successes of procedures that some still believe plastic 

embedding have for certain histological examinations (Jack et al., 1993).  In 

addition, several recent publications have either referred to or ultilised 

procedures previously reported in publications by Hand.  For example, the paper 

by Blythe et al., (1997) has been cited numerous times including in recent studies 

by Naresh et al., (2006); Torgersen et al., (2009); Yamashita, (2007).  Other 

authors including Gerrits et al., (1991); Gerrits and Horobin, (1996); Buesa, 
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(2005); Zhang et al., (2010); Leong et al., (2011) have also referred to and 

acknowledged the impact of studies by Hand. 

      

For certain research projects or for when there are stents / implants, plastic 

embedding is still a useful technique.  For example, Seifert et al., (2001) and 

Baker et al., (2009) have utilised plastic embedding studies that have been 

assisted from publications by this author.  In further studies by Howat et al., 

(2005); Randall and Foster, (2007) and Howat and Wilson, (2010), antigen 

retrieval procedures (Hand et al., 1996; Hand and Church, 1997) were used to 

assist diagnosis and the application of specific techniques.  From an original idea 

conceived from previous experience and knowledge, a technique was developed 

that has been reliably used for the routine diagnosis of thousands of bone 

biopsies, which has recently been adapted for use on automated 

immunostainers, although the removal of plastic and antigen retrieval are 

required to be manually performed (D. Blythe, personal communication).  Since 

the paper by Blythe et al., (1997) several further developments and modifications 

have been introduced for bone marrow trephine biopsies (some of which have 

been mentioned in this thesis) including changes to the plastic mix, antigen 

retrieval protocols, immunological detection technique and an expansion of the 

repertoire of antibodies applied. There are bound to be further advancements 

and developments in the future, but it is hoped that those introduced by this 

author and collectively described in this thesis will continue to impact on future 

histological studies. 
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11.1.9 Plastic Embedding in the Future 

Diagnostic histopathology has undergone significance change within the last 40 

years with the range of diagnostic tests performed on paraffin wax sections 

greatly extended, which has been supplemented by considerable 

immunohistochemical investigations.  In addition, there is a far greater emphasis 

on throughput with cost and TAT now increasingly important considerations.  The 

use of plastic embedding is seldom used, although the associated reagent costs 

for MMA are low and TAT for plastic embedding and staining of bone marrow 

trephine biopsies comparable to paraffin sections as the extra time for processing 

and polymerisation is offset by the absence of decalcification.  Proprietary MMA 

embedding kits however, such as Technovit 9100 New (Heraeus Kulzer) are 

more expensive than buying the components and the preparatory procedures 

advocated are more complicated than those described by Hand.  The inclusion of 

PMMA is also not ideal for small trephine samples or soft tissue (P. Seifert, 

personal communication).  For optimal interpretation of bone marrow trephine 

specimens, Naresh et al., (2006) stated that the ability to extract DNA of a quality 

sufficient to carry out polymerase chain reaction (PCR)-based analyses was 

crucial.  Though Krenacs et al., (2004) was successful with the epoxy plastic 

Durcupan, limited investigations by Blythe on MMA-embedded material have so 

far been unsuccessful (personal communication). 

 

For routine histological diagnosis, the use of paraffin wax sections rightly remains 

widely used, and as such is still the universal embedding medium even after 150 

years.  In recent years improvements in the quality of histological waxes have 

enabled semithin sections to be reliably cut, e.g. in spring of 2013, IMEB 
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(International Medical Equipment) Inc. will launch their new wax “paraffin 53” 

which it is claimed has increased hardness that will allow sectioning down to 1.5 

µm.  The improved waxes available, together with the difficulties in performing 

molecular techniques on acrylic sections experienced by many workers, and the 

health and safety concerns of some reagents required has probably been mainly 

responsible for the decline in the use of plastic embedding.  Many of the reagents 

in plastic embedding media to produce blocks are unpleasant and/or harmful, so 

it is imperative that safety advice is followed at all times, and they are handled in 

a fume cupboard.  The purchasing of suitable new equipment including 

microtomes and glass knife makers, especially for Ralph knives, has become 

problematic because the decreased demand has led to some manufacturers 

stopping production of certain items.  This illustrates clearly and strongly how 

market forces can influence what equipment workers use and perhaps ultimately 

what protocols and procedures are employed.  The decline in interest and use in 

recent years is also reflected in the decreased number of papers published 

relating to plastic embedding, compared to 1970-80 when it seemed to dominate 

the literature in many histopathology journals. 

