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ABSTRACT

Large quantities of leather waste are generated from manufacturing processes and disposal 

of leather goods. Environmental directives encourage diversion of solid waste from landfills 

through viable recycling methods. Since leather is resistant to microbial degradation, direct 

recycling of leather waste through biodegradation methods are impractical.

In this research, the mechanism and potential application of metal induced oxidative 

degradation of leather were studied. Experimental work on the effects of retanning 

vegetable tanned samples with salts of the first row transition metals indicated the 

presence of unstable tannin-metal interactions in samples containing V(IV), Fe(II) and 

Cu(II) salts. Denaturation of collagen at ambient conditions was observed in leather 

samples treated with V(IV) and Fe(II) salts.

Autodegradation of leather samples containing Fe(II) and V(IV) ions occurred during at 

ambient conditions of storage. The process of degradation in the leathers was 

characterised in terms of the decline in hydrothermal stability, progressive lowering of 

tensile strength, loss of metal-tannin binding interactions, changes in the fibre structure 

and the occurrence of gelatinisation. Direct evidence on the reduction of V(V) by tannins 

was obtained using electron paramagnetic resonance spectroscopy.

Results of spectrophotometric studies of polyphenol-metal ion interaction in acidic media 

indicated that Fe(II) and V(IV) ions act as catalysts in the oxidation of tannins. To explain 

the phenomena of metal induced degradation, a mechanism involving redox cycling of the 

iron ions (Fe2+/Fe3+) and vanadium ions (V02+/V02+) was proposed. In the semi-metal 

tanned leathers, Fe(II) and V(IV) species are oxidised by air, producing superoxide anion. 

Subsequently Fe(III) and V(V) are reduced back to the lower oxidation states by the o- 

diphenol moieties of tannins. In this way, the metal ions act as catalysts for the oxidation 

of tannins.

Autoxidation of Fe(II) and V(IV) species in aqueous media results in the formation of 

superoxide anion (02“) and hydrogen peroxide (F1202). The subsequent formation of 

hydroxyl radicals (OFT) in the leathers, through metal catalysed decomposition of hydrogen 

peroxide (Fenton reaction), is considered to be the major cause for the observed oxidative 

denaturation of the fibrous collagen. An investigation on the oxidative effect of a dilute 

solution of Fenton reagent (0.2M H202, 0.03M Fe2+) showed that hydroxyl radical mediated 

oxidation causes a rapid decomposition of the tanning structures and denaturation of the 

collagen in less than a day. Autodegraded semi-metal tanned leathers and Fenton-treated 

leathers showed increased degree of susceptibility to digestion by bacterial enzymes.

Based on the results of this research, it is recognised that Fenton reaction may be used as

an efficient method of oxidative pre-treatment of leather waste for enhancing its

biodegradability particularly in the context of recycling through composting and anaerobic 

digestion.
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1.1. The leather manufacturing process

Skins and hide are largely composed of proteins and water. The fibrous collagen, which 

is the essential protein component required for making leather, may constitute more 

than 80% of the dry weight of raw skins and hides. Keratin is also a fibrous protein. It is 

the main structural component of hair and the epidermis. The other fibrous protein, 

elastin, is a largely non-polar protein found in a relatively small quantities in skins and 

hides. The non-fibrous proteins of skins and hides are mainly globular proteins and 

glycoproteins. Fats, mineral salts and other components make up 3% of the weight 

(Sharphouse 1971). The average composition of fresh skins and hides are shown in 

Table 1.1.

Table 1.1 The average composition of fresh hide (Sharphouse 1971)

Chemical component % (w/w)

Water 64
Collagen 29
Keratin 2
Elastin 0.3
Globular proteins and glycoproteins 1.7
Fats 2
Mineral salts 1

Skins and hides are putrescible due to the action of autolytic enzymes and bacteria. In 

leather manufacturing, the putrescible skins and hides are converted into non- 

putrescible and relatively permanent materials that have the desired properties for use. 

A series of chemical and mechanical treatments are carried out in the five major 

processes; viz. preservation, beamhouse process, tanning, post-tanning and finishing 

processes. A general outline of the operations carried out in each process is included in 

Appendix 1 and the main processes in the leather manufacturing are briefly described in 

Sections 1.2.1-4.

1.1.1. Preservation

The most common method of preventing putrefaction of skins and hides is by salting. 

Application of salt causes a reduction of the moisture content and an increase in ionic 

strength, thereby acting as a bacteriostat. Wet salted hides and skins can be stored for
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months until processing. Other methods of temporary preservation include chilling and

drying (Covington 2009).

1.1.2. The beamhouse process

The main purpose of the various operations in the beamhouse process is to purify the 

skins and hides into pelts that are mainly composed of hydrated collagen. Cleaning and 

uniform rehydration is accomplished in the soaking operation. In the subsequent liming 

operation, the hair is degraded in alkaline media using sodium sulfide and other 

chemicals. The liming operations also involves an extended treatment in alkaline media 

(pH 12.5-12.6) in which the non-collagen proteins and proteoglycans are solubilised by 

hydrolysis while triglycerides (fats) are solubilised by saponification. Further removal of 

the degraded components is achieved by deliming and an enzymatic treatment known as 

bating. Washing operations in between the different beamhouse operations enhance the 

removal the degraded non-collagen components. At the end of the beamhouse process, 

the skins and hides are acidified in saline solution in preparation for tanning (Heidemann 

1993).

1.1.3. Tanning process

Tanning is the chemical treatment that transforms the hydrated collagen (pelt) into 

leather, which is non-putrescible. It results in a relatively permanent stabilisation against 

enzymatic action. The tanning process involves uniform absorption of chemicals and 

subsequent fixation through chemical interactions with collagen. A broad classification of 

the most commonly used tanning agents is shown in Table 1.2.

1.1.4. Post-tanning process

In the post tanning process additional tanning treatments (retanning), dyeing and 

fatliquoring treatments are carried out to modify the properties of the leather. Some of 

the desired properties may be physical attributes such as stiffness and fullness or 

aesthetic qualities such as colour and softness. Chemical properties such as resistance to 

perspiration and waterproofness may also be important in some type of leathers 

(Heidemann 1993).
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Table 1.2 - Main classes of tanning agents used in leather manufacturing (Covington 2009)

Type Commonly used tanning agents

Mineral salts Salts of Cr(III) AI(III), Zr(IV) and Ti(IV)
Vegetable tanning agents Aqueous extracts from plants (hydrolysable and condensed 

tannins)

Syntans Sulfonated condensation products synthesised from phenol or 
naphthalene

Aldehydic tanning agents Glutaraldhyde, other aldehydes and aldehydic crosslinkers, (e.g. 
oxazolidine)

Polymeric tanning agents Acrylic, melamin-formaldehyde resins and others

1.1.5. Finishing process

Application of surface coating ensures uniformity of appearance and enhances the 

aesthetic appeal of the leather. Finish applications are also applied to enhance properties 

such as abrasion-resistance (Sharphouse 1971).

1.2. A general perspective on waste from leather industry

According to FAO (2013), the global leather production exceeds more than 14 billion 

square feet per annum of light leathers and 500,000 tonnes of heavy leather; the global 

production of leather footwear has reached 4.5 billion pairs per annum. Manufacturing of 

leather and leather products as well as disposal of leather goods generates large weight 

of solid waste. Studies on the mass balance (input-output analysis) of model leather 

manufacturing processes has shown that the production of a 220kg leather from one 

tonne of salted hide requires 450kg of a different of chemicals and approximately 40- 

50m3 of water depending on the process (Buljan et al. 2000; Alexander et al. 1991). The 

different types of solid waste generated from processing of one tonne hide are shown in 

Table 1.3.

Some forms of untanned solid waste, not contaminated by process chemicals such as 

sodium sulfide, are valuable by-products that are amenable to processes for conversion 

to different products. Raw trimmings and limed splits; which are protein-rich materials, 

can be converted to gelatine and collagen hydrolysate fractions, that potentially have 

important applications in manufacturing biodegradable polymer films (Langmaier et al. 

2006), ingredients of fertilizers and animal feed additives (Cabeza et al. 1998; Brown et
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at. 1996) as well as retanning agents (Taylor et at. 2007). Similarly, the high triglyceride

content in the waste generated from fleshing of soaked (rehydrated) skin and hides can 

be extracted through thermo-enzymatic processes to obtain tallow or olein for use in the 

production of soap, fatliquors and biodiesel (Priebe and Gutterres 2012; Taylor et al. 

1989; Crispim et al. 2009; Colak et al. 2005). However, the high sulfide content in the 

waste generated from fleshing of limed pelt is a major obstacle for that hinders effective 

utilisation of the fat content (Ozgunay et al. 2007)

Table 1.3 Solid waste generated from leather manufacturing processes, estimated 
quantities based on processing of one tonne of salted hide (Buljan et al. 2000)

Sources Type of solid waste kg

Untanned waste

(from the beamhouse 
processes)

• Fleshing waste (mainly subcutaneous tissue)
• Untanned trimmings 400

Tanned waste or 
Leather waste

(from the post 
tanning and finishing 
processes)

• Leather waste from thickness correction and 
surface levelling operations

o unused split leather 
o shaving dust 
o buffing dust

• Trimmings (unwanted leather pieces )

237

Due to the chemical stability created by tanning reactions, the different forms of leather 

waste (also referred to as tanned waste), shown in Table 1.3, that are generated from 

the post-tanning operations in leather manufacturing, are not readily susceptible to 

chemical or enzymatic hydrolysis, (Covington 2009). In the past, various techniques 

were developed to extract gelatine and collagen hydrolysate fractions from Cr(III) 

containing leather waste (CCLW). The main methods used to extract the valuable protein 

fractions from post-tanning waste (mainly shaving waste) include alkaline hydrolysis, 

thermal treatment, oxidative de-chroming with hydrogen peroxide and enzymatic 

digestion (Cabaza et al. 1998; Taylor et al. 1991; Catalina et al. 2010; Cot et al. 1991). 

However, these extraction techniques are not largely commercialised mainly due to the 

fact that most of the processes involve formation of secondary waste in the form of

Cr(III) containing organic residue or dilute solution of Cr(VI) in the case of oxidative 

detanning.
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Leather waste is also generated in large quantities from the manufacturing of leather 

products. The processes involve unavoidable leather waste due to the cutting operations 

that have to be carried out based on specific requirements of shapes and sizes of the 

leather components (Tatano et al. 2012). According to CTC(2000), about 57% of the 

total solid waste from the footwear factories is leather waste; similarly, large quantities 

of leather waste are also generated in the manufacturing of garments, gloves and 

upholstery. Particularly in the shoe industry, there have been attempts to reduced the 

solid waste by utilising leather and polymer waste through recycling in the form of 

composite materials known as 'bonded leather' and 'fibre-board' that are used for 

making insole leather (Diddi 2007; Dalla-Rossa 2012).

Disposal of used leather goods is also recognised to be a significant landfill burden; 

according to Staikos et al. (2006), the global footwear consumption has doubled every 

20 years in the past 50 years. The quantity of solid waste from footwear consumption is 

estimated to be more than 1.2 million tonnes per annum in Europe alone, and much 

more elsewhere in the world. It is estimated that leather accounts for 25% (w/w) of the 

total solid waste generated from disposal of footwear (Rahimfard and Staikos 2007).

1.3. Waste management in the Leather and allied industries

Solid waste generation from the operations in the leather manufacturing process are 

unavoidable due to the nature of the raw material and the processes that are designed 

to meet specific criteria of physical properties (Reich 2007). As described in section 1.2, 

the beamhouse process is mainly a sequence of cleaning processes that inherently 

generates untanned waste composed of unwanted organic components. Similarly, the 

post-tanning process also involves necessary operations of trimming, thickness 

correction (shaving and splitting) and surface levelling (buffing).

In consideration of preferred priorities in accordance with the waste management 

hierarchy, various methods of best available techniques (BAT) of waste minimisation, 

reuse, recycling and recovery option (Shown in Table 1.4) have been recommended for 

use in the leather industry (Black et al. 2013). However, the wider implementation of
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these options is hindered by the fact that, at small scale, the reuse and recycle options 

are not often feasible for individual tanneries due to high investment cost (EC-IPPC 

2003).

Table 1.4 Best available techniques of waste management recommended for leather industry by 
the European commission - Integrated pollution prevention and control directive (Black et at. 
2013)

Solid Waste Uses as a by-
product

Reuse after preparation
on-site

Off-site
Recycling

Recovery

H a ir and  W oo l
-  F illin g  m a te r ia l
-  W o o l/ te x t ile s —  P ro te in  h y d ro ly sa te — F e rt ilis e r

— Ene rgy  
re co ve ry

Raw  tr im m in g s
— H ide  g lue

— E n e rg y  
re co ve ry

L im ed  tr im m in g s
-  C o lla q e n  p ro d u c t io n

— T a llo w
— T e ch n ica l q ra d e  q e ia t in e — H ide  q lue

F le sh in g  w as te
— P ro te in  h y d ro ly sa te
— T a llo w — H ide  q lue

— E n e rg y
re co v e ry

— S u b s t itu te
fue l

U n tan n ed  sp lits

-  P ro ce ssed  to  le a th e r
-  P ro d u c t io n  o f 

s a u sa g e  ca s in g s
-  C o lla g e n  p ro d u c t io n

— T e ch n ic a l g ra d e  g e ia t in e
— P ro te in  h y d ro ly sa te

—  H id e  q lu e

—

T a n n e d  sp lits  and  

tr im m in g s

-  R o lle r-co a te d  fo r  use
in p a tch w o rk , sm a ll 
le a th e r  g o o d s , etc...

-  C o lla q e n  p ro d u c t io n

— Le a th e r  f ib re b o a rd  and 
co m p o s ite  m a te r ia ls —  P ro te in  

h y d ro ly sa te
— Ene rgy  

re co ve ry

S h av in g  and  

bu ffin g  w as te
— —

—  P ro te in  
h y d ro ly sa te

—  E n e rg y  
re co ve ry

Due to the low level of implementation of the waste management options described in

Table 1.4, the most common method of managing the solid waste from leather 

manufacturing is through disposal at landfill sites (Joseph and Nithiya 2007; Kanagarai 

et at. 2006). Solid waste disposal from leather industry has been a subject of concern in 

the leather industry. About 90% of leather production utilised Cr(III) salt for tanning 

(Reich 2007), there are concerns of environmental safety with regards to the disposal of 

leather waste, particularly in relation to pollution with Cr(VI), which is considered to be a 

carcinogen (Hertel 1986; Fishbein 1976). It is believed that Cr(VI) may be formed inside 

landfills and subsequently leached into the ground water (kolomaznik et at. 2008). In 

addition, the availability of landfill sites in the EU has decreased considerably in recent 

years. Environmental directives on landfill practices promote the diversion of waste from 

landfills towards through recycling and reuse options (DEFRA 2009).
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Furthermore, the majority of the leather waste generated from leather products 

manufacturing and the end-of-life waste from leather goods are disposed at landfills 

(CTC 2000; Rahimfard and Staikos 2007). A trial carried out by Kolomaznik eta/. (2008) 

to the produce protein hydrolysate fractions from end-of-life waste of leather products 

has shown that hydrolytic and thermo-enzymatic hydrolysis of leather requires a long 

process involving energy-intensive treatment steps.

Leather waste has also been considered as a good fuel, the heat energy from fluidised 

bed combustion of leather waste reaches 21 MJ/kg but its combustion may also release 

significant quantities of mono-nitrogen oxide gases or NOx gases (Bahillo, 2005). The 

EU-waste incineration directive (DERFA 2010) imposes maximum emission limits on the 

quantities of pollutant gases that may be generated by incineration plants. On the other 

hand, since it is a protein-derived material, leather waste is a potential source of 

nitrogen-fertilizer. The potential of fertilizer production from leather was has been 

demonstrated in recycling trials that involved application of shaving waste as fertilizer 

after de-chroming treatments (Nogueira et at. 2010; Lima et at. 2010). In the case of 

other forms of leather waste, conversion into a nitrogen source (for fertiliser production) 

would require chemical decomposition and biodegradation in aerobic media i.e. 

composting.

1.4. Importance of the reversal of the effect of tanning

Leather is chemically stabilised to resist enzymatic and microbial degradation. Thus, the 

leather waste, originating from the manufacturing processes (Section 1.2) and disposal 

of leather goods, generally remains resistant to biodegradation (Covington 2009; Tatano 

et at. 2012). On the other hand, it is known that reversal of the stabilisation effect of 

tanning can be achieved through chemical treatments (detanning) or by thermal 

treatments. Dhayalan et at. 2007 has demonstrated that Cr(III) tanned leather samples 

that were detanned using oxalic acid and vegetable tanned leathers detanned using 

alkaline buffer showed show increased level of biodegradation by anaerobic digestion. 

According to Yagoub(2006), thermally denatured Cr(III)tanned leather show high level 

of biodegradation in anaerobic digestion experiment, nearly similar to untanned collagen
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sample (hide powder). Nevertheless, the potential application of detanning and thermal 

pre-treatments have not been considered as feasible options at larger scale for 

application as part of treatment of leather waste via anaerobic biodegration (generation 

of biogas). This is because such treatments are likely to entail high cost in terms of 

chemical and energy consumption.

Leather waste is rich in nitrogen, the average nitrogen content in Cr(III) tanned leather 

is 10% w/w, while other non-Cr(III) tanned leathers e.g. wet-white leather or de- 

chromed leather contain upto 15% w/w of nitrogen (Lima et al. 2010). Despite the fact 

that leather waste has a potential application as a nitrogen source for making fertilizers, 

it Is not biodegradable by aerobic micro-organisms under the normal conditions of a 

composting environment (Tatano et al. 2012; Ferriera et al. 2013). In order to facilitate 

recycling of leather waste through of biodegradation methods, viz. aerobic and anaerobic 

pathways; its susceptibility to enzymatic/microbial degradation has to be enhanced using 

efficient methods. In this regard, investigations into the mechanisms of reversal of 

tanning and degradation of leather are relevant.

1.5. General features of tanning reactions

All tanning treatments essentially result in the conversion of the putrescible pelt into a 

stable form that is resistant to the action of enzymes and bacteria. Tanning treatments 

result in permanent preservation of the putrescible collagen. Other effects of tanning 

reactions may include an increase in hydrothermal stability, change in colour and 

creation of distinct physical and aesthetic properties (Sharphouse 1971).