 

No embedding medium exists that enables the application of all histological 

techniques, but this thesis has shown that a wide variety of techniques are 

possible on acrylic plastic sections, although the choice of plastic can critically 

influence which techniques are applicable.  For the majority of histological 

investigations paraffin wax is a suitable embedding medium, but there are 

several recent specialised areas where plastic embedding either for diagnostic or 

research purposes may be necessary and/or beneficial (Yang et al., 2003; 
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Singhrao et al., 2009; Singhrao et al., 2010; Singhrao et al., 2012; Wittenberg et 

al., 2009).  Several of these papers reported the application of 

immunohistochemistry and ultilised Technovit 9100 New (Heraeus Kulzer).  For 

many years the use of plastic embedding with GMA has been advocated for the 

examination of bone marrow trephine biopsies, but the virtual inability to be able 

to perform immunohistochemical techniques limited its use.  This thesis has 

focussed on the development of IHC and ISH techniques by this author using 

MMA which have enabled the extensive use of molecular procedures on bone 

marrow trephine biopsies.  Although it would seem that paraffin wax is still 

rightfully the universal embedding medium in histopathology for most routine 

investigations, it is hoped that the increased knowledge and greater 

understanding of these plastic embedding procedures will continue to be of use 

and benefit to other studies where plastic embedding is required. 
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1. HAND, N.M. (1986) An alternative approach to the diagnosis of 
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2. HAND, N.M. (1987) Enzyme histochemistry on jejunal tissue embedded in 

resin. Journal of Clinical Pathology. 40:346-347.  (ISSN  1472-4146) 
 
3. HAND, N.M. (1988a) A Study of the Use of Hydrophilic Resins in Diagnostic 

Histopathology. M.Phil Thesis: Nottingham University. 
 
4. HAND, N.M. (1988b). Enzyme histochemical demonstration of lactase and 

sucrase activity in resin sections: the influence of fixation and processing. 
Medical Laboratory Sciences. 45:125-30.  (ISSN  0308-3616) 

 
5. HAND, N,M., MORRELL K.J. and MacLENNAN KA. (1989). 

Immunohistochemistry on resin embedded tissue for light microscopy: a 
novel post-embedding procedure. Proceedings of the Royal Microscopical 
Society. January 24:A54-A55.  

 
6. HAND, N,M. and MORRELL K.J. (1990) Immunocytochemistry on plastic 

sections for light microscopy: a new technique. Proceedings of the Royal 
Microscopical Society. March 1990;25:111.  

 
7. JOHNS, L., HAND, N.M., FISH, D.C.W. and MILLER, K.D. (1992) 

Immunocytochemistry on methyl methacrylate embedded tissue. Journal of 
Pathology. 167:suppl 154.  

 
8. HAND, N.M. (1993a) Misunderstandings about methyl methacrylate. Journal 

of Clinical Pathology. (letter), 46:285. 
  
9. HAND, N.M. (1993b) Immunocytochemistry on resin sections for light 

microscopy. British Journal of Biomedical Science. 50:162-163.   
 
10. HAND, N.M. Diagnostic immunocytochemistry on resin-embedded tissue. 

UK NEQAS Newsletter. 1995a;6:13-16.  (No ISSN) 
 
11. HAND, NM. (1995b) The naming and types of acrylic resins. UK NEQAS 

Newsletter. 6:15 (letter). 
 
12. BLYTHE, D., JACKSON, P. and HAND N.M. (1996). Heat-mediated pre-

treatment procedures for immunocytochemical staining on resin sections. 
British Journal of Biomedical Science. 53:6. 
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 13. HAND, N.M., JACKSON, P. and BLYTHE, D. (1996) Methyl methacrylate: is 
it a suitable embedding medium for immunocytochemical studies? British 
Journal of Biomedical Science. 53:12. 

 
14. HAND, N.M., BLYTHE, D. and JACKSON, P. (1996) Antigen unmasking 

using microwave heating on formalin fixed tissue embedded in methyl 
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15. HAND, N.M. (1996) Embedding undecalcified bone in polymethyl 

methacrylate: an improved method. British Journal of Biomedical Science. 
53:238-240.  (ISSN  0967-4845) 

 
16. BLYTHE, D. HAND, N.M., JACKSON, P., BARRANS, S.L., BRADBURY, 

R.D. and JACK, A.S. (1997) The use of methyl methacrylate resin for 
embedding bone marrow trephine biopsies. Journal of Clinical Pathology. 
50:45-49.   (ISSN  1472-4146) 

 
17. HAND, N.M. and CHURCH R.J. (1997) Immunocytochemical demonstration 

of hormones in pancreatic and pituitary tissue embedded in methyl 
methacrylate. Journal of Histotechnology20:35-38.  (ISSN  0147-8885) 