Untanned pelt dries into a semi-translucent hard and brittle mass in which fibres are 

stick together due to cohesive forces resulting in a non-porous structure. Tanning and 

post tanning processes introduce chemicals that occupy the inter-fibrilliar space and 

create a barrier to cohesive forces between individual fibres, as a result, leather dries to 

become a flexible and porous material. Hence, leather is characteristically different from 

parchment and vellum that are made from untanned pelts. Leather has a lower capacity
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to absorb water as compared to untanned collagen and hence exhibits a reduced 

tendency of swelling (Reich 2007).

1.6. The permanence and stability of leather

Leather is a material required to maintain consistent functional properties during usage. 

Tanning reactions and other treatments in the post-tanning and finishing processes 

should be capable of producing effects that have a certain degree of permanence. Hence, 

the interaction between tanning agents and collagen should not be easily reversible 

under normal conditions of usage and storage (Reich 2007). Chemical treatments such 

as dehydration of untanned pelt with solvents are readily reversed by wetting and hence 

such treatments are not considered to be tanning treatments. Similarly, the old 

traditional practice known as tawing does not comply with the requirement of 

permanence of properties. Tawing involves treatment of wet pelts with potash alum salt 

(potassium aluminium sulfate) and organic ingredient (egg yolk, flour and other 

ingredients. Without further tanning treatment, tawed skins are not durable products 

because the aluminium can be dissolved out by water (Vest 1999).

Tanning is viewed as the formation a superamolecular structure of tanning chemicals 

around the collagen; this is referred to as the tanning matrix (Covington et al. 2008). 

The tanning matrix is characterised by a set of chemical interactions occurring between 

the collagen and tanning agents as well as interactions between the components of the 

tanning agents (Covington et al. 2011; Reich 2007). The tanning matrix and collagen in 

leather maintain their structural integrity only under normal conditions of usage and 

storage. Changes in the chemical environment of the leather may result in alteration in 

the tanning structure and potentially lead to degradation of the leather (Covington 2009; 

Haines 2006).

The effects of changes in the chemical environment on the stability and structural 

integrity of leather are reflected in lowering of the hydrothermal stability and changes in 

the physical properties of leathers (Chahine 2000; Larsen 1996; Heidemann 1993). 

Some of the changes that can lead to alterations of the composition and properties of
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leather are exposure to extreme pH conditions causing hydrolytic reactions, partial 

removal of tanning agents by chemical reactions and presence of oxidative conditions

(Florian 2006; Gustavson 1956; Covington 2009).

1.7. The chemistry of collagen

The collagen family comprises insoluble extracellular proteins characterised with the 

presence of triple helical domains in their structure. Collagens are the most abundant 

proteins in mammals, accounting for approximately 30% of the total protein mass 

(Kadler et at. 2007). There are 29 different type of collagens characterised so far, each 

having particularly functions, collagens types I, II, III, IV and IV are fibril-forming types. 

Collagen type I is the major fibrous protein found in skins, bones, ligaments and other 

internal organs (Ricard-Blum 2010). In this thesis, unless stated otherwise, the use of 

"collagen" refers to collagen type I.

1.7.1. Composition of collagen

Collagen is composed of 19 different amino acids, the largest amino acid constituents are 

glycine (33.53%), proline (11.97%) and hydroxyproline (11.18%). Hydroxyproline is 

found only in collagen, with a possible exception of elastin (Bentley and Hanson 1969, 

Bochicchio et al. 2013). The imino acids (proline and hydroxyproline) are the most 

important constituents in the formation of helical structure of collagen chains.

Table 1.5 Collagen Type I - content of the main amino acids 
crucial to the structure and reactivity (Reich 2007)

a m in o  a c id ,  s y m b o l a m in o  a c id s  p e r  c o l la g e n  m o le c u le

G ly c in e  (G ly) 1056

T y ro s in e  (Tyr) 6

S e r in e  (Ser) 109

T y ro s in e  (Tyr) 6

P ro lin e  (Pro) 377

H y d ro x y p ro lin e  (H yp) 352

A sp a r ig in e  (Asn) 37

G lu ta m in e  (G in) 81

G lu ta m ic  ac id  (G lu ) 150

A sp a rt ic  a c id  (Asp) 97

Lys in e  (Lys) 100

A rg in in e  (A rg) 159

H y d ro x y ly s in e  (Hy l) 13

H is t id in e  (H is) 6
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Because of the diversity of its amino acid composition (Table 1.5), collagen is capable of 

involving in different forms of chemical interactions (Reich 2007). The acidic (carboxylic) 

and the basic amino acids are most important in determining the isoelectric point of 

collagen and in the reaction of collagen with different tanning agents (Sharphouse 

1971).

In the context of tanning, glutamic and asparitic acids are the main reactive sites for 

electrostatic interactions and coordinate-covalent bond formation with aqueous metal 

complexes (Covington 2009). The amino acids that contain OH groups (serine, 

threonine, and tyrosine) as well as the basic amino acids (lysine, argentine, 

hydroxylysine and histidine) are crucial reactive sites of collagen for binding of 

polyphenolic tanning agents through hydrogen bonding. Aldehydic crosslinkers (e.g. 

glutaraldehyde) form covalent bonds with the basic amino acid groups (Damink et al. 

1995). In addition, non-polar amino acids and amino acids with aromatic side functional 

groups (e.g. tyrosine, phenylalanine) also play significant role in the binding of 

polyphenols and other non-polar structures through hydrogen bonding (Heidemann 

1993; Haslam 1997)

1.7.2. Structure of collagen 

1.7.2.1. Primary structure

The amino acid sequence of collagen shows trimetric pattern with every third residue 

being glycine. Chains of tripeptides of definite pattern of trimetric sequences make up 

the polypeptide of collagen known as a-chains. The trimetric amino acid sequence 

contains 350 repeating units of Gly-X-Y, where X and Y are different amino acids. About 

10% of the X positions in the tripeptide of collagen a-chain are occupied by proline, 

while the 12% of the Y position are hydroxyproline (Bailey et al. 1998). The trimetric 

sequences of amino acids are found only in the helical domain of collagen, which 

accounts for 96% of the whole structure. The remaining portions of collagen are non 

helical regions, referred to as telopeptides. These regions are composed of globular 

polypeptides attached to the terminals of the helical domain and lack the regular Gly-X- 

Y pattern (Ricard-Blum 2010, Brinkmann eta/. 2005).
11
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1.7.2.2. Secondary structure

The frequent presence of the imino acids in tripeptides results in the restriction of 

rotation of the peptide chain since the nitrogen and the a-carbon are locked by the ring 

structures. In addition, the presence of Gly-Pro-Hyp tripeptides results in an angular 

twist in the tripeptide chain due to the steric repulsion between the pyrollidine rings; 

with every tripeptide, there is an average of 108° left handed angular twist, which is 

equivalent to one complete turn (360°) with every 3.33 tripeptides along the whole of 

the helix (shown in Figure 1.1). Longitudinally, the average axial rise per triplet is 

0.86nm or 2.86nm for every coil (Bhattacharjee and Bansal et at. 2005; Ramachandran 

1967)

Gly 

X

Figure 1.1 - Axial arrangement of tri-peptides (Gly-X-Y) into a twists chain with 2.86 nm axial rise 
per 3.33 tripeptides (Haines 2006)

1.7.2.3. Tertiary structure

Collagen is composed of three left-handed helical a-chains, two of them being identical 

(two a l chain and one a2 chain). The three polypeptides (a-helices) form into right hand 

twisted strands to make up a 300 nm long rod-like triple helical structure as shown in 

Figure 1.2. In this arrangement, glycine invariably occupies the position nearest to the 

triple helical axis. The triple helix structure is stabilised by inter-chain hydrogen bonds 

formed between the amine group of glycine residue and the carbonyl group of the amino 

acid at the X position (Bhattacharjee and Bansal 2005).

12
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Figure 1.2 A diagrammatic representation of the structure of collagen showing (a) a cross- 
sectional view of the triple helical structure (b) the triple helical winding of the a-chains (Beck and 
Brodsky 1997)

1.7.2.4. Quaternary structure

Transmission electron microscopy (TEM) analysis of collagen fibrils that are stained with 

metals shows dark bandings at a periodic interval of 67 nm. Collagen molecules are 294 

nm long, which is 4.4 times the periodic banding interval. This observation is the basis 

for theory that collagen molecules in fibrils are found longitudinally arranged adjacent to 

each other (as shown in Figure 1.3) with a displacement that is equivalent to a quarter 

of the length. This structure has been termed as quarter stagger array or D-interval 

structure (Orgel et al. 2001). In this structure, adjacent collagen molecules are overlap 

with 30 nm of their length and have an axial gap of 40 nm between the N-terminal of 

one and C- terminal of another tropocollagen.

During biosynthesis and maturation of collagen, covalent crosslinks are formed in the 

micro-fibrils at the overlap segments between the non-helical and helical ends of 

adjacent collagen molecules. There are at least two intermolecular crosslinks of lysine 

residues at each overlap zone (Bailey and Paul 1998).

13



Fibrils may have diameter reaching 100 nm and contain thousands of micro-fibrils

packed laterally in a regular pattern, an elementary fibre (Figure 1.4) consists of

numerous fibrils twisted together (Heidemann 1993). The presence of a large number of

crosslinks in the micro-fibril and fibril structures is an important factor in the

biomechanical functions of the fibrous collagen (Eyre and Wu 2005)

Figure 1.4 SEM micrographs showing (a) separate collagen fibrils and (b) cross-section of 
elementary fibre of collagen (Heidemann 1993)

A»ka!
EM of nomwil 
collagen fibrils

FMaril

Increasing
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Overlap 
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Collagen
molecule

294.0 nm (4.4 D)

Triple
helix
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In a trluiin
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Figure 1.3 - Diagrammatic representation of the structural hierarchy of collagen (Orgel et at. 
2001)
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1.7.3. Hydrogen bonds in collagen

The stability of the triple helical conformation of collagen is attributed to the repetitive 

water mediated hydrogen bond bridges (Ramachandran and Chandrasekharan 1968,

Bella et al. 1995). It is suggested that the hydrogen bonds between the carbonyl groups 

of a collagen chain and the amine group of the adjacent chain occurs throughout the 

triple-helical domain of collagen. In addition to the direct inter-helical hydrogen bonds

(Figure 1.5a), there are hydrogen bonds that are mediated by water molecule as shown

in (Figure 1.5b). A particularly important effect of hydrogen bonds in stabilising the

collagen triple helical confirmation is attributed to the formation of the intra-helical

bonds i.e. between the amide carbonyl group and the -OH of the hydroxyproline that are

mediated by water molecules (Figure 1.5a).
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Figure 1.5. Models of hydrogen bond interactions in the collagen triple helix showing (a) intra-
helical and inter-helical hydrogen bonds mediated by a water molecule involving hydroxyproline 
and (b) hydrogen bonds between collagen chains without involving hydroxyproline (Brodsky and 
Ramshaw 1997).

The presence of hydroxyproline moieties in the tripeptides enables the formation of the

water-mediated intrahelical hydrogen bonds in the triple helical domain, as a result, the

repetitive structure formed by water-hydroxyproline interactions is considered critical for

the structural stability of the collagen (Brodsky and Ramshaw 1997). According to

Mogilner et al. (2002), complete removal of water from collagen causes irreversible
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changes in structural changes because of increased formation of molecular crosslinks.

The widely accepted view is that water molecules are considered integral part of the 

collagen triple helical structure and hydroxyproline is a centre of the stabilisation of the 

triple helical confirmation (Privalov and Tiktopulo 1970; Bhattacharjee and Bansal 2005).

However, there are also differing views on the subject of collagen stabilisation. Engel et 

al. (1977) showed that collagen-like polypeptides prepared in non-aqueous solvents 

have triple helical structure and suggested that water molecules may not be critical for 

the stabilisation of the triple helical structure. Shoulders and Raines (2009) also 

suggested that the stabilisation effect of hydroxyproline may be related to inductive 

effects rather than hydrogen bonds.

1.7.4. Thermal denaturation of collagen

Denaturation of collagen occurs when the stabilising hydrogen bonds are disrupted by 

heat causing transformation of the triple helical structure into random coils. The role of 

hydroxyproline in the structural stability of collagen is also reflected in its influence on 

denaturation temperature. Different types of collagens and collagen-like polypeptides 

with relatively greater number of hydroxyproline content show greater denaturation 

temperature (Brodsky and Ramshaw 1997; Periscov et al. 2000; Burjanadze 1979).

According to Miles et al. (1995), the shrinkage transition is triggered at thermally labile 

regions of collagen located in the overlap region i.e. regions of collagen lacking 

hydroxyproline. The process is endothermic and occurs with reduction of volume of fibre 

structure or shrinkage. Finch and Ledward (1972) suggested that random coiling of 

collagen chains and shrinkage of fibres may be because of hydrophobic forces.

1.8. Tanning reactions and hydrothermal stabilisation

Due to the diversity in its amino acid composition, collagen is capable of binding with 

reactive groups of tanning agents through different forms of interactions. The basic 

amino groups can form covalent bonds with aldehydes, diisocyanates and other 

crosslinkers (Metz 2004; Damink et al. 1995a,b). The carboxylic groups form complexes
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with metal ions through coordinate covalent bonds (Covington 1997). The peptide bond,

amine groups and the hydroxyl groups in the side chain can engage in hydrogen bonding 

with vegetable tanning agents as well as some types of syntans (Reich 2007; Gustavson 

1956). The chemical interaction of collagen with tanning agents may also involve 

hydrophobic and dipole interactions (Heidemann 1993; Covington 2011).

In an untanned pelt, the collagen macromolecule is surrounded by a supramolecular 

structure of water molecules forming a layer of hydration (Privalov and Tiktopulo 1970; 

Bella et al. 1995; Brodsky and Ramshaw 1997). A tanning reaction results in the partial 

displacement of the water structure of untanned collagen with a new structure composed 

of molecules of the tanning agent. With the reaction of tanning agents and the formation 

of superamolecular structural network by tanning agents, tanned collagen is said to be a 

chemically modified protein. One of the major effects of tanning is an increase in the 

hydrothermal stability, which is a property related to the degree of resistance of 

chemically modified collagen to the effect of heat in the presence of water (Reich 2007).

The effect of tanning with respect to hydrothermal stabilisation reflects the strength of 

the tanning matrix in counteracting the denaturation transition of the collagen in the 

leather. According to Covington et al. (2008), hydrothermal stabilisation effect of tanning 

is influenced by:-

• The strength of the interaction between tanning molecules and collagen,

• The degree of cross linking interactions between tanning agents,

The effectiveness of tanning is viewed in terms of the effect of the tanning matrix in 

creating an increased level of resistance to thermal denaturation. Hydrothermal stability 

is an important parameter that may be used to analyse the effectiveness of tannage as 

well as the stability of tanning structures in leather (Covington et al. 2011; Chahine 

2000). It is measured in terms of the temperature at which the leather shrinks upon 

heating in the presence of water, this referred to as shrinkage temperature (Ts). 

Conventional measurements are carried out in accordance with a standard method 

described in the official methods of the Society of Leather Technologists and Chemists
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(SLTC 2000). The method involves determination of the critical temperature at which 

leather of a known dimension shrinks when heated in water at 2°C per minute.

Shrinkage temperature of leather can also be determined using differential scanning 

calorimetric (DSC) measurement, which also gives an additional information on the

energy related to the shrinkage transition (McClain 1972). Determination of the enthalpy 

of shrinkage transition can be used to analyse the structural integrity of collagen, a 

decrease in the enthalpy and shrinkage temperature of a sample indicates structural 

changes in the collagen molecule (Usha and Ramasami 2004). The occurrence of

denaturation of the collagen in the leather can be detected (Chahine 2000). The 

shrinkage temperatures of that may be obtained by tanning pickled pelt with different 

tanning agents are shown in Table 1.6.

Table 1.6 Shrinkage temperature of leathers made by tanning using different tanning 
agents and combination of tannages (Covington 2009)

Tanning agents Shrinkage temperature (Ts)

Basic Cr(III) sulfate 110-120

Other metal salts: AI(III), Ti(IV), Zr(IV) 65-85

Vegetable tanning agents 75-85

Phenolic syntans (replacement syntans) 70-80

Glutaraldehyde, oxazolidine 80-85

Combination tanning: vegetable tanning + AI(III) 105-115

Combination tanning: vegetable tanning + oxazolidine 105-115

Combination of the effects of different tanning agent is an important aspect related to

hydrothermal stabilisation. Leather manufacturing process often involves two or more

steps of tanning treatments. The interaction between the successive tanning treatments

may affect the hydrothermal stability of the leather (Covington et at. 2011) A significant 

increase in the shrinkage temperatures are observed when vegetable tanned leathers 

are retanned with metal salts or aldehydic crosslinkers, as indicated in Table 1.6.
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1.8.1. Tanning with metal salts

With the exception of Cr(III) sulfate, tanning pickled collagen pelt with transition metal 

salts (sulfates and chlorides) results in shrinkage temperature of 70°C and below. The 

reactivity of metal complexes towards collagen was relatively greater only near the 

precipitation point (Lampard 2000). Amongst the transition metals, only Cr(III), Ti(IV), 

Fe(III) and Zr(IV) are used for in tanning (Heidemann 1993). The basic chemical

interaction between the collagen and aqueous metal complexes is based

electrostatic attraction and complex formation with the carboxylate side chain groups of

collagen (Covington 1987).

1.8.1.1. Tanning with chromium(III)

When a Cr(III) sulfate is dissolved in water, an acidic pentaqua-sulfato-Cr(III) complex 

is formed (Figure 1.6a) at pH lower than 2.0. With increase of pH, this complex

undergoes hydrolysis, initially forming the sulfate complexed monohydroxy complex

(Figure 1.6b) that subsequently forms the olated (oxy-bridged) binuclear Cr(III) complex

(Figure 1.6c) Further increase of pH above 3.5 leads to increased formation trimeric and

tetrameric aqua Cr(III) complexes (Imer and Vernali 2000; Indubala and Ramaswami

1973).
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Figure 1.6. Structures of aqueous Cr (III) complexes in acidic medium showing 
monomeric sulfato Cr(III) complex, (b) the monomeric species (sulfatohydroxo-Cr(III) complex), 
(c) oxy-bridged p-dihydroxy-p-sulfato-di Cr(III) complex and (d) linear trimeric Cr(III) complex 
(Covington 2009).
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During tanning of pickled skins and hides, more than 25% of the aspartic acid (pKa 3.8) 

and glutamic acid (pKa 4.1) side chains are ionised above pH 3.5 (Covington 2009). 

Hence reactions take place between the carboxylate groups and the soluble Cr(III) 

complexes. One of the unique features in the chemistry of Cr(III) tanning is that the pH 

zone for the formation of the reactive oligomeric Cr(III) species (/'.e. pH 2.7-4.0), 

matches with that of the ionisation of the carboxyl groups of collagen.

Analysis of Cr(III) tanned leather using EXAFS (extended X-ray absorption fine 

structure) technique showed that the tanning matrix is predominantly composed of 

linear tetrameric Cr(III) species (Covington et al. 2001). The highest level of 

hydrothermal stability is achieved by tanning collagen with Cr(III) sulfate, rather than 

with Cr(III) chloride or other salts. It is assumed that, the sulfate ion may act as a 

bridge between the oligomeric Cr(III) complexes, resulting in the formation of increased 

size of supramolecular units in the tanning structure (Reich 2007; Covington et al. 

2008).

1.8.1.2. Tanning with aluminium(III)

In acidic medium below pH 2.5, the hexa-aqua complex [AI(H20)6]3+ species hydrolyses 

into the binuclear oxy bridged species [Al2(0H)2(H20)s]4+. With an increase in pH 

extensive hydrolysis results in precipitation due to the formation of polycation species 

having 13 aluminium atoms. Complete precipitation of polyhydroxy Aluminium species 

may occur below pH 4.0, particularly in the absence of complexation with non-aqua 

ligands (Stol et al. 1976; Shriver et al. 1994). During tanning with AI(III), carboxylate 

ligands such as citrate are used to reduce the degree of hydrolysis and allow reaction 

with collagen (Covington et al. 1987).

AI(III)-collagen interaction is believed to be more of electrostatic than coordinate 

covalent complexation (Brown 2005; Covington 2009), shrinkage temperature of Al (III) 

tanned pelt may reach 80°C by tanning in presence of polycarboxylic ligands (Covington 

et al. 1997). The use of Al (III) salt as a solo tanning agent is not common. However, it b
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has been used as the most preferred for retanning vegetable tanned leathers in the

production of semi-AI(III) tanned leathers (Vitolo eta/. 2003; Slabbert 1981) .

1.8.1.3. Tanning with titanium(IV)

Aqueous Ti(IV), which is in the form of titanyl ion [TiO]2+in acidic media undergoes 

extensive hydrolysis leading to the formation of the polycation [(TiO)8(OH)i2]4+ that 

polymerises further and precipitates at pH 3 (Einaga and Komatsu 1981). Hence in 

absence of other ligands, tanning with Ti(IV) salts may be hampered by precipitation. 

Tanning can be carried out at pH 5-6 in the presence of polycarboxylate ligands. Leather 

made by tanning with Ti(IV) salt is characterised with properties related to deposition of 

polytitanyl species in the fibre structure, typically whiteness and 'fullness' in handle. 

Shrinkage temperatures of 75-85°C have been achieved by titanium(IV) tanning in the 

presence of polycaboxylic salts (Peng et at. 2007; Covington 1987). Ti(IV) salts have 

been used for making white leather and orange coloured semi-Ti(IV) tanned leathers 

(i.e. vegetable tanned leathers retanned with Ti(IV) salts) that are known to have high 

resistance to perspiration (Van Benschoten 1985).

1.8.2. Vegetable tanning agents

Plants produce and accumulate different types of secondary metabolites including 

polyphenolic compounds known as tannins. The biological functions of these metabolite 

are related to the defence mechanism of the plant (Beart et al. 1985). Tannins are also 

considered as renewable resources, extensively used in tanning, adhesive manufacturing 

and formulation of anti-corrosive coatings (Pizzi 2008).

Bate-Smith and Swain (1962) have defined tannins as "water soluble phenolic 

compounds having molecular weight 500-3000 g/Mol and, besides giving the usual 

phenolic reactions, they have special properties such as the ability to precipitate 

alkaloids, gelatine and other protein".

The definition of tannins in relation to molecular weight is based on characterisation of 

astringency or the relative capacity of different phenolic compounds to precipitate
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gelatine from a dilute solution. Polyphenolic compounds with molecular weights greater

than 3000 generally have low solubility, while those with molecular weight less than 500 

are considered to be non-astringent (Hagermann 1992).

However, in phytochemical literature, water insoluble natural polyphenols are often 

referred to as tannins (Takekawa and Mutsumoto 2012; Taira 1995; Khanbabaee and 

Van Ree 2001). The more inclusive term 'polyphenols' is commonly used interchangeably 

with 'tannins' (Haslam 1998). Based on their structural feature and chemical properties, 

tannins are broadly classified as (i) hydrolysable tannins, which are galloyl and 

hexahydroxydiphenoyl esters and their derivatives, (ii) condensed tannins (oligomeric 

proanthocyanidins) and (iii) phlorotannins (oligomers of phloroglucinol). The first two 

groups are the most common and important groups with respect to vegetable tanning 

(Haslam 1999).

1.8.2.1. Hydrolysable tannins

As their name indicates, hydrolysable tannins are composed of compounds that are 

prone to hydrolytic breakdown in warm solutions at both acidic and alkaline media. The 

chemical structures of hydrolysable tannin, also known as 'pyrogallol' tannins 

(Sharphouse 1971). They have chemical structures that typically consists a saccharide 

centre esterified with the aromatic carboxylate species bearing pyrogallol groups or 1,2,3 

trihydroxybenzene (Haslam 1998). The aromatic carboxylate groups of hydrolysable 

tannins may be gallic, di-gallic, ellagic or chebulic esters attached to the D-glucose 

centre (Figure 1.7).

Figure 1.7. Aromatic carboxylic moieties found in the structures of various hydrolysable tannins 
(a) gallic acid unit gallolyl, (b) di-gallic acid or di-gallolyl group, (c) ellagic acid and (d) chebulic 
acid
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Depending on the structure of the ester units, hydrolysable tannins are classified as 

gallotannins and ellagitannins. Gallotannins are composed of gallic or di-gallic esters of 

D-glucose. Compounds like pentagalloloy glucose (Figure 1.8a) are precursors in the 

biosynthesis of larger gallotannins such as tannic acid (Figure 1.8b). Ellagitannins are

mainly esters of ellagic acid; some ellagitannins undergo oxidative rearrangement and to

form chebulic esters from ellagic units (Okuda eta/. 1993). Ellagitannins having chebulic

esters include chebulagic acid (Figure 1.9b), which is the main tannin compound in 

myrabalan tannin (Okuda and Ito 2011) and castalagin (Figure 1.9a) is a major 

constituent of chestnut extract (Tang et at. 1992a). Hydrolysis of the ester links of

gallotannins and ellagitannins in acidic media yields gallic acid and ellagic acid,

respectively (Haslam 1998).

HO OH

OH

OH

OH OH

Figure 1.8. Examples of gallotannin compounds, (a) 1,2,3,4,6 penta-galloly-O-glucose, an 
ingredient of sumac tannin (b) tannic acid, with five depside linked di-gallolys units

OH 
,>H

(a)

OH HO

OH

Figure 1.9. Examples of ellagitannins (a) structure of castalagin having ellagic ester units and (b)
structure of chebulagic acid with ellagic, chebulic and gallolyl esters (Okuda et at. 2011; Hagerman 
2011)
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The most common types of hydrolysable tannins used in the leather manufacturing 
include

• Chestnut tannin, extract from the wood of Castanea Sativa,

• Myrabalan tannin from fruits of myrabalan tree, Terminalia Chebula,

• Sumactannin from the leaves of sumac shrub, Rhus Coriaria,

• Tara tannin from the fruits of tara tree, Caesalpinia Spinosa.

1.8.2.2. Condensed tannins

Condensed tannins or proanthocyanidins are oligomers of flavol-3-ol linked together by 

C-C bonds. They are commonly referred to as 'catechol' tannins in leather industry 

because the most common types of condensed tannin compounds contain the catechol 

group (dihydroxybenzene) as their B-ring as shown (Heidemann 1993). However, in 

some of the condensed tannin compounds, the B-ring is a pyrogallol group (1,2,3- 

trihydroxybenzene) (Schnofield 2001). The monomeric units of condensed tannins are 

described in Figure 1.10

Figure 1.10. Flavonoid structural model condensed tannin compounds having aromatic A-ring and 
B-rings attached to the alicyclic ring C-ring (Schnofield 2001)

The monomeric units in the condensed tannin differ with the position and degree of 

hydroxylation. The profistetinidine and procyanidine types don't have hydroxy 

substitution at the R2 position of the B-ring (/.e. R2 = H), the monomeric units of 

procyanidines are catechin and its isomer epicatechin. The prodelphinidine and 

prorobinetinidine types have 'pyrogallol group' as their B-ring and they are known as 

gallocatechins (Schnofield 2001).

OH

OH H Proanthocyanidin
OH OH Prodelphinidin
H H Profisetinidin
H OH Prorobinetinidin
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The monomeric flavonoid units are coupled to form oligomeric and polymeric structures 

mainly between the 4 and 8 positions of adjacent flavonoid monomers giving a linear 

chain (Figure 1.11). However, in some condensed tannins the coupling may occur also at 

the flavonoid positions of 4 and 6 giving a branched structure (Porter 1992). The degree 

of polymerisation in water-soluble condensed tannin could reach up to 6 monomeric 

units (Butler et at. 1982). However, Guyot et al. (2000) have shown that condensed 

tannins from methanolic extracts of freeze dried fruits may contain 2-10 monomers.

OH

Figure 1.11 - A structural model of linear and branched polymeric chains in condensed tannins 
(Porter 1992).

Some of the condensed tannins used in the leather industry include:-

• Mimosa tannin extracts from the bark of Acacia sp.

• Quebracho tannin, extract from wood of Schinopsis sp.

• Gambier tannin extract from the leaves and twigs of Uncaria sp.

• Hemlock tannin extract from the bark of Tsuga sp.

1.8.2.3. Interaction of vegetable tannins with collagen

Tannins react with protein and cause precipitation of gelatin from solution. The reaction 

of tannins with proteins in aqueous solution is influenced by amino acid composition, 

isoelectric point, size and structure of the tannin. The main forms of protein-tannin 

interaction in solution are considered to be hydrogen bonding and hydrophobic
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interaction (Hagerman 1992; Oh et al. 1980). Gustavson(1956) observed that the

binding of tannins to collagen is similar over a wide pH range of 2-8 and the binding is 

reversible by treatment with hydrogen bond breakers (e.g. urea). The indication is that 

hydrogen bonding is the main form of interactions and electrostatic interactions do not 

play significant role. Whereas, a study by Madhan et al. (2001) carried out using 

molecular modelling of the interaction of collagen-like polypeptide with gallic acid, 

suggested that electrostatic interactions might also play an important role in the binding 

of tannins with collagen. A similar investigation by Brown et al. (2011) using a 

gallocatechin compound indicated that hydrogen bonds and hydrophobic interactions are 

the main tannin-collagen binding forces and the potential role for binding of tannins at 

the gap region of collagen was also highlighted. Haslam (1997) has also supported the 

idea of fixation of tannins at the gap region of collagen primarily through hydrophobic 

interaction.

The complete mechanism of tannin-collagen interaction is not fully understood. However, 

based on known facts from various experiments, it is assumed that formation of multiple 

hydrogen bonding between tannin molecules and functional groups of collagen (as shown 

in Figure 1.12) may be the main form of interaction responsible for the tanning effect of 

polyphenols (Covington 1997).

Figure 1.12. Model of the interaction between plant polyphenol and collagen peptide bond 
(Covington 1997)

It is generally accepted that vegetable tanning interactions occur throughout the 

collagen molecule with the peptide bond and functional groups in the amino acid side
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chain. So far, there seems to be no compelling evidence to consider complete

localisation of tannin-interactions at the gap region of collagen structure.

1.8.2.4. Properties of vegetable tanned leathers

Vegetable tanning may be used as sole tanning agents or in conjunction with other 

tannages. Tannins have the property of filling the inter-fibre space and hence give 

leathers increased degree of stiffness and fullness. Vegetable tanning agents are often 

used as retanning agents to modify the properties of Cr(III) tanned leather (Sharphouse 

1971). Combination tannage using metals, mainly AI(III) and Ti(IV), can also be applied 

to impart desired properties such as colour, increase in shrinkage temperature and 

enhancement of resistance to perspiration (Vitolo eta/. 2003; Van Benschoten 1985).

Tanning pickled pelts with hydrolysable tanning agents results in shrinkage temperatures 

in the range of 75-80°C, slightly lower than that of leathers tanned with condensed 

tannins (75-80°C). The greater shrinkage temperature of condensed tannins could be 

related to the the larger size of the oligomeric condensed tannin molecules (Covington 

2008). Oxidation of condensed tannins may form quinone moieties in the structure 

(Hathway 1957), quinone moieties of oxidised tannins may also react with the collagen 

amino groups forming covalent crosslinks (Heidemann 1993).

1.8.3. Deterioration of vegetable tanned leathers

Vegetable tanned leathers are generally stable, the tanning reaction are non-reversible.

However, deterioration and degradation of vegetable tanned leather of historical or aged

leathers has been a commonly observed phenomenon and has been a subject of concern

for conservators and leather chemists (Thomson 2006). The degradation of vegetable

tanned leather is reflected in physical weakening, change of colour, formation of surface

cracks, reduced flexibility, weak fibre, powdery surface and lowering of shrinkage

temperature (Larsen 1996). Analysis of the chemical properties of most of degraded

vegetable leathers also shows increased acid content, increased sulfate content, and

dissolution of degraded tannin components (Wouters et at. 1996). A review of the

mechanisms of degradation of aged vegetable tanned leathers by Florian (2006)

indicates that hydrolysis and oxidation are the principal mechanisms of the process.
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Other factors, namely temperature and moisture, also play an important role in

enhancing the physical degradation of the leather.

1.8.3.1. Hydrolytic degradation

Sulfuric acid in leather, originating from the adsorption of sulfur dioxide from industrial 

air pollution, it is believed to be the most common cause of hydrolytic damage in age-old 

leathers. In presence of light, the sulfur dioxide is oxidised to sulfur trioxide that is 

subsequently hydrolysed by the moisture in the leather to form sulphuric acid. In 

addition, other organic acids or mineral acids already existing in the leather may also 

enhance hydrolytic degradation (Florian 2006).

Increased acidity in the leather may cause changes in the tannin structures and 

hydrolytic breakdown of the peptide chain of the collagen (Figure 1.13). Acid- 

deterioration (hydrolytic degradation) of vegetable tanned leathers is characterised by 

disintegration of fibres, lose of strength and lowering of shrinkage temperature

(Stambolov 1989; Flaines 1991).
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Figure 1.13 Schematic representation of hydrolytic cleavage of the peptide chain of collagen in 
vegetable tanned leathers undergoinFlod-deterioration (Haines 1977)

1.8.3.2. Oxidative degradation in vegetable tanned leathers

According to Haines (1977), sulfur dioxide and nitrogen oxides from atmospheric 

pollution react with tannins and unsaturated hydrocarbons (e.g. fats) in the leather to 

form oxidative species such as ozone (O3), nitrogen dioxide (NO2), peroxyacetylnitrate 

(CH3[C0]00N02), and oxygen-derived free-radical species. As a result, oxidative 

cleavage the peptide chain of collagen may occur as described in Figure 1.14.
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Figure 1.14 Schematic representation of oxidative cleavage of the peptide chain of collagen in 
aged vegetable tanned leathers exposed to oxygen derived free radicals in the presence of water 
(Haines 1977).

The oxidation of fatliquors and tannins may lead to formation of hydrogen peroxide and 

oxygen radicals (Florian 2006). In various investigations including artificial-ageing tests, 

it was concluded that hydrolytic and oxidative degradation of vegetable tanned leather 

may occur simultaneously in acid media (Stambolov 1969; Florian 2006). Degradation of 

collagen during deterioration of leather occurs to a greater extent in warmer and moist

conditions (Larsen 1996)

1.8.3.3. The role of metal ions in leather deterioration

Transition metals that may undergo univalent redox reactions, can participate as 

catalysts in the oxidation reaction in vegetable tanned leathers (Florian 2006). Metal ions 

such as Fe2+, Cu2+ and Mn2+ are capable of catalysing the oxidation of sulfur dioxide into

sulfur trioxide (Zuo et al. 2005; Bradt et al. 1995; Berglund et at. 1995) and enhance 

acid-deterioration of leather. Some metal ions may also catalyse the autoxidation of 

polyunsaturated fatty acids in leather and increase formation of hydrogen peroxide (Mills

et al. 1999). Earlier studies of artificial ageing test have also demonstrated that

oxidative deterioration is enhanced by the presence of trace quantities of iron and cobalt 

(Cheshire 1946). Later studies by Phillips (1954) and Deasy (1967) showed that, during 

leather degradation under conditions of artificial ageing, iron catalysed decomposition of 

hydrogen peroxide (Fenton reaction shown in equation 1.1) may results in the formation 

hydroxyl radicals through the Fenton reaction, leading to degradation of the collagen.

Fe2+ + H 2O 2 + H+ Fe3+ + HO* + h 20

Fe3+ + H 2O2 *■ Fe2+ + HOO* + H +

Equation 1.1 The Fenton reaction - a catalytic decomposition of H2O2 in the presence of iron ions 
resulting in the formation of hydroxy radical (HO*) and superoxyl radical (HOO*) (Phillips 1954).
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Haslam (1998) also hypothesised that the principal mechanism for the slow degradation 

of vegetable leather may be related to the oxidative effect of iron ions (Fe2+/Fe3+) and 

the formation of hydrogen peroxide in leather; it was suggested that subsequent 

collagen degradation may be the result of the oxidative action of the hydroxyl radicals 

generated via the Fenton reaction.

1.9. Tannin-metal interactions in leather

One of the basic chemical properties of tannins is the formation of chelate complexes 

with metal ions. This interaction is often characterised by colour formation and 

precipitation of metal complexes (McDonald et al. 1996; Bark eta/. 2012). With respect 

to the formation of tannin-metal complexes, the catechol (1,2 dihydroxybenzene) and 

the pyrogailol (1,2,3-trihydroxybenzene) moieties are the most important structural 

parts of tannins (Slabbert 1992). These metal chelating moieties of tannin compounds 

(Figure 1.15) are referred to as o-diphenol groups (Porter 1992).

tannins (Slabbert 1992)

According to Sykes et at. (1980), the pyrogailol moieties form more stable complexes 

with metals as compared to the catechol groups. All hydrolysable tannin compounds 

have multiple pyrogallol groups as shown in the structure of tannic acid (Figure 1.16b); 

hence, they are generally more reactive to metal ions. Condensed tannins having a 

pyrogallol type B-ring of the flavonoid structure (Figure 1.16a), i.e. prorobinetinidines 

and prodelphinidins, are also considered to be more reactive to metal ions as compared 

to those having catechol type B-ring structure i.e. procyanidins and profisetinidines.

R denotes the link to the C-ring of flavonoid
structure (in condensed tannins) or the glycoside 
ester link (in hydrolysable tannins)

R '= H  in the case of catechol m oieties and R '=  OH 
in the case of pyrogallol moieties

Figure 1.15 A structural model of the metal chelating o-diphenol groups of tannin compounds of
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HO OH

Figure 1.16 The metal chelating site of tannins (o-diphenol groups) in the (a) flavonoid structure 
of condensed tannins and (b) in hydrolysable tannins (e.g. tannic acid)

The nature of tannin-metal complex formation may involve a charge transfer mechanism 

(Figure 4.17) in which the two hydrogen ions are displaced from the o-diphenol group 

by the metal ion when chelate complexes are formed. A potentiometric study by 

Slabbert (1992) indicates that, stability of the tannin-metal complexes is inversely 

related to their primary pKa values of the chelating groups, increased degree of

deprotonation or formation of phenolate units, may favour chelation of metal ions.

R
R

+ M
+ n

M
(n-2)

+ 2H

Figure 1.17 Tannin-metal complex formation with a flavonoid structure through ligand to metal 
charge transfer mechanism (Slabbert 1992)

The pKa of primary ionisation o-diphenol groups in various polyphenolic compounds

varies in the the range of 6.7-9.3 depending on the type of aromatic substituent. 

Catechol groups (Figure 1.15, R = R'=FI) and pyrogallol groups (Figure 1.15, R=H, 

R'=OFI) have pka values of 9.37 and 9.05 respectively. For secondary ionisations, the 

pKa values of most o-diphenols are greater than 11.0 (Jovanovic et at. 1994; Porter 

1992).

31



Chapter 1 Introduction

A greater portion of the polyphenols are not ionised in acidic media, therefore the

tannin-metal interaction in this condition may involve the formation of dative bonds with 

the metal being the acceptor (Covington 2009). On the other hand, it is also known that 

the presence of metal ions such as Al3+ and Fe3+ in solutions of polyphenol compounds 

causes lowering of the pKa values of the o-diphenol groups and hence increase the 

degree of ionisation of the o-diphenol groups (Kumamato et at. 2001). The type of metal 

ion also determines the stability of tannin-metal complexes. Metal ions with greater 

charge density, such as AI(III), V(IV), Fe(III) and Ge(IV) form stable tannin complexes 

in acid media resulting in precipitation at pH 3.0-3.6. In contrast, metals, such as Pb(II), 

Zn(II), Co(II), and Ni(II) precipitate as tannin complexes at higher pHs, above 6.0 

(Slabbert 1992).

1.9.1. Mechanism of semi-metal tanning

Treatment of vegetable tanned leathers with salts of as Al(III), Ti(IV) metal raises the 

shrinkage temperature to 110°C and above (Slabbert 1981). Retanning of vegetable 

tanned leather with metal salts is a form of combination tanning that is referred to as 

semi-metal tanning, analogous to the semi-alum or semi-AI(III) tanning process 

(Covington eta/. 1981). It has been suggested that semi-AI(III) tanning may be used as 

an alternative to tanning with Cr(III) salt (Slabbert 1981). Semi-AI(III) tannage has 

been developed for making shoe upper leather of TS>110°C using the hydrolysable tara 

tannin (Vitolo et al. 2003). Other transition metal salts may also bring about increase in 

the shrinkage temperature when used to retan vegetable tanned leathers (Kallenberger 

1984). Semi-metal tanning using Ti(IV) salts, i.e. semi-Ti(IV) tanning, has been used for 

making perspiration-resistant leathers (Thomson 1981; Van Benschoten 1985).

In combination tanning using metals and vegetable tanning agents, the order of tanning 

is an important aspect. Retanning of metal tanned leather with vegetable tanning agents 

generally imparts lower shrinkage temperature as compared to that of vegetable tanned 

leather retanned with metal salt (Kallenberger and Hernandez 1984; Covington 1997). 

Concerning the mechanism of semi-metal tanning, Slabbert (1981) initially suggested
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that aluminium ion reacts with the already bound tannin molecules and forms a covalent

link with the carboxyl groups of collagen as shown in Figure 1.18.

Collagen peptide chain

/
HN

\
CO HO

/

Carboxylic groups of collagen

Al( OH ) OOC— ( CH2) CH

\y
Linked flavonoid units 
(Condensed tannins)

Figure 1.18. Slabbert's model of collagen—Al(III)—tannin interaction in mimosa-AI(III) tanned 
leather (Slabbert 1981).

Slabbert(1992) assumed that further crosslinking of the tanning interaction by the 

tannin-AI(III)-collagen interaction, involving AI(III)-collagen covalent bonds, was 

responsible for the increase in the shrinkage temperature of semi-AI(III) leather. The 

proposed model of semi-metal tanning interaction lacked evidence in relation to the

suggested formation of collagen-AI(III) covalent bonds.

However, it was also known that Al (III) does not exhibit a stable interaction with 

collagen, as observed with the reversibility of Al (III) tannage (Covington eta/. 1987). An 

investigation by Kallenberger and Hernandez (1983) also showed that modified hide 

powder samples with blocked carboxyl groups, i.e. by methylated hide powder, showed 

semi-metal tanning reaction and there was no difference between the shrinkage 

temperature of the samples made using the modified (methylated) and unmodified hide- 

powder samples. The conclusion was that carboxyl groups of collagen do not take part in 

the chemical reactions of semi-metal tanning. Hence, the AI(III)-collagen interaction was 

found to be unimportant in the semi-metal tanning reactions.

In addition it was also shown that transition metals such as Ni(II) and Co(II), that are

known to have a weak interaction with carboxyl groups of collagen in acidic media can

significantly increase the shrinkage temperature of the vegetable tanned leathers

(Kallenberger and Hernandez 1984). Based on these experimental results, it is believed

that the increase in shrinkage temperature because of semi-metal tanning may originate
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from complexation of metal ion by polyphenols, as shown in Figure 1.19 (Kallenberger

and Hernandez 1984; Covington and Lampard 2004).

HO
H H

polyphenol

polyphenol

OH

Figure 1.19. Proposed schematic representation of the principal semi-metal tanning interaction in 
semi-metal tanned leather (Covington and Lampard 2004)

Complexation of the metal centre during semi-metal tanning creates crosslinks in the 

polyphenolic matrix resulting in the formation of a reinforced tanning structure around 

the collagen (Tang et al. 1992). The resulting rigidity of structure poses greater 

resistance to unravelling of the collagen macromolecule during the shrinkage transition. 

As a result, the shrinkage temperature of semi-metal tanned samples is raised 

considerably as compared to that of the vegetable tanned leather (Vitolo et al. 2003)

The main tannin-metal interaction in semi-metal tanned leathers is chelate complexation 

of metal centres by o-diphenol moieties of the tannin molecules. However, hydrothermal 

stabilisation is considered the result of a set of inter-related chemical interactions that 

essentially involves-

• collagen-metal interaction (electrostatic interaction and complex formation),

• collagen-tannin interaction (mainly hydrogen bonding)

• tannin-metal interactions (chelate complex formation)

Amongst these, the collagen-metal interactions may have comparatively less significant

contribution towards the overall effect as compared to that of metal-polyphenol 

complexation (Kallenberger and Hernandez 1983).

1.9.2. Transition metals in semi-metal tanning

The results of semi-metal tanning experiment by Kallenberger and Hernandez (1984) 

shown that the hydrothermal stabilities of the semi-metal tanned samples made with 

transition metals are not dependent on the interaction of the metal ions with collagen.
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Another observation from the results (Table 1.7) is the significant variation of shrinkage

temperatures in relation to the absence or presence of a citrate salt.

Table 1.7 Shrinkage temperature of mimosa tanned leather treated with different 
transition metal salts at pH 5.0 in the presence and absence of a sodium citrate 
Kallenberger and Hernandez (1984)

semi-metal tanned 
samples

Retanning chemicals applied on 
mimosa tanned leather

Ts, °C

mimosa-Ni(II) Ni(II) sulfate 107
Ni(II) sulfate + plus citrate 89

mimosa-Co(II) Co(II) chloride 112
Co(II) chloride + plus citrate 95

mimosa-Mn(II) Mn(II) acetate 90
Mn(II) acetate + plus citrate__________ __________90__________

mimosa-Mo(VI) Sodium molybdate 69
Sodium molybdate + plus citrate 79

mimosa-Fe(III) Fe(III) chloride 101
Fe(III) chloride + plus citrate 111

The presence of citrate with the semi-Ni(II) and semi-Co(II) samples resulted in 

weakening of the crosslinking interactions as observed in the decline of shrinkage 

temperature. The opposite was observed in the case of the semi-Fe(III) samples. The 

effect of citrate on the divalent and trivalent ions appears to be different, change in the 

ligand environment of the metal may affect the stability of metal-tannin complex . The 

result indicated that the hydrothermal stability of semi-metal tanned samples is

influenced by a complex set of interactions including the ligand environment of the 

metal.

1.9.3. Metal induced degradation of vegetable tanned leathers

As shown in Table 1.6, the shrinkage temperature of the mimosa tanned leather was 

significantly lowered after treatment with molybdate (M0O4)2", this indicated the reaction 

between the tannins and the oxy-anion (M0O4)2" caused breaking of crosslinks in the 

tanning matrix. This change most likely occurred as a direct result of oxidation of tannins 

in the leather by the oxy-anion of the hexavalent molybdenum. Compounds and 

complexes containing molybdenum (VI) are known oxidising agents (Greenwood et al. 

1989). In another study, Lampard (2000) also observed that a semi-V(IV) leather 

prepared by treating myrabalan tanned leather (Ts 71°C) with V(IV) sulfate (myrabalan-
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V(IV) leather) showed an increase in hydrothermal stability to 95°C. However, after

months of storage at ambient condition, the shrinkage temperature lowered to 60°C and 

the leather became significantly weaker during storage at ambient conditions.

Based on the observation of the metastability of the myrabalan-V(IV) leather, Covington 

(2009) suggested that, understanding of the mechanism of the observed V(IV) induced 

degradation of leather may be useful in developing tanning methods for production of 

gradually deteriorating leathers, that may eventually be biodegradable. It was assumed 

that the leather that undergoes a slow V(IV) induced degradation, might be serviceable 

for a definite period (i.e. depending of the rate of degradation) and eventually become 

vulnerable to the action of enzymes as a result decomposition of the tanning matrix. This 

concept is similar to the application of metal catalysed degradation of the so-called oxo- 

degradable plastics, which contain trace quantities of photocatalytic metals, such as 

Fe(II), Co(II), Cr(III) and Mn(II), that are added to enhance degradation (Wiles et at. 

2006).

In the oxo-degradable plastics, metal induced photoxidation reactions in the polymer 

structure leads to fragmentation in natural environment (Sipinene and Rutherford 1992). 

There have been claims of biodegradability and compostability of some oxo-degradable 

plastics after fragmentation (Stranger-Johannessen 1979; Chiellini et at. 2003) based on 

tests that demonstrated the growth of microorganisms the polymer surface. However, 

recent studies (Thomas et at. 2010; Roy et. at. 2011) have shown that, metal catalysed 

photoxidation of the oxo-degradable polymers leads to physical fragmentation of the 

polymers but not necessarily degradation by microorganisms.

Unlike plastics, leather has a complex composition and heterogeneous structure; hence, 

degradation by metal catalysed oxidation may have different features. In this research, 

the interaction of vanadium and other transition metals with untanned collagen and 

vegetable tanned leather were investigated. The relative permanence of metal-tanned 

and semi-metal tanned samples was evaluated experimentally. The mechanisms of
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metal induced degradation and the susceptibility of the physico-chemically degraded

leathers to the action of bacterial enzymes were studied.

1.10. Description of the research project

The research included literature review and practical work on general aspects of the 

chemistry of tanning interactions, particular aspects of tannin-metal interactions related 

to complex formation and redox interactions, mechanisms of degradation of vegetable 

tanned leather, the Fenton reaction and enzymatic degradability of oxidatively degraded 

leathers. The aim and objectives of the research project are stated in the following 

sections (Section 1.10.1-2)



1.10.1. Aim of the project

To study the rate, extent and mechanism of metal induced degradation in leather, 

characterise the degree of susceptibility of degraded leathers to enzymatic hydrolysis 

and there by identify chemical methods that can be applied for treatment of leather 

waste in the context of enhancing the its recyclability.

1.10.2. Objectives of the project

• To evaluate the tanning reactions of transition metals with collagen and vegetable 

tanned collagen; analyse the permanence and stability of the tanning interactions 

(Chapter 2)

• To characterise the properties of vegetable tanned leathers containing Fe(II) and V(IV) 

ions and the process of degradation in terms of the changes in the physical and 

chemical properties of the leathers (Chapter 3)

• To elucidate the mechanism of metal-induced degradation of vegetable tanned 

leathers by studying oxidation of polyphenol compounds in aqueous solution and 

evaluating the effect of V(IV) and Fe(II) on the oxidation reactions (Chapter 4)

• To investigate the effect of hydroxyl radicals on the hydrothermal stability and 

physical properties of different types of leathers and analyse the applicability of 

Fenton reaction (Fe2+/H202) as a method for rapid degradation of leathers (Chapter 5)

• To study the enzymatic degradability of leather samples that have undergone metal- 

induced degradation and Fenton-oxidised leather samples using bacterial enzymes 

namely, collagenase and subtilisin (Chapter 6)

• To elucidate the mechanism of metal catalysed oxidative degradation of leather based 

on results of the research and to propose the potential application of hydroxyl 

radiated oxidative treatment (via Fenton reaction) as an oxidative pre-treatment 

method for use on leather waste, for the purpose of enhancing its biodegradability in 

composting or anaerobic digestion. (Chapter 7)
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Chapter 2 The stability of  metal tanned and semi-metal tanned collagen

2.1. Introduction

Transition metal ions have empty or partially filled d-orbitals and hence engage in 

complex formation with the o-diphenol moieties of tannin compounds. According to the 

semi-metal tannin mechanism suggested by Covington and Lampard (2004), semi-metal 

tanning interactions are multiple coordinate-covalent bonds formed between polyphenols 

and metal ions. Slabbert (1992) suggests that the tannin-metal interaction involves 

charge transfer complex formation, in which the hydrogen ion from the chelating 

hydroxy groups the of o-diphenol groups will be substituted by metal ion. It is known 

that the formation of tannin-metal complex results in a more cross linked tanning 

structure. Subsequently, semi-metal tanned leathers show greater hydrothermal stability 

as compared to metal tanned and vegetable tanned leathers (Kallenberger and 

Hernandez 1983; Slabbert 1992; Covington et al. 2008).

The most common semi-metal tanned leathers, semi-AI(III) are known for their greater 

hydrothermal stability (TS>110°C) and resistance to deterioration under artificial ageing 

conditions (Larsen 1996; Thomson 2006). In contrast, semi-metal tanning experiments 

carried out with other metals; indicates that certain tannin-metal interactions might lead 

to lowering of Ts of leathers as described in Chapter 1, Section 1.9. The permanence of 

tannin interactions depends on the stability of tannin-metal, metal-collagen and 

collagen-tannin interactions. In vegetable tanned leather collagen-tannin interactions, i.e. 

mainly hydrogen bonds, are not readily reversed under normal conditions of storage. 

Hence, the increase in Ts during semi-metal tanning as well as the lowering of Ts 

observed in some semi-metal tanned leathers, e.g. semi-V(IV) leathers, may be related 

to the metal-collagen or tannin-metal interactions.

In previous studies, Kallenberger and Hernandez (1984) and Lampard (2000) have 

demonstrated that several transition metals may exhibit semi-metal tanning, resulting 

an increase in Ts when used in retanning vegetable tanned leathers. However, the 

permanence of the semi-metal tanning interactions has not been explored in detail. In
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this chapter, comparative experiments carried out on the properties of a range of metal- 

tanned and semi-metal tanned collagen are described. Tanned samples were prepared 

using hide powder (collagen). The tanning properties of transition metals were 

investigated and the permanence of tanning interaction was evaluated by periodic 

analysis of samples that were stored at a controlled conditions.

2.2. Materials and methods

2.2.1. Chemicals

Glacial acetic acid (99% w/w), anhydrous sodium acetate, anhydrous sodium 

bicarbonate, sodium chloride, acetone solvent, nitric acid (70% w/w), sulfuric acid (98% 

w/w), perchloric acid (70% w/w), standard solutions of the first row transition metals 

(1000 ppm), and sulfate salts of metals (Table 2.1) were obtained from Fisher-Scientific 

Ltd. (UK).

Table 2.1. The first-row transition metal sulfate salts used for 
preparation of metal tanned and semi-metal tanned samples.

m etal ion M o le cu la r fo rm u la  o f the  sa lt

A l3+ AI2(S04)3.16H20
T i4+ Ti(S04)2. 15% w/w solution
\/4 + V0S04.5H20
v5+ NH4V03 (anhydrous)
C r3+ CrK(S04)2.12H20
M n 2+ MnS04.4H20
F e 2+ FeS04.7H20
Fe3+ Fe2(S04)3
C o 2+ Co S04.7H20
N i2+ Ni(S04).6H20
C u 2+ Cu S04.5H20
Z n 2+ ZnS04.7H20

2.2.2. Vegetable tanning extracts

A hydrolysable tanning agent (Myrabalan extract) was sourced from SilvaTeam Spa.

(Italy) and a condensed tanning agent, (Mimosa ME) was obtained from Forestal Co. Ltd 
(UK).

2.2.3. Hide powder

The hide powder used in the experiments was prepared according to the method of 

Brown et al. (2010). A piece of wet salted hide (100cm X 100cm) was processed to the



bated stage according to a conventional process. The bated hide was repeatedly washed 

with excess water and then immersed in a 0.5% solution of acetic acid for 48 hours to 

equilibrate the pH to 5.5. The wet pelt was then cut to small strips and dehydrated 

completely using acetone solvent. Then the strips were removed from the solvent, dried 

at room temperature, ground and stored in sealed plastic bags.

2.2.4. Analytical instruments

2.2.4.1. Differential scanning calorimeter (DSC)

A differential scanning calorimeter, Mettler-Toledo 822e (Mettler-Toledo GmbH., 

Switzerland), was used to determine the shrinkage temperature (Ts) and enthalpy of 

shrinkage transition (AH) of samples. Standard aluminium pans (40pL) were used for all 

measurements. The calorimeter was calibrated with indium metal (/'.e. fusion 

transition: 155.6±0.3°C and enthalpy -28.45±0.5 J/g). A constant flow of nitrogen gas 

(0.2 L/min) was applied during all measurements to regulate heat flow in the oven. The 

thermographs of heat flow against temperature were analysed using Mettler-Toledo 

STARe software.

2.2.4.2. Inductively coupled plasma - optical emission spectrometer (ICP-OES)

A thermo-ICAP 6000 ICP-OES (Thermo Scientific Ltd., Hamel hempstead, UK) was used 

for the analysis of the metal contents by measuring the intensities of emission from the 

elements in argon plasma. Thermo-ITEVA software was used to control parameters of 

measurement and analyse the data. All measurements were carried out with the 

following set up of parameters: 15 L/min of plasma argon flow, 0.5 L/min of auxiliary 

argon flow, sample flash rate of 4 mL/min and sample flow rate 1.3 mL/min.

9

2.2.4.3. pH meter

A Multi-Seven pH meter (Mettler-Toledo GmbH., Switzerland) was used, calibration were

done using phthalate, phosphate and carbonate buffers of pH 4.0, pH 7.0 and 9.2, 

respectively.
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2.2.5. Procedures

Hide powder to be used in the experiments was prepared and characterised by 

determining the pH-value and ash content according to standard methods. Hide powder 

samples were tanned separately with the different metal salts shown Table 2.1 and the

vegetable tanning agents described in Section 2.2.2. A range of semi-metal tanned 

samples were also prepared by retanning the vegetable tanned hide powders different 

metal salts.

The tanning effect of the transition metals with hide powder and vegetable tanned hide 

powder was evaluated by determination of Ts using DSC. The metal content of the 

different semi-metal tanned samples were analysed by ICP-OES. To evaluate the 

permanence of tanning interactions, samples were stored in a conditioned room (21°C 

and 65% RH) and periodic measurements of hydrothermal stability were carried out.

2.2.5.1. Analysis of hide powder

The ash contents of the hide powder were determined in accordance with the official 

methods of analysis, "Determination of ash in hide powder", SLC-127 (SLTC 2000). A 

hide powder sample was dried in oven (110°C) for 12 hours and cooled in a desiccator, 

triplet portions of the hide powder (each weighing 2.5g) were transferred to platinum 

crucibles of known weights, after ignition at 600°C for 2 hours the samples were cooled, 

weight differences were recorded and the average. The average ash contents were 

calculated. The pH of the hide powder was measured using the official method of 

SLTC,"Determination of pH of hide powder" SLC-131 (SLTC 2000).

2.2.5.2. Preparation of metal tanned hide powder samples

Dry hide powder samples (2g) were rehydrated with 20 mL of 5% NaCI solution in 100 

mL flasks and equilibrated over 24 hours to pH 2.6-2.8 using 0.1M acetic acid. 

Calculated quantities of the metal salts (Table 2.1), equivalent to lOOmg of the metal, 

were dissolved in 10 mL of 0.01M of hydrochloric acid and stirred into the separate 

samples. After an hour of stirring the pH was adjusted to 5.0 using 0.1M sodium
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bicarbonate solution, then the samples were heated at 35°C for another 1 hour. Finally, 

the tanned samples were filtered out, then dried and stored at 21°C and 65% RH.

2.2.5.3. Preparation of vegetable tanned hide powder samples

Separate batches of hide powder (5g) were rehydrated for 12 hours with 50 mL of 

5%(w/v) NaCI solution and adjusted to pH 6.5. Tanning was carried out with a total of 

0.5g of tannin powder, equivalent to 10% w/w on the weight of the dry hide powder 

samples. The tannin powder was pre-dissolved in water in 1:10 ratio and stirred into the 

hide powder samples in four equal aliquots at 30 minute intervals. Then the pH was 

adjusted to 4.0 and the tanned hide powder samples were filtered and dried at room 

temperature.

2.2.5.4. Preparation of semi-metal tanned hide powder samples

Dried vegetable tanned hide powder samples, each weighing lg, were rehydrated with 

15 mL of 5% (w/v) NaCI solution in 50 mL flasks for 2 hours and adjusted to pH 2.8-3.0 

using 0.1 M acetic acid. Then 5 mL of 0.1 M solution of the metal ion was stirred into 

each sample, stirring was continued for 1 hour. The samples were heated at 35°C for 1 

hour and the pH was adjusted 5.0±0.1 by drop wise addition of 0.5M sodium 

bicarbonate solution. Then the samples were filtered, rinsed with 5 mL of deionised 

water and dried at 21°C and 65% RH. Control samples of vegetable tanned hide powder 

were processed in the same way but without addition of metal salt.

2.2.5.5. Determination of metal content

The metal content in the semi-metal tanned samples was determined in accordance with 

the IULTCS official method of analysis "Chemical determination of metal content in 

leather" IUC-27/ISO- 17072-1:2011 (IULTCS 2011). Dry samples weighing 0.25 g were 

placed in 25 mL digestion tubes and digested with 5 mL of a ternary acid digestion 

matrix of concentrated acids (nitric acid : perchloric acid : sulfuric acid, volume ratio 

3:1:1). The digestion was carried out for 2 hours at 105 °C in a thermostatic digestion 

block. After cooling to room temperature, analyte solutions of each sample were
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prepared by diluting the digested solution to 50 mL in volumetric flasks using deionised 

water. Standard solutions of each of the metal (0, 5, 10, 15, 20 mg/L) were prepared in 

deionised water. Triplet measurements of the calibration solutions, the analyte solutions 

and a blank solution of the digestion matrix were carried out using ICP-EOS at the 

characteristic optical emission wavelengths of the elements.

The calibration curves of the emission intensities against the gradient concentration

showed correlation coefficient above 0.99 in all cases in all cases. The concentrations iin

each analyte solutions were determined using the calibration curve obtained at particular 

wavelengths. The RSD (relative standard deviation) of concentrations obtained at the 

different optical emission wavelengths of each metal were less than 1%. The average 

metal concentration was determined from the results of triplet measurements. The 

values of metal concentration in the hide powder samples in units of mmol/g were 

calculated as follows:-

M
P x V

A X W

Where

P is the measured concentration of metal in mg/L in analyte solutions 
V is the volume of the analyte solution (0.05 L),
W is the dry weight of samples (0.25 g)
A mass of a milllimole of the metal in mg/mMol

2.2.5.6. Analysis of the hydrothermal stability

Measurements of the temperature and enthalpy of shrinkage were carried out based on 

the method of Chahine (2000). Samples were fully rehydrated with deionised water for 

two hours. After removal of excess water by blotting with filter paper, wet samples (5- 

lOmg) were placed flat at the base of standard aluminium pan (40pL) and hermetically 

sealed. Measurements were carried out using DSC by scanning from 20 to 140°C at the 

heating rate of 5°C/min with an empty sample pan being used as reference. After 

completion of the measurements, the dry weight of the samples was measured after 

heating samples at 110°C oven for 60 minutes to remove all remaining moisture. From 

the thermographs of the measurements, the on-set temperature and enthalpy of the

shrinkage transition were determined and normalised values of enthalpy were

calculated based on dry weight of the measured samples.
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2.3. Results and Discussion

2.3.1. Hide powder

The characteristics of the hide powder prepared in this study (shown in Table 2.2) 

comply with the requirements of pH and ash content stated in the SLTC official methods 

(SLTC 2000). The average Ts hide powder is also similar to the values Ts of untanned 

collagen mentioned in literature i.e. 58-60°C (Reich 2007; Tang et at. 2003; Bozec et al. 

2011).

Table 2.2. Characteristics of the hide powder used in the experiments

parameter Expected values Average values

pH value 5.0-5.5 5.46

Ash content (%w/w) < 0.3 % 0.28 %

Ts, °C 60°C (±2) 59.5 °C

2.3.2. Vegetable tanned hide powder

The hide powder samples that were tanned with 10% of myrabalan and mimosa tanning 

powders showed Ts of 71.5°C and 79.5°C, respectively. As described in Chapter 1 

(Section 1.6), condensed tannins are oligomeric structures of flavonoid monomeric units 

linked in linear or branched geometry through C-C bonds (Porter 1992). The structure 

makes up a relatively larger interlinked polyphenols as compared to hydrolysable tannins, 

which are composed of discrete polyphenolic compounds (Okuda et al. 1991). Hence, in 

the vegetable tanned leathers, the mimosa tannin forms a relatively more rigid matrix 

than the myrabalan tannin.

2.3.3. Shrinkage temperatures of the metal tanned samples

As shown in Figure 2.1, the metal tanned hide powder samples have Ts that are lower
0

than 75°C, with the exception of the Cr(III) tanned sample. The samples tanned with 

Al(III), Ti(IV) and V(IV) have Ts values between 70-73°C, tanned samples as compared 

to the other samples. The results shown in Figure 2.1 are similar to those reported by 

fKallenberger and Hernandez (1984) and Lampard (2000). The effect of Mn(II) and Zn(II)
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in terms of hydrothermal stabilisation appears to be almost negligible, the Ts of the 

collagen samples tanned with these metals was raised only by 1-2°C. The Co(II), Ni(II) 

and Cu(II) tanned samples showed increase in Ts by 6-7°C by tanning with In these 

cases, the tanning effect of the metals may be considered as non-existent because the 

collagen-metal interactions are most likely to be labile electrostatic attractions.
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Metal tanned collagen

Figure 2.1 Shrinkage temperature (Ts) hide powder samples tanned with metals salts

As described in Chapter 1 (Section 1.8), hydrolysis of the metal ions and subsequent 

formation of oligomeric metal-complex species important factor that influences the 

interaction of the metal ions with collagen and resulting hydrothermal stabilisation. The 

tanning effect of transition metal complexes is relatively greater when tannage is carried 

out to at pH values close to the precipitation point of the metal hydroxides (Heidemann

1993; Covington 2009). The primary hydrolysis of the metal ions and the acid-hydrolysis 

constant (Ka) is represented as:-

M(nl,f (h2o )5(OH) + .H+ Ka = [M(nl)+(H20)5(0H)] [H+]

[Nr(H20)6]

In acidic media, Ti(IV) occurs in the form of titanyl ion (TiO)2+ which also extensively 

hydrolyses with pKa value lower than 1. Similarly V(IV) also occurs in oxycation form 

known as vanadyl ion (V0)2+ which hydrolyses with of pKa 6.0. AI(III) and Cr(III) ions
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Figure 2.2 - Shrinkage temperature (Ts) of semi-metal tanned samples prepared from mimosa 
and myrabalan tanned hide powders by retanning with transition metal salts.
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Figure 2.3. Net change in shrinkage temperature (ATS) as a result of retanning of vegetable 
tanned hide powder samples with transition metals.

The mimosa based semi-metal tanned samples of AI(III), Ti(IV), V(IV) and Cr(III) 

showed Ts values of 100°C and above, showing rise of Ts by 21-29°C. The highest Ts of 

all semi-metal tanned samples was that of the mimosa-AI(III) sample (109°C). Similar to 

the case of the myrabalan samples, the mimosa based semi-metal tanned samples of

Mn(II), Co(II),Cu(II) and Zn(II) showed relatively lower rise in Ts as compared to that of 

the mimosa tanned control (Ts 80°C).

Except with the case of the semi-V(IV) tanned samples, the myrabalan based semi-

metal tanned samples have shown slightly greater net increase of Ts (Figure 2.3) as
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compared to the corresponding samples of mimosa bases semi-metal tanned samples. 

This may be related to the greater concentration of the pyrogallol groups in the 

myrabalan tannins resulting in the formation of relatively more stable tannin-metal 

complexes (Sykes et at. 1980). Most of the transition metal show greater hydrothermal 

stabilisation when in retanning vegetable tanned samples, as compared to their 

hydrothermal stabilisation on untanned collagen (hide powder). This indicates that the 

transition metals may be more reactive towards the o-diphenol groups of the tannins 

rather than the carboxyl groups of collagen.

2.3.5. Synergistic hydrothermal stabilisation

In previous studies, the relative degree synergistic hydrothermal stabilisation in semi-

metal samples has been compared in terms of the net increase of Ts beyond the 

summation of the individual the Ts values (Covington and Lampard 2004; Kallenberger 

and Hernandez 1984). The net gain of Ts of as a result of the synergistic effect of 

vegetable tannins and metals (synergy of hydrothermal stabilisation, denoted as (Y) can 

be calculated and compared as follows:-

Where

Y is the synergy of hydrothermal stabilisation, defined as 
Y=ATsm  - ( A T  m+ ATveg) the net increase in Tsby semi-metal tanning beyond the

summation increase in Ts by the individual tanning 
agents,

ATsm is the total rise in the Ts of the semi-metal tanned 
samples relative to that of the untanned hide powder,

ATm is the rise in the Ts due to metal tanning , as compared 
to that the untanned hide powder

ATveg is the rise in Ts due to vegetable tanning, i.e. 12°C for 
myrabalan and 20°C for mimosa.

Except in the case of the semi-Cr(III) tanned samples, the increase in Ts in the semi-

metal tanned samples is greater than summation of the increments of Ts caused by 

vegetable tanning and tannin-metal of hide powder. The Y values of the semi-metal 

tanned samples in this experiment are shown in Figure 2.4. Despite the high Ts value of 

the myrabalan-Cr(III) and mimosa-Cr(III) samples, the value of the synergy of semi-

metal interactions (Y) is actually negative as shown in Figure 2.8. The ATm value for the 

Cr(III) tanned collagen is 38 °C, which is significantly greater than the rise of Ts in the
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semi-Cr(III) tanned samples, 31°C for myrabalan-Cr(III) and 21°C for mimosa-Cr(III) 

samples (shown in Figure 2.3). Hence it is assumed that the predominant interaction in 

both type of semi-Cr(III) tanned samples is the Cr(III)-collagen interaction.

� myrabalan samples � mimosa samples

Figure 2.4. Synergy of hydrothermal stabilisation (Y) in semi-metal tanning of myrabalan and 
mimosa tanned hide powder using transition metals.

The oligomeric complexes of Cr(III) are invariably different from aqueous complexes of 

the transition metal ions. It is known that Cr(III) complexes form a stable covalent bond 

with carboxyl groups of collagen. This interaction may be much stronger than the 

Cr(III)-polyphenol interactions that may exist in the semi-Cr(III) tanned collagen. 

(Covington and Lampard 2004). Semi-Cr(III) tanning of collagen or retanning of 

vegetable tanned collagen with Cr(III) salt gives almost the same Ts as Cr(III)-tanned 

collagen. Hence, the case of Cr(III) retanning of vegetable tanned leather does not

conform to the typical type of synergistic hydrothermal stabilisation observed in other 

semi-metal tanned samples.
9

The Y values are indicative of the degree of cross linking of the polyphenolic structures in 

the hide powder by tannin-metal complexation and formation of a rigid tanning matrix. 

The highest level of synergy of hydrothermal stabilisation (Y=18°C) was observed with 

the myrabalan-AI(III) and myrabalan-Ti(IV). The different types of the semi-Fe(II),
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semi-Ni(II), semi-V(IV)-tanned samples and the mimosa-Ti(IV) show moderate level of 

synergy of hydrothermal stabilisation of collagen with Y values the range of 8-12°C. The 

relatively lower Y values (<5°C) of the semi-metal tanned samples of Zn(II), Cu(II), 

Co(II) and Mn(II) reflects their relatively weak interaction with polyphenols, as 

compared to the strength of the metal-polyphenol interaction of the other metals.

2.3.6. Total metal contents of semi-metal tanned samples

As shown in Figure 2.5, relatively greater metal uptake (>0.35 mmol/gram) was 

observed with the semi-metal tanned samples of AI(III), Ti(IV) and V(IV) as well as 

myrabalan-Cu(II) and myrabalan-Fe(II) samples. All samples of Mn(II), Co(II) and 

Zn(II) showed a relatively low metal uptake in the range of 0.04 to 0.17 mmol/g.

1.00

O)

AI(III) Ti(IV) V(IV) Cr(III) Mn(II) Fe(II) Co(II) Ni(II) Cu(II) Zn(II)

� Myrabalan � Mimosa

Figure 2.5 The Metal contents of semi-metal tanned hide powder samples in mmol per gram of 
dry weight.

As shown in Figure 2.5, the Ti(IV) and V(IV) containing samples also have relatively

greater metal binding and degree of hydrothermal stabilisation with both types of

vegetable tannins (Figure 2.2-3). In contrast, the weak tannin-metal binding interactions

of Mn(II), Cu(II) and Zn(II) is also reflected in the relatively low metal uptake and the

synergy values. With the exception of the myrabalan-Cu(II), metals that showed

relatively greater metal binding also showed greater relatively greater hydrothermal 

stability.
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The myrabalan-Cu(II) showed relatively lower value of synergy value (Y), while the 

metal binding is quite high (0.4 mmol/g), comparable to that of the myrabalan-V(IV). 

This may be related the type of complexation formed with the polyphenolic structure. 

Metal-polyphenol complex formation is pH dependent interaction (Madhan et at. 2006). 

Hydrolysable tannin compounds such as pentagallolyl-glucose can bind AI(III) and Fe(III) 

in solutions with ratios ranging from 2:1 (at pH 4) to 4.5:1 (at pH 6), similarly 

compounds of condensed tannins can bind metals in the ratios 1:1, 1:2 and 3:2 at pH 4 

(Liu 2009, Slabbert 1992; McDonald, 1996). An example of metal binding at multiple 

sites of a hydrolysable tannin compound is shown in Figure 2.6.

Figure 2.6 An example of multi-point binding of metal ions by tannin molecules: Fe+2 
pentagallolyl-O-gallolyl glucose (2:1) complex (Liu eta/. 2009)

In view of the mechanism of semi-metal tanning; the binding of metal ions at multiple

chelating sites of tannins, without formation of crosslinks between polyphenols, may not

bring about increase in Ts. The high metal content of the myrabalan-Cu(II) samples and

its relatively low temperature of synergy indicates that most of the metal ions may be

engaged in multi-point binding with the large tannin compounds that have multiple sites

for complexation with metals. In this case, not all metal binding with tannin molecules

may result in crosslink formation. On the other hand, it is also possible that the metal

complexes might precipitate on the surface of fibres, without being chelated by the o- 

diphenol groups of tannins.
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2.3.7. Permanence of tanning interactions

2.3.7.1. Metal tanned hide powders

All of the metal tanned samples maintained the initially attained Ts value after two

months of storage at 21°C and 65% RH, except those of V(IV) and Fe(II). The average

Ts of the metal tanned samples measured over 64 days is included in Appendix 2a. The

results indicated that, with the exception of the Fe(II) and V(IV) tanned samples, all of

the metal tanned sample maintained constant Ts. As shown in Figure 2.7, Fe(II) tanned

samples showed slight increase in Ts by 3°C with one week of storage. The change in T

was accompanied by a change in colour from white to orange, which is the characteristic

colour of Fe(III) salts. This change is most likely due to the oxidation of Fe(II) ions by air,

commonly observed in aqueous solutions (Greenwood and Earnshaw 1984; Stumm and

Morgan 1996).

AI(III) Ti(IV) V(IV) Fe(II) Cu(II)

Figure 2.7 - Changes in the average shrinkage temperature (Ts) of different metal tanned hide 
powder samples

At the same time, the Ts of the V(IV)-tanned samples declined significantly from 72°C

down to 58°C. The colour of the semi-V(IV) sample changed light blue to yellow. This

change is suspected to be due to formation of vanadates by oxidation of V(IV) by air.
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Aqueous complexes of vanadyl (V02+) ion are also known to undergo slow oxidation to 

V(V) species i.e. dioxovanadium ion (V02+) and vanadates (Sharpe 1986).

The changes observed in the Fe(II) and V(IV)-tanned samples were confirmed by 

preparing hide powder samples tanned with ammonium metavanadate [NH4VO3] and 

Fe(III) sulfate [Fe2S04]. The ammonium metavanadate tanned sample has a bright 

yellow colour and Ts of 58-59°C, while the Fe(III) sulfate tanned sample was an orange- 

yellow coloured sample having Ts of 73 °C. Both of the samples did not show changes in 

hydrothermal stability after storage for 60 days at 21 °C and 65% RH. The fact that Fe(II) 

and V(IV) are oxidised in-situ in the metal tanned samples and the observed changes in 

pH indicated that oxidation is an important factor in determining the permanence of 

tanning interaction.

2.3.7.2. Semi-metal tanned samples

The T s  of the semi-metal tanned samples of AI(III), Cr(III), Mn(II), Co(II), Ni(II) and 

Zn(II) did not show large difference over the 64 days of storage (results shown in 

Appendix 2). At the same time, the Ts of the myrabalan-Ti(IV) and the mimosa-Ti(IV) 

samples a slight decreased Ts by 2-3 °C, while the myrabalan-Fe(II) and the mimosa- 

Fe(II) samples showed relatively greater decline by 23°C and 29°C, respectively. At the 

same time, the Tsof Cu(II) retanned samples were also lower by 6-12°C.

The largest decline in Ts were observed with the V(IV) retanned samples, the mimosa-

V(IV) sample showed remarkable loss of Ts by 15°C in the first two days, while the

myrabalan-V(IV) sample showed even more greater loss of Ts by 21°C. The decline of Ts

in both of these samples progressed further and the decline in Ts of myrabalan-V(IV) and

mimosa-V(IV) over the 64 days was 49°C and 60°C, respectively. The changes observed

in these samples are peculiar in that the Ts dropped to 45-45°C, which is significantly

lower than that of the untanned hide powder (60°C). As shown in Figure 2.8a&b, the

decline of Ts of the samples is appears to be linear with respect to the logarithm of 

storage time (T in days)
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These change occurred at ambient conditions of storage (/.e. 21°C and 65% RH) and in

absence of additional chemical treatments. The decline of Ts below that of the vegetable 

tanned hide powder in the semi-Fe(II) and semi-V(IV) samples indicates that the initially 

established semi-metal tanning interaction has been disrupted and the original structure 

of tannins has also been altered.

0.00 1.00 2.00 3.00 4.00 5.00

»n(T)

(b) -«-Ti(IV) — 'V(IV) — F e f in  — Cu(II)

Figure 2.8 -The shrinkage temperature (Ts) the (a) mimosa based and (b) myrabalan based 
semi-metal tanned hide powder samples, plotted against a logarithmic scale of days log (T) of 
storage at 21°C and 65% RH
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The V(IV) retanned samples have shown significant decline during the drying time. After 

64 days of storage, the Ts of the V(IV)-retanned samples became lower than that the 

untanned hide powder (59.5°C) indicated that the collagen in the samples has undergone 

denaturation.

The observed changes are assumed to be a V(IV) induced degradation process that has 

resulted in the decomposition of the polyphenol structure and breakdown of tanning 

interactions. In addition, the fact that the Ts has dropped below 60°C indicates that, not 

only the polyphenolic tanning matrix but also the collagen in the semi-V(IV) tanned 

samples has been altered.

Changes in the Ts of tanned collagen reflect the degree of stabilisation or destabilisation 

of the collagen matrix (Covington 2009). While tanning results in an increase in 

hydrothermal stability, certain chemical environments such as treatment of fibrous 

collagen with hydrogen bond breakers e.g. urea decrease the Ts by the breaking the 

hydrogen bonds that stabilise the protein (Usha and Ramasami 2004). The presence of 

excess acidity or formation of hydrolytic conditions also result in the structural 

denaturation of collagen that is also reflected in lowering of the Ts below 60°C (Chahine 

2000; Larsen 1996).

The above described cases of semi-metal tanning that exhibited subsequent loss of 

hydrothermal stability (i.e. semi-V(IV), semi-Fe(II) and semi-Cu(II) tanned) represent 

the occurrence of

• Initial stabilisation in the tanning matrix: reflected in the initial increase in Ts as a

result of tanning due to formation tannin-metal complexes in the polyphenolic 

matrix,

• Progressive destabilisation in the tanning matrix: reflected in the progressive 

decline in Ts, loss of the synergy of hydrothermal stabilisation by tannin-metal 

interaction and disruption of the polyphenolic tanning structure,

• Denaturation of collagen: reflected in the decline of Ts below 60°C, particularly 

observed in this experiment with the V(IV) containing samples.
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Hence the semi-metal tanning interaction in these samples may be considered to be

transient (unstable or metastable) tanning interactions. It is observed that the chemical

reaction responsible for the decline of Ts may also caused changes in the structure and 

composition of the samples.

2.3.7.3. Change in the enthalpy of shrinkage

The shrinkage enthalpy (AH) values per dry weight of the semi-metal tanned hide 

powder samples were in the range of 11.0 to 12.4 J/g in the case of the myrabalan 

samples and 11.5-14.1 J/g with the mimosa samples (Appendix 2c). With the exception 

of semi-V(IV) samples, all AH the values remained relatively the consistent, showing 

variations by less than 1 J/G. However the AH of the semi-V(IV) samples was lowered to 

6.5 J/g and 7.48 J/g after one month of storage (Table 2.3), at the same time the Ts was 

lowered considerably below that of untanned collagen. The significant lowering of the AH 

values after 32 days of storage (at 21°C and 65% RH) indicates that the collagen in the 

semi-V(IV) tanned samples has undergone structural changes i.e. the triple helical 

structure has been altered. Studies on the deterioration of vegetable tanned leather has 

shown that decline in the enthalpy of shrinkage may indicate the presence of 

denaturation of collagen (Chahine 2000). Treatment of collagen with 6M of urea 

(NH2)2CO, which is a known hydrogen bond breaker, causes denaturation that is 

reflected in the decline of both the Ts and the enthalpy of shrinkage (Usha and 

Ramasami 2004).

Table 2.3 -  Changes in enthalpy (AH) and T s of mimosa-V(IV)and myrabalan-V(IV) 
tanned samples

Time
(days)

semi-V(IV) samples

mimosa-V(IV)

Ts, (±1) °C AH,(±0.2) J/g

myrabalan-V(IV)

Ts, (±1) °C AH, (±0.3) J/g

0

2

8

94.6

77.3

73.3

. 12.11 

11.31 

11.86

105.3 

74.7 

72.4

13.2

13.3 

12.12

32

64

60.9

43.4

11.27 

7.48

67.6

44.1

9.96

6.65
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The decline in the value of the AH value of the semi-V(IV) after 32 days of storage at

ambient condition indicates that the collagen in the sample has been denatured as a

result of a reaction tannin-V(IV) complex. It was also observed that, a moist mimosa-

V(IV)-tanned hide powder, after 64 days of storage at 21°C and 65% RH showed signs of

gelatinisation in terms of physical appearance.

These may be related to oxidation of the metal ions by air, leading to reversal of tanning

interactions in the same manner as in the V(IV) and Fe(II) tanned hide powder. In

addition, the formation of V(V) by oxidation may have resulted in the decomposition of

the tanning matrix. The denaturation of collagen as observed in the semi-V(IV) samples,

indicates that there may be further reactions, originating from the tannin-metal redox

interaction, that resulted in denaturation of the collagen. The progressive nature of the

loss of Ts indicated that the mechanism of these changes may be related to a continued

interaction of the metal containing samples with oxygen.

The V(V) and Fe(III) species that can be formed by oxidation of Fe(II) and V(IV) by air

are known to have oxidative effect as observed with lower molecular weight o-diphenolic

compounds (Kustin and Toppen 1974; Bark et al. 2012). Hence, the tannin-Fe(III) and

tannin-V(V) interaction may involve redox reactions that contributed to the

decomposition of the polyphenols, resulting in the observed decline of the Ts of the semi-

metal tanned samples below the Ts of the vegetable tanned hide powder.

In relation to denaturation of collagen in the semi-V(IV) tanned samples; it is observed

these metal ions do not cause lowering of the Ts of the hide powder significantly below

59.5 °C (Section 2.3.7.1), indicating that the collagen-V(V) interaction does not lead to

denaturation. Therefore, it is assumed that the tannin-metal interactions in the semi-

V(IV), semi-Fe(III) as well as semi-Cu(II) tanned samples may be responsible for the

possible creation of a redox mechanism that caused denaturation of the collagen.
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2.4. Summary

With the exception of Cr(III), tanning collagen samples with transition metal salts 

resulted in lower Ts (<73°C). Varying levels of rise in Ts were observed when vegetable 

tanned samples were retanned with metal salts (semi-metal tanning). The Semi-metal 

tanned samples of AI(III), Ti(IV), Cr(III) and V(IV) showed relatively high Ts exceeding 

100°C. In these cases, the net increase of Ts resulting from retanning of the vegetable 

tanned samples with the metal salts (ATS) was 20-31°C. On the other hand, the semi-

metal tanned samples of Fe(II) and Ni(II) showed moderate level of hydrothermal 

stabilisation with the ATS values being 15-19°C. The semi-metal tanned samples of 

Mn(II), Co(II),Cu(II) and Zn(II) showed a relatively lower ATs of 6-ll°C. Increase in Ts 

during retanning of vegetable tanned collagen with metal ions occurs as a result 

crosslinks formed in the polyphenol tanning matrix by metal-tannin complexation.

The hydrothermal stability of the semi-metal tanned samples is determined mainly by 

the strength of tannin-metal interaction, rather than by the metal content. Metals that 

are susceptible to oxidation by air may cause changes in the tanning structure as 

observed with the changes in the Ts of the Fe(II), V(IV) and Cu(II) containing samples. 

The decline in Ts is attributed to decomposition of the tanning matrix caused by 

autoxidation of metal ions and tannin-metal redox interactions. The observed changes 

are considered to be cases of metal induced degradation of tanned collagen.

In the case of the semi-V(IV) samples, the Ts dropped below that the untanned collagen 

and the enthalpy of shrinkage transition became was lowered significantly after one 

month of storage at ambient condition, indicating the possible occurrence of 

denaturation. The progressive loss of hydrothermal stability in these samples reflects the 

metastable nature of the semi-metal tanning interactions and the presence of an 

oxidative mechanism resulted in denaturation of collagen.

The results described in this chapter were presented at the XXXII Conference of the

International Union of Leather Technologists and Chemists Societies (IULTCS), May 28- 

31, 2013, Istanbul Turkey.
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Chapter 3 Stability and degradation in semi-metal tanned leathers

3.1. Introduction

The results described in Chapter 2 indicated that semi-V(IV), semi-Fe(II) and semi- 

Cu(III) exhibited decline in hydrothermal stability during storage at ambient conditions. 

The observed changes indicated that the metal-tannin interactions in the above 

mentioned samples were unstable. Furthermore the occurrence of collagen denaturation 

(particularly with the semi-V(IV) samples), showed the possibility of degradation of the 

leather due to the redox reactions triggered in by the metal-tannin complexes.

The autodegradation observed in the hide powder sampels was also expected to occur in 

leather samples. This chapter describes the experiments carried out to study changes in 

the properties of the semi-metal tanned leathers of V(IV), V(V), Fe(II), Fe(III), Ti(IV) 

and AI(III). The semi-metal tanned samples were studied in comparison with vegetable 

tanned leathers. The Fe(II) and V(IV) induced degradation of Cr(III) tanned leathers was 

also investigated. The features of metal induced degradation of leathers were 

characterised in terms of changes in the hydrothermal stability, tensile strength and fibre 

structure. In order to understand the changes occurring in the semi-metal tanning 

matrix, particularly in relation to degradation, analysis of phi-value and water-extractable 

metal content were carried out.

In the semi-metal tanned samples, redox reactions of metal ions may involve one- 

electron transfer with tannins. Accordingly, the possibility of formation for organic free- 

radicals in the leather samples was suspected. Therefore, electron paramagnetic 

resonance (EPR) spectroscopy was used to obtain qualitative information related to the 

oxidation states of iron and vanadium in the leathers. In addition, a quantitative EPR 

analysis on the relative abundance of free-radicals in different semi-metal tanned 

leathers was also done.

Based on the redox properties of V(IV) and Fe(II) and the results of the experiments 

carried out in this study, the features and possible mechanism of metal induced 

autodegradation of leather are summarised.
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3.2. Materials and methods

Pickled sheep skins (pH 1.5) of UK origin were used for preparation of vegetable tanned 

and Cr(III) tanned leathers.

3.2.1. Chemicals

The following analytical grade chemicals were obtained from Fisher-Scientific Ltd. (UK): 

glacial acetic acid (99% w/w), anhydrous sodium acetate (99% w/w), nitric acid (70% 

w/w), perchloric acid (70% w/w), sulfuric acid (98% w/w) and standard solutions of 

metals (1000 ppm). The metal salts described in Chapter 1, Section 2.2.1 were also 

used in the experiments.

3.2.2. Tanning agents

The hydrolysable tanning powders, myrabalan and chestnut tanning extracts were 

obtained from (SilvaTeam Spa., Italy). The condensed tannins (Mimosa ME, Forestal 

Ltd., UK) and quebracho tannin (Indusol ATO, SilvaTeam Spa., Italy) were used for 

sample preparation. Basic Cr(III) sulfate (Chromosal B, Lanxess GmbH., Germany),

having 25 % (w/w) Cr203 content and 33% basicity, was used for preparation of Cr(III) 

tanned samples.

3.2.3. Analytical instruments 

Differential scanning calorimeter (DSC)

A differential scanning calorimeter (Mettler-Toledo 822e, Mettler-Toledo Ltd. 

Switzerland) was used in the experiments for measurement of the Ts of the samples.

Inductively coupled plasma - optical emission spectrometer (ICP-OES)

Measurement of metal contents in analyte solution was done using the ICP-OES Thermo- 

iCAP6000 (Thermo-scientific Ltd., Hemel Hempstead, UK)

Physical testing instrument

Instron 5567 (Instron Co. Ltd. USA) was used for measurement of the tensile strength 

and % elongation-at-break of the semi-metal tanned samples.
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Scanning electron microscopy (SEM)

Assessment of the fibre structure in the leather samples was done using Hitachi 3000N 

(Hitachi Co. Ltd., Japan).

Electron paramagnetic resonance spectroscopy (EPR)

EPR analyses of samples was carried out at Manchester University, Chemistry 

department using a Bruker EMX Micro X-band EPR Spectrometer (Bruker Co. Ltd., USA), 

equipped with ET 4122 SHQ resonator.

Freeze drier

A CHRIST-LSC plus-16 freeze drier (Martin-Christ GmbH., Germany) was used in sample 

preparation for EPR and SEM analyses.

3.2.4. Sample preparations

3.2.4.1. Vegetable tanned leathers

Fourteen pickled sheep skins or twenty eight sides were tanned with quebracho, 

mimosa, chestnut and myrabalan tanning agents as described in Appendix 3. From each 

of the vegetable tanned leathers, two samples of equal size were cut out from the 

standard sampling location in accordance with the guideline of standard sampling 

position SLP 02 stated in the SLTC Official-methods of analysis (SLTC 2000).

3.2.4.2. Semi-metal tanned leathers

The semi-metal tanned samples, described in Table 3.1, were prepared by retanning the 

samples of different vegetable tanned leathers with the sulfate salts of AI(III), Ti(IV), 

V(IV), Fe(II), Fe(III) and ammonium metavanadate. Samples of the vegetable tanned 

leathers were kept as controls without retanning.

Table 3.1 Sample table of semi-metal tanned leathers

metal
vegetable tanned leathers

myrabalan chestnut mimosa quebracho

AI(III) myrabalan-AI(III) chestnut-AI(III) mimosa -AI(III) quebracho - AI(III)
Ti(IV) myrabalan-Ti(IV) chestnut - Ti(IV) mimosa -Ti(IV) quebracho- Ti(IV)
V(IV) myrabalan-V(IV) chestnut-V(IV) mimosa -V(IV) quebracho-V(IV)
V(V) myrabalan -V(V) chestnut - V(V) mimosa -V(V) quebracho- V(V)
Fe(II) myrabalan-Fe(II) chestnut - Fe(II) mimosa -Fe(II) quebracho - Fe(II)
Fe(III) myrabalan-Fe(III) chestnut -Fe(III) mimosa -e(III) quebracho- Fe(III)
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3.2.5. Cr(III) tanned leathers

Two picked sheep skins were tanned with basic chromium sulfate according to the 

process described in Appendix 5. Two pieces of Cr(III) tanned leathers were retanned 

separately with chestnut and mimosa tannins. The process of preparation of the Cr(III) 

tanned leather and retanning with the vegetable tanning agents are shown in Appendix 

6. The vegetable retanned Cr(III) leathers samples are referred to as Cr(III)-chestnut 

samples and Cr(III)-mimosa samples.

3.2.6. Analysis of semi-metal tanned samples

After sample preparation, all of the samples were kept in a conditioned room at 21°C and 

65%. Periodic analysis of the leather samples were carried, the tensile strength and % 

elongation-at-break of the samples were measured at different times of storage. The 

permanence of metal-tannin binding in the samples was examined by analysing the 

quantity of metal extractable by deionised water. The fibres structure of the leather 

samples was also examined using SEM.

3.2.7. Shrinkage temperature measurement

Shrinkage temperature measurements were carried out according to the method of 

Chahine (2000) as described in section 2.3.3.9 in chapter 2. Measurements of shrinkage 

temperature of each sample were carried out immediately after sample preparation, 

followed periodic measurements after 2, 4, 8, 32, 64, 128, 256 and 360 days of storage 

at 21°C and 65% RH.

3.2.7.1. Tensile strength and % elongation-at-break

The tensile strength at break (MPa) and % elongation-at-break of the leather samples

stored at 21°C and 65% RH were measured according to the SLTC official methods of
*

analysis SLP6, 'Measurement of tensile strength and % elongation-at-break' leather 

(SLTC 2000). The measurements tests were carried out initially (after 48 hours of drying 

at 21°C and 65% RH), followed by measurements after 1, 3, 6 and 12 months of storage 

at the same condition. All measurements were carried out using identical sized samples
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that were cut out from the standard sampling locations using a standard cutter dies. The 

test length of the samples was 20 mm, the width of samples in all measurements was 

4.0 mm and the thickness of samples varied between 1.20-1.40 mm. The values of the 

tensile strength at break (MPa) of the samples are calculated as the ratio of the 

maximum force recorded at the rupture of the samples to the initial cross-section area. 

The % elongation-at-break of the samples were calculated at percent ratio of the 

extension of the samples at the breaking point to the initial test length (20mm).

3.2.7.2. Determination of total metal content

The total metal content of the semi-metal tanned samples was determined according to 

the official methods of the International Union of Leather Technologists and Chemists, 

"Determination of Total Metal Content in Leather" IUC27/part 2 (IULTCS 2011). The 

procedure described in Chapter 1, Section 2.2.5.5 was used to determine the metal 

content of dry leather samples in mmol/g.

3.2.7.3. Determination of water-extractable metal content

To determine the water-extractable metal in the semi-metal tanned samples, 0.25g of 

each the leather samples were immersed in 5 mL of deionised water for 24 hours. After 

filtering out the leathers, the filtrates were digested with 5 mL of the ternary acid- 

mixture at 100°C for 2 hours, cooled and diluted to 50 mL in volumetric flasks. The 

concentration of metal in the analyte solution of aqueous extracts was determined from 

the spectrometric measurement. The relative quantity of extractable metal (%w/w) were 

calculated as the ratio of metal concentration of the analyte solution of aqueous extract 

to the concentration of the analyte solution of the digestion of leather samples.

P
Extractable metal » °/o(w /w ) = XlOO

Ptot

Where:-

• Pext is the measured concentration of metal in mg/L of measured in the 50 mL analyte solution 

prepared from the digestion of aqueous extracts of leather samples,

• Ptot is the measured concentration of metal in mg/L of the analyte solutions prepared from 

digestion of leather samples.



Chapter 3 Stability and degradation in semi-metal tanned leathers

3.2.7.4. Analysis of pH

The pH values of the samples were analysed according to the SLTC official method for 

"Determination of pH of leather", SLC-06 (SLTC 2000). Samples (weighing lg) were cut 

to small pieces and immersed in 10 mL of deionised water for 24 hours and pH was 

measured.

3.2.7.5. Scanning electron microscopy

The fibre structure of the semi-metal tanned samples was observed using the SEM, 

Hitachi S3000N-SEM (Hitachi Co. Ltd., Japan). The porosity of the fibre structure and 

morphology of the fibres were examined visually after 6 months of storage at 21°C and 

65% relative humidity.

3.2.8. Analysis of V(IV) and Fe(II) induced degradation

3.2.8.1. Mimosa tanned samples

Ten samples of mimosa tanned leather (each weighing 2 g) were cut into small pieces 

and rehydrated in sample tubes with 10 mL acetate buffer (pH 4.0). The first 5 samples 

were treated with different quantities of VO(S04) salt equivalent to 2, 20, 40 and 80 mg 

of V(IV), which corresponds to 0.1, 1.0, 2.0, 4.0% (w/w) of V(IV) on the weight of the 

dry samples. The other five samples were treated in the same manner using V(V) ion 

using NH4(V03) salt. After addition of the salt, the samples were placed on a shaker for 

15 minutes, the pH of the samples was adjusted to pH 4.0 and after 2 hours, the 

samples were filtered, dried and kept at 21°C and 65% RH. The Ts of the samples was 

measured immediately after sample preparation and after 2, 8, and 32 days of storage 

at 21°C and 65% RH.

3.2.8.2. Cr(III) tanned samples

Pieces of Cr(III)-tanned, Cr(III)-chestnut tanned and Cr(III)-mimosa tanned leathers

(5g each) were fully rehydrated acetate buffer (pH 4.0) for 6 hours and treated with

different concentrations of Fe(II) and V(IV) ions. The first three samples, from each type

of leather, were transferred to separate bottles and treated with 250 mg of

V0(S04).5H20 in 25 mL of acetate buffer (pH 4.0). The second set of the samples were
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treated in the same manner but with 270 mg of Fe2(S04).7H20 added to each sample as 

250 mg of Fe(S04).7H20. In both cases the quantity of metal ion applied was 1% w/w 

relative to the weight of the leather samples.

The bottles containing in the V(IV) and Fe(II) treated samples were stirred on a rotary 

shaker for 2 hours, the treatment solution was discarded, the samples were dried and 

stored in an oven at 40°C. The hydrothermal stabilities of the samples were measured 

periodically and the changes in the fibre structure of the samples were observed using 

scanning electron microscope.

3.2.9. Electron paramagnetic resonance spectroscopy

The following brief outline of the basic principles of EPR spectroscopy is provided as 

described by Murphy (2009) and Duin (2013). Electron paramagnetic resonance 

spectroscopy is used to analyse chemical structures in substances containing free- 

radicals and coordination complexes with paramagnetic centres. Electrons are charged 

particles in spin and orbital motion and generate magnetic fields. An electron spins 

around its axis, with a spin angular quantum number (S) which can be parallel or co- 

linear with the axis of rotation, the spin quantum number may assume values of +V2 or - 

1/2. Its spin magnetic momentum (ps) is expressed as:-

Ms = -ge. Mb. s
Where:

• ge is the Lande splitting factor (g-factor) of electron, 
a dimensionless constant having value of 2.0023

• pb is a fundamental constant for the magnetic dipole 
moment of electron (Bohr Magneton constant) 
9.27400968xl0“24 J/T

The Zeeman Effect

When exposed to an external magnetic field (B), the spin magnetic momentum (ps) of

an unpaired electron becomes directionally aligned or opposed to the magnetic 

momentum of the applied field. Subsequently, the electrons will be in different energy 

states due the interaction of the two magnetic fields. The resulting splitting of energy 

levels in the population of the unpaired electrons (degeneracy) is known as the Zeeman
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Effect (shown in Figure 3.1a). The energy (E) of interaction between the external field 

and the election spin magnetic momentum is related to the applied magnetic field as:-

E= Ms.B =±(1/2). ge . Mb.
Hence, the electrons with Ms +V2 or -V2 will have an energy difference of

AE = ge. Mb.
The unpaired electron may undergo transition between the upper and lower energy 

states by either absorbing or emitting a photon of energy of

AE= h.v

Where h is the Planck's' constant (6.626 xlO~3 J/S) and v is the frequency of microwave 

radiation in Hertz (Hz).

E '= + y 2.ge.pb.B

ge. |Jb.B —h.v

e '= -y2. ge. Mb 3

Figure 3.1. A diagram showing (a) the Zeemann effect or splitting of energy states of an electron 
due to interaction with an external magnetic field and (b) profile of an EPR absorption spectra and 
the corresponding first-derivative.

The most commonly used EPR spectrometer is in the range of 9-10 GHz, known as the 

X-band. In EPR spectroscopy, the sample may be subjected to a constant microwave 

radiation and the spectra can be obtained by scanning the magnetic field. EPR data may 

be analysed as absorbance spectra or its first derivative as shown in Figure 3.1b.

Spin-relaxation and saturation

At thermal equilibrium and under the influence of the external applied magnetic field, the 

spin population is split between the two Zeeman levels according to the Maxwell -

Where:-

k is the Boltzmann constant,

Ni and N2 the spin populations having Ms ( + V2 and -V 2 respectively)

T the absolute temperature in Kelvin

Boltzmann law:

N1
N

e
AE/kT

2
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In a 300 mT magnetic field at the temperature of 298K, the distribution IVI\I2 is 0.9986. 

Since the distribution between the two Zeeman levels is not equal, transitions from the 

Ms - 1/2 to the Ms +V2 states are possible. However, the observed signal may fade quickly 

because the transition would equalise the two energy states. To maintain the signal, 

there has to be energy loss in the system and a return back to the N2>Ni condition. The 

mechanism energy loss, known as spin relaxation, occurs through exponential decay of 

energy into vibrational and rotational energy (spin-lattice relaxation) and through 

exchange of energy between the two states (spin-spin relaxation).

When the spin-lattice relaxation time is too long, electrons do not have time to return to 

the ground state. The populations of the two levels tends to equal and the intensity of 

the signal decreases, being no longer proportional to the number of spins. This effect is 

known as Saturation. Since EPR analysis of samples has to be carried out at conditions of

signal non-saturation, the incident microwave power is an important control parameter. 

Commonly, EPR signal saturation is prevened by tuning to a lower range of microwave

power.

The g-factor and hyperfine splitting

EPR spectroscopy may also be used to obtain information regarding the environment of 

the paramagnetic centres or the free-radicals. Practically, the g-factor of an unpaired 

electron in a molecule or metal complex is not exactly equal to ge. This is because the 

unpaired electron's net angular momentum also includes its orbital angular momentum. 

The g-value of a paramagnetic centre or radical is determined by the effects of the local 

magnetic fields produced by magnetic nuclei. Hence the effective magnetic field 

interacting with the unpaired electron and the effective g-factor may be expressed as:-

etf 0 ( 1 -CT)

eff 0
g e

9 e ff

Where:-

B0 is the applied magnetic field,

Beff is effective magnetic field,
ct is the magnetic shield factor results in decreasing or 

increasing the effective field due to local environment 
ge is g-factor of electron 
geff is the effective g-factor
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In many organic radicals, the contribution of the orbital angular momentum is negligible, 

hence the g-factor is considered to be equal to ge. In contrast, unpaired spins in 

transition metal ions or complexes typically have larger values of angular orbital 

momentum and interact with a non-zero nuclear spin. The magnetic moment of the non-

zero nuclear spin also interact with the spin angular momentum of the unpaired electron. 

As a result, the EPR spectrum is split into multiplet signals; this is known as hyperfine

splitting. A nuclear magnetic quantum (I), which is multiple of V2 , would result in 21+1 

splitting lines.

Quantitative EPR

The area under the absorption spectrum of an EPR signal may be integrated, similar to 

optical spectroscopy, as a direct measure for the concentration of unpaired electrons. 

Unlike electronic absorption spectroscopy, however, there is no 'extinction coefficient' in 

EPR spectrometry all S = V2 systems are assumed to absorb equally. Standards of known 

spin concentration (spin count per unit weight) are used for the estimation of spin 

concentration of samples.

3.2.9.1. Samples for EPR analysis 

Hide powder samples

Preparation of V(IV) and V(V) treated hide powder samples was carried out as follows. 

Two hide powder samples (2g each) were rehydrated with 20 mL of acetate buffer 

(0.1M, pH 5.0) in separate flasks and treated with 101 mg of V0(S04).5H20 and 50 mg 

of NH3(V03) i.e. 20mg of metal relative to the on the dry weight of hide powder. The 

treated samples were dried in a desiccator over 72 hours.

Mimosa powder samples

Four samples of mimosa tanning powder (Forestal Co. Ltd., UK), weighing lg each, were 

dissolved in 10 mL of deionised water, the first three of the samples were treated with 

AI2(S04)3.16H20, VO(S04) and Fe(S04).7H20 in calculated quantities equivalent to 1% of 

metal ion (10 mg) on the weight of the tanning powder. In each case, the fourth sample 

(no metal salt) was kept as control. The samples were stirred for 30 minutes at room
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temperature and then dried by evaporating the water under vacuum (O.lmbar) using a 

freeze drier over 24 hours at -20°C

Leather samples

The mimosa tanned leather and mimosa-based semi-metal tanned leathers of Al(III), 

Fe(II) and V(IV) were analysed with EPR spectroscopy. At the time of analysis, the 

samples have been kept at 21°C and 65% RH for more than 6 months. As described in 

Sections 3.3.2.1, 3 &4, while the Ts of the mimosa-AI(III) has remained the same, the 

other two have shown remarkable decline during storage. The main purpose of the EPR 

analysis of the samples was to ascertain the occurrence of redox transitions in the metal 

ions (particularly iron and vanadium species). In addition, comparative analysis of free- 

radical concentration was carried out (Section 3.2.9.3) in order to examine the 

relationship between the metal induced oxidative degradation in relation to formation of 

free-radicals in the leathers.

3.2.9.2. EPR spectral analysis

Leather samples were cut into 3.5 x 20 mm pieces were weighed and loaded into similar 

quartz tubes. Spectra were collected at ambient temperature (293 K) at X-band 

frequency (9.87 GHz) on a Bruker EMX Micro spectrometer. In each case, the average 

spectrum of 8-scans were obtained over the magnetic field range 0-700 mT with scan-

time of 164.7 seconds.

3.2.9.3. Analysis of free-radical concentration in leather samples

For the quantitative analysis, spectra were acquired using modulation amplitude of 0.1 

mT and microwave power of 10 mW. The receiver gain was adjusted to prevent signal 

saturation. The spin concentrations were quantified using a weak pitch standard (Bruker 

Co. Ltd. UK) with an estimated 1.2 x 1013 spins per cm containing carbonaceous radicals 

(Eaton et al. 2010).

A spectral measurement of the standard, diluted in potassium chloride (KCI), was 

recorded using the same parameters used for the samples and used for calibration. A
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polynomial function of third-order was subtracted to remove baseline distortions in the 

spectrum. The signal (over 700 mT) was double integrated to determine the intensity. 

Likewise, a double integration of the signals of each leather sample performed in the 

same manner to estimate the spin concentration (spins per mg) in each sample.

3.3. Results and discussion

3.3.1. Colours of semi-metal tanned leathers

Retanning of the vegetable tanned leathers with the transition metal salts resulted in a 

distinct change of colour (shown in Table 3.2) that occurs due to metal-to-ligand charge 

transfer between the aromatic hydroxy ligands of tannin compounds and the metal ions 

(Pierponts and Lange 2007; McDonald, et at. 1996; Andjelkovic et at. 2006). It has been 

suggested that Fe(II) does not create stable complexes with the o-diphenol moieties of 

tannin, the distinct blue colour is assumed to be the result for formation of Fe(III)-tannin 

complexes (Slabbert, 1992). The semi-metal tanned samples of V(V) have a deep blue 

colour, the same as that of V(IV). It is known that the reaction between V(V) species 

and tannin compounds involves both redox transformation of the V(V) to V(IV) and blue 

complex formation with V(IV) ions (Nakajima et at. 2000; Ferguson and Kustin 1979).

Table 3.2. The colours of semi-metal tanned leather samples.

Type of sample
Vegetable tanned leathers

myrabalan and chestnut mimosa and quebracho

No metal 

semi-AI (III)

yellow

yellow

light red-brown 

light red-brown

semi-Ti (IV) orange orange

semi-V(IV) dark blue dark blue

semi-V(V) dark blue dark blue

semi-Fe(II) blue blue

semi-Fe(III) blue blue

During the storage of samples at ambient conditions (21°C and 65% RH), the colour of 

the semi-V(IV) and semi-V(V) samples changed progressively from blue to green. At the 

same time, the semi-Fe(II) and semi-Fe(III) samples showed slight fading of the initial
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deep blue colour. This may be related to the structural change in the chromophore

groups of the tannin and formation of new complexes due to possible redox reaction

taking place in the leather samples. The colour of the semi-AI(III) and semi-Ti(IV) did 

not show significant change.

3.3.2. Shrinkage temperatures (Ts) of semi-metal tanned leathers

The highest Ts, exceeding 110°C were observed with the chestnut and mimosa leathers 

retanned with AI(III), Fe(II) and V(IV) as shown in Figure 3.2. Nevertheless, the Ts of all

of the samples were greater than 100°C, except for the semi-V(IV) samples and the 

myrabalan (V) sample.

120

No m e ta l  A l ( I I I ) r.(IV ) V (IV )

T im e  ( d a y s )

V (V )  F e ( I I ) F e ( I I I )

� M y r o b a l a n � C h e s tn u t a M i m o s a � Q u e b r a c h o

Figure 3.2. Shrinkage temperature of vegetable tanned leathers and a range of semi-metal 
tanned leathers prepared using sulfate salts of AI(III), Ti(IV), V(IV), V(V), Fe(II) and Fe(III).

Semi-metal tanning using hydrolysable tannins, that essentially have multiple gallolyl 

units, are generally expected to result in a greater increase of Ts in semi-metal tanning, 

as compared to most of the condensed tannins Sykes et al. (1980). Mimosa extract 

exhibits a semi-metal tanning effect similar to the hydrolysable tannins (Covington et at. 

2005). Quebracho tannin, which is composed of profisetinidine and procyanidine tannins 

(/'.e. no pyrogallol moieties) also showed similar effectiveness in terms of hydrothermal 

stabilisation through semi-metal tanning with different metals.

It is also noted that the semi-metal tanned samples of the hydrolysable tanning agent 

have slightly greater Ts value only in the case of the chestnut-Fe(II). With the other 

samples, the Ts of the mimosa based semi-metal tanned samples show greater Ts. The
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semi-Fe(II) samples have slightly greater Ts than the semi-Fe(III). As suggested by

Slabbert (1992), Fe(II) is readily oxidised in acidic medium to Fe(III), which exhibits

stronger binding or complex formation with tannins. Hence the semi-Fe(II) tanning

effects may be attributed to in situ formation of Fe(III) complexes in the polyphenolic 

matrix.

The Ts of the semi-V(V) samples are relatively lower as compared to the other samples. 

The V(V) used in preparation of the sample (metavanadate V03") is not expected to form 

stable complexes with polyphenols because its reaction with the o-diphenol groups at the 

tanning conditions (/.e. acidic media), is most likely to be a redox interaction rather than 

complexation. However, the increase in the Ts (or ATS) for the semi-V(V) tanned 

samples, relative to that of the vegetable tanned controls, is in the range of 12-22°C, 

which indicates significant level of tanning action by V(V). According to Kustin et at. 

(1974), vanadium(V) species can oxidise the o-diphenol moieties of polyphenols. 

Therefore, the tannin-V(V) interaction most likely involves reduction of the 

metavanadate (V03~) and formation of hydrated oxovanadium (V02+) species during the 

tanning process, the cationic V(IV) species can form complexes with tannins resulting in 

the increase of Ts as observed with the semi-V(IV) tanned leathers.

3.3.2.1. Vegetable tanned and semi-AI(III) tanned leathers

The Ts of the vegetable tanned leather (control samples) and semi-AI(III) tanned did not 

show significant difference over one year of storage at ambient conditions. The leather 

samples stored under ambient condition remained stable. The tanning interaction 

between polyphenols and collagen is not reversed spontaneously. Studies on 

deterioration of leather-made historical artefacts (Larsen 1996; Chahine 2000; Thomson 

2006; Florian 2006) show that decline in hydrothermal stability and changes in physical 

properties in vegetable tanned leathers occurs only when the leathers are exposed to 

hydrolytic and oxidative conditions over a long period of time.
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3.3.2.2. Semi-Ti(IV) tanned leathers

The semi-Ti(IV) leathers exhibited a slow decline in Ts, the average temperature of these

samples was reduced from 106°C to 92°C over one year time (Figure 3.3 a&b). Since the

Ts of the semi-Ti(IV) leathers was not reduced below that of the initial vegetable tanned

leathers, the observed change is not considered to be a case of metal-induced

degradation. This because the observed deline in Ts is indicative of only reversal of the

metal-tannin interaction, not structural disruption in the polyphenolic tanning matrix.

The tanning effect of the polyphenols in the leather prevail, regardless of the observed

change in Ts.

(a) Myrabalan-Ti(IV) Chestnut-Ti(IV) (b)
Mimosa-Ti(IV) Quebracho-Ti(IV)

Figure 3.3. Results of periodic measurements of the Ts of semi-Ti(IV) tanned leathers over 12 
months of storage at 21°C and 65% RH, showing samples prepared with (a) hydrolyable tannins 
and (b) condensed tannins.

The decrease in Ts by 14-15°C may represent the occurrence of certain structural

changes in the Ti(IV)-tannin complex resulting in the reversal of the tanning interaction

formed during the tanning process. A similar case of lowering of the Ts of semi-Ti(III)

and semi-Ti(IV) leathers was observed earlier by Lampard (2000). Titanium(IV) or the

titanyl ion has high charge density and is prone to hydrolysis in aqueous media (Persson

2010; Grzmil eta/. 2008). The semi-Ti(IV) leather samples most likely would contain the

polymeric ions (poly-titanyl ions, [TiO+2]n) forming a complex with the tannin molecules.

During retanning of the vegetable tanned leathers with Ti(IV), both the metal-tannin

complex formation and the hydrolysis of Ti(IV) ion (formation of polytitanyl ion) may
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occur concurrently as the pH is raised to 5.0. Subsequently, part of the Ti(IV) may have 

been deposited in the leather as polymeric metal ions species. During storage of the 

samples, the Ti(IV)-tannin complexation may be broken down due to further hydrolysis 

of titanium ions (i.e. further hydrolytic polymerisation into polytitanium ions).

Titanium(IV) is the most stable oxidation state of the metal, its electrochemical 

reduction may require acidic media i.e. pH<0.5 (Cservenyak et at. 1996). Hence, it is 

unlikely that it may be reduced by the polyphenols at the conditions retanning process 

i.e. pH 2-5. Analysis of the stability of low molecular weight polyphenols (described in 

chapter 4) showed that the metal doesn't cause change in the composition of the 

compounds. Hence, the observed decline in Ts may caused by redox interactions but 

rather related to to a possible reversal of tanning interactions, that occurred as a result 

of hydrolysis of the tannin-Ti(IV) complexation.

3.3.2.3. Semi-Fe(III) and Fe(II) leathers

Both of the semi-Fe(II) and semi-Fe(III) samples exhibited significant decline in Ts as 

shown in Figure 3.4 and Figure 3.5. The Ts of the semi-Fe(II) and semi-Fe(III) tanned 

samples was reduced by 10-15°C in 8 days (Figure 3.3a and 3.4a), with the mimosa- 

Fe(II) sample showing the largest decline.

Myrabalan-Fe(II) Chestnut-Fe(II)

(b)

Mimosa-Fe(II) Quebracho-Fe( II)

Figure 3.4 Results of periodic Ts measurements of the semi-Fe(II) leather samples (a) in the first 
8 days after sample preparation and (b) over 12 months of storage at 21°C and 65% RH.
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Further decrease was observed over the period of one year. The final Ts values of the 

semi-Fe(II), after one year of storage at ambient condition were between 50-53°C and 

that of the semi-Fe(III) samples were also reduced to 49-55°C. The similarity in the 

trend decline of Ts of the semi-Fe(II) and semi-Fe(III) samples may indicate the 

presence of a similar mechanism of destabilisation. The decline in Ts of the samples in 

both cases was also accompanied by physical deterioration (Section 3.3.3) and chemical 

decomposition as observed with strength measurement and analysis of water- 

extractable metal content (Section 3.3.6).

M y r a b a l a n - F e ( I I I )  - * - C h e s t n u t - F e ( I I I )  M i m o s a - F e ( I I I )  - ♦ - Q u e b r a c h o - F e ( I I I )

Figure 3.5 Results of periodic Ts measurements of the semi-Fe(III) leather samples (a) in the first 
8 days after sample preparation (b) and over 12 months of storage at 21°C and 65% RH.

The observed decline in the Ts of the leathers is due to oxidative chemical decomposition 

of the vegetable tanning structure. The final Ts of the sample after one year of storage 

became significantly lower than that of untanned collagen, indicating denaturation of the 

collagen. Generally, the rate of decline in Ts does not seem to be dependent on the type 

of vegetable tanned leather. All of the semi-metal tanned leathers showed similar rate of 

decline and final Ts. Iron(II) is readily oxidised to Fe(III) by air in aqueous media and the 

rate of the oxidation increases particularly in the range of pH 3-8 (Morgan and Lahav 

2007). The polyphenol complexes of Fe(III) are known to be more stable than the Fe(II) 

complexes (Slabbert 1992). On the other hand, Fe(III) is also an oxidising agent that 

may convert the o-diphenol groups to semi-quinone radicals and quinones (Perron et al. 

2009). An investigation of the stability of polyphenols in the presence of Fe(II), Fe(III) 

and other metal ions is described in Chapter 4.
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Treatment of pickled pelt with Fe(III) sulphate in the presence of sodium citrate (or 

acetate) gives a brown coloured leather having Ts of 80°C (Covington 2009). However, 

the presence of iron particularly in leathers containing polyphenolic tanning agents is 

associated with defects (iron stains), because of dark coloured spots (iron complexes) 

and the subsequent deterioration of the leathers (John 1997). As described in Chapter 1, 

the presence of trace quantities of iron has also been related to oxidative degradation of 

historical leathers (Haslam 1998; Stambolov 1996).

3.3.2.4. Semi-V(IV) and V(V) leathers

As shown in Figure 3.6a, the Ts of all the semi-V(IV) tanned samples were initially higher 

than 100°C, except for myrabalan-V(IV) sample (Ts 96°C). After 2 days (i.e. during 

drying of the samples) the Ts of the chestnut-V(IV) mimosa-V(IV) and quabracho-V(IV) 

samples were lowered by 10-13°C and the myrabalan-V(IV) sample showed that largest 

decrease in Ts in two days by 26°C. After the first 8 days, the Ts of the myrabalan-V(IV) 

and chestnut-V(IV) samples were lower than that of the vegetable tanned leathers {i.e. 

myrabalan tanned leather 74°C and chestnut tanned leather 75°C).

120
1

120
1

(a) Time (days)

Myrabalan-V(IV) Chest nut-V  (IV) Mimosa-V(IV) Quebracho-V(IV)

Figure 3.6 Results of periodic measurements of the Ts of semi-V(IV) leather samples (a) in the 
first 8 days after sample preparation (b) and over 12 months of storage at 21°C and 65% RH.

In the case of chestnut-V(IV) the Ts was even slightly lower than 60°C after 8 days of 

storage. This indicates the polyphenolic structure in the leather has been decomposed 

rapidly, after the initially observed semi-metal tanning interaction. The quebracho-V(IV)
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sample after 8 days had Ts 97°C, showing relatively less decline as compared to the 

myrabalan-(IV) and chestnut-V(IV). At the same time the mimosa-V(IV) sample showed 

a larger decline from 114°C to 83°C, which is close to that of the mimosa tanned leather 

(84°C). The decline of Ts in the first eight days evidently may represent the reversal of 

the effect of semi-metal tanning interaction.

As shown in Figure 3.6b, the decline in Ts continued over the 12 months, and the final Ts 

of all of the samples were below that of the untanned collagen (60°C). As described in 

Chapter 2, Section 2.3.7.2, the of decline of Ts in the semi-V(IV) tanned hide powder 

samples reached to the level of denaturation of the collagen (Ts <59.5°C) in a month 

time. Nearly the same rate of decline of Ts was observed with the myrabalan-V(IV) and 

chestnut-V(IV) leathers as shown in Figure 3.6. The decline in Ts was comparably slower 

in the case of the mimosa-V(IV) and quebracho-V(IV) leathers, after 6 months that the 

Ts of the quebracho-V(IV) leather also decreased to less than 60°C. The initial Ts of the 

semi-V(V) leathers are relatively lower as compared the corresponding semi-V(IV) 

samples. Flowever the decline of Ts decline (as shown in Figure 3.7a) are generally 

similar to the same decline in the semi-V(IV) samples. In all cases, the final Ts of the 

semi-V(IV) and semi-V(V) samples are all in the range of 38-49°C, indicating the 

structural alteration or denaturation of collagen.
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Fig ure 3.7 Results of periodic measurements of the Ts of semi-V(V) leather samples (a) in the 
first 8 days after sample preparation (b) and over 12 months of storage at 21°C and 65% RH.
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3.3.3. Time dependence of decline in shrinkage temperature

The decline in Ts of the semi-metal tanned samples during drying (i.e. first 2 days of 

storage) was significant with the the Fe(II) and V(IV) retanned samples of myrabalan, 

chestnut and quebracho tanned leathers (Table 3.3), while the the titanium retanned 

leathers showed a relatively small change (2°C). The quebracho based semi-metal 

tanned samples of Fe(II) and Ti(IV) showed almost no difference in the first two days. 

But the quabracho-V(IV) samples more significant decline in by 8°C. The results indicate 

that the the semi-metal tanning interactions with the iron retanned and vanadium 

retanned samples are subjected to a rapid or spontaneous changes with the greater 

presence of moisture (i.e. during drying), the observed initial decline in Ts vary with the 

type of metal and the type of vegetable tannin.

Table 3.3 Decline in Ts of semi-metal tanned samples during drying over 2 
days at 21°C and 65% RH

Metal semi-metal tanned leather of:-
myrabalan chestnut mimosa quebracho

Ti(IV) -2 -2 -2 -1

Fe(II) -6 -11 -13 -1

V(IV) -27 -11 -14 -8

While the change in Ts over the the two days of storage apprears to be relatively rapid, 

The continued decline of Ts of the samples over one year is relatively slower particularly 

in the case of the the Fe(II) and V(IV) retanned samples. The plot of shrinkage 

temperature of the samples against a logarithmic scale of time or ln(t), i.e. 't' is time in 

day, showed linear pattern as Figure 3.8.

The slope the linear declining patterns apprears to be related to the initial Ts of the 

samples. Samples that had greater Ts after the second day of storage (e.g. myrabalan 

Fe(II) sample) showed relatively greater slope of decline, compared to others that had 

lower Ts at the same time (e.g. myrabalan-V(IV) sample). The semi-V(IV) samples of 

myrabalan and chestnut leathers already had lower Ts after two days of storage and the 

slope of decline apprears to be relatively lower. Flowever, all of the V(IV) retanned 

samples showed the largest decline in Tsin the overall period of storage , as decribed in 

Section 3.3.2.4.
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Figure 3.8 Graphs of the shrinkage temperature of samples against logarithmic time scale for the 
period of 2-360 days of storage: (a, b) semi-Ti(IV) leathers, (c,d) semi-Fe(II) leather and (e,f) 
semi-V(IV) leathers
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The relationship between the decline of logarithm of Ts and duration of storge is non-

linear, indicating that the V(IV) induced degradation process does not comply the 

condition psudo-first order kienetic model. As shown in Figure 3.9, the decline In(Ts) 

occurs much faster in the first 64 days and a significantly slower decline of Ts is observed 

after 9 months. Changes of 3-4°C are observed in the Tsofthe samples between the 256

ad 360 days of storage. Hence further decrease in Ts are assumed to occure in a much 

slower rate.

Assuming an extended duration of storage at same condition, the Ts may possibly reach 

a minimum value below which further decrease may not be occur. Theoretically, this can 

be viewed in relation to the occurrence of chemical denaturation to a significant level, so 

that the triple helical collagen structure in the leathers would be completely transformed 

into separate collagen strands or polypeptides of different length. In this condition, the 

measured hydrothermal stability may be closely similar to the melting transition of 

galatine which is around 37°C (Zhang et at. 2006; Bigi et at. 2004)

0 100 200 300 400 0 100 200 300 400
Time (days) Time (days)

� Myrabalan-V(IV) � Chestnut-V(IV) a Mimosa-V(IV) � Quebracho-V(IV)

Figure 3.9 Graph of the logarithm of the shrinkage temperature values of semi-V(IV) tanned 
leather samples ln(T) against storage time (days), showing non-linear correlation

3.3.4. Physical degradation of the semi-metal tanned leathers
____ *

The records of tensile strength measurements (summarised in Appendix 7) shows that, 

the average of initial tensile strengths of the mimosa based semi-metal tanned leathers 

samples were between 10.0-12.0 Mpa. The mimosa based semi-metal tanned samples of 

AI(III) and Ti(IV) showed a relatively consistent tensile strength in the range of
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11.0±0.3 MPa and 11.5±0.5 MPa throughout the one year of storage at 21°C and 65%

RH.

(a)
Mimosa-Fe(II)

Mimosa-V(IV)
Mimosa-Fe( III) 

Mimosa-V(V) (b)
Myrabalan-Fe(II)
Myrabalan-V(IV)

Myrabalan-Fe(III)
Myrabalan-V(V)

Figure 3.10 Results of periodic measurements of the tensile strength of (a) mimosa-based 
samples and (b) myrabalan based samples of semi-metal tanned leathers stored at 21°C and 65% 
RH for 12 months.

At the same time, the mimosa based semi-metal tanned samples of V(IV), V(V), Fe(II) 

and Fe(III) showed remarkable decline in tensile strength as shown in Figure 3.10a. The 

mimosa-Fe(II) sample showed loss of tensile by strength by 43.5% from 10.8 MPa to 6.1 

MPa in 12 months. Similarly, the tensile strength of the mimosa based semi-metal 

tanned leathers of Fe(III), V(IV) and V(V) declined by 54.5%, 67.5% and 58.1% with

respect to the initial values.

The myrabalan-V(IV) and myrabalan-V(V) samples showed tensile strength values of 

8.25 MPa and 10.3 MPa, slightly lower than that of the myrabalan-Fe(III) and 

myrabalan-Fe(II) samples (Appendix 7, Figure 3.10b). The myrabalan-V(IV) and 

myrabalan-V(V) lost their tensile strength by 54.3% and 63.4% over the one year 

period; at the same time the myrabalan-Fe(II) and myrabalan-Fe(III) samples showed 

reduction of strength by 37.3% and 40.1% over one year of storage. In both cases, a 

linear decline in the tensile strength values of Fe(II), Fe(III) and V(IV) were observed. 

The initial tensile strength of the mimosa-V(V) and myrabalan-V(V) samples were 

relatively lower and sharper decline was also noted particularly in the two months of

storage of these samples (Figure 3.10 a & b).
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Figure 3.11 Results of periodic measurements of % elongation-at-break of semi-Fe(II) and semi- 
V(IV) leather samples stored at 21°C and 65% RH periodically measured for 12 months

The % elongation-at-break of the mimosa-V(IV) and myrabalan-V(IV) samples reduced

significantly from an initial average of 67% to 39% after 6 months (Figure 3.11). The

myrabalan-Fe(II) and mimosa-Fe(II) samples showed