 
18. CHURCH, R.J., HAND, N.M., REX ,M. and SCOTTING, P.J. (1997) Non-

isotopic in situ hybridization to detect chick Sox gene mRNA in plastic 
embedded tissue. The Histochemical Journal. 29:625-629. (ISSN  0018-
2214) 
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labelling using non-isotopic in situ hybridisation and immunohistochemistry 
on plastic embedded tissue. Journal of Cellular Pathology. 3:11-16.  (ISSN  
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20. HAND, N.M. and CHURCH, R.J. (1998) Superheating using pressure 

cooking: its use and application in unmasking antigens embedded in methyl 
methacrylate. Journal of Histotechnology. 21:231-236.  (ISSN  0147-8885) 

 
21. HAND, N.M. (1999) Plastic embedding for light microscopy: a guide for the 

histotechnologist. ASCP Sample Tech teaching programme. 
Histotechnology No. HT-6, 29-35.  (ISSN 1056-6678) 

 
22. HAND, N.M. Plastic Embedding Media and Techniques. (2001) In: Bancroft, 
 J.D. and Gamble, M. (eds.) Theory and Practice of Histological Techniques. 
 5th edn, London: Harcourt Health Sciences.    (ISBN  0-443-06435-0) 
 
23. HAND, N.M. Plastic Embedding Techniques for Light Microscopy. (2008)  
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Dissemination of the Research: Lectures, Seminars, Courses, Conferences 
and Posters Presented that Included Plastic Embedding 

 
 Local 
• Departmental lecture on enzyme histochemistry (Queen’s Medical Centre, 

 Nottingham) 

• Departmental lecture on immunohistochemistry (Queen’s Medical Centre, 

 Nottingham) 

• Lecturer to EC students seconded to the Medical School (QMC, Nottingham) 

 
 
 National 
• Lecturer and technical adviser at LKB resin workshop (Leicester, 1984) 

• Lecturer at East Anglia Histopathology Symposium (Chelmsford, 1988) 

• Lecture presented at the Yorkshire Area Microscope User Group at Leeds 

 University entitled "Immunohistochemistry on semi-thin resin sections for light 

 microscopy".  Prize winner, Royal Microscopical Society (Leeds, 1988) 

• Presented paper at Royal Microscopical Society Histochemistry meeting 

 (London, 1989) 

• Speaker at Cellular Pathology Discussion Groups at Leeds, Cambridge, 

 Nottingham, Preston, London and Leicester (1989/92) 

• Lecturer at IGSS meetings at Leeds, Edinburgh and Cardiff (1989/90) 

• Lecturer at Royal Microscopical Society Gold Label Users meeting (London, 

 1989) 

• Lecturer at Resin Workshop (Edinburgh, 1989) 

• Lecturer at Cellular Pathology symposium (York, 1990) 

• Lecturer at South East Thames Cellular Pathology meeting (Maidstone, 1990) 

• Lecturer at IMLS. Triennial conference (Liverpool, 1992). 

• Lecturer at Industrial Histology conference (Llandudno, (1992) 

• Lecturer at UK NEQAS Immunocytochemistry seminar (Leeds, 1994) 

• Lecturer at IBMS Congress (Birmingham, 1995). 

• Lecturer at 1st Biomen Cellular Pathology symposium (Oxford, 1995) 

• Lecturer at Industrial Histology conference (Blackpool, 1996) 
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 International 
• Lecturer at National Society of Histotechnology (Albuquerque, New Mexico, 

 1996) 

• Lecturer at National Society of Histotechnology (Columbus, Ohio, 1997) 

• Lecturer at National Society of Histotechnology (Salt Lake City, Utah, 1998) 

• Lecturer at National Society of Histotechnology (Providence, Rhode Island, 

 1999) 

• Lecturer at National Society of Histotechnology (Charlotte, North Carolina, 
 2001) 

• Lecturer at National Society of Histotechnology (Long Beach, California, 
 2002) 

• Lecturer at National Society of Histotechnology (Louisville, Kentucky, 2003) 

• Lecturer at National Histology Conference (Melbourne, Australia, 2006) 

• Lecturer at National Society of Histotechnology (Vancouver, Canada, 

 2012)* 

 *(Unable to attend Vancouver due to illness) 

 
 
 Poster 

• Poster presentation at IMLS Triennial conference (Southampton, 1986) 

• Poster presentation at Pathological Society (London, 1992) 

• Poster presentation at IBMS Congress (Birmingham, 1995) 

 
Teaching and CPD  (Many required detailed handouts and/or abstracts). 

• Lecturer for MSc course on Advanced Immunocytochemistry (Trent University, 

 Nottingham). 

• Lecturer for CPD courses on Advanced Immunocytochemistry (Leeds, 1991- 

 2005). 

• Lecturer for CPD courses on Resin Embedding (Leeds, 1996). 

• Lecturer for CPD courses on Microwave antigen retrieval in immunocyto- 

 chemistry (Leeds, 1994-2001). 
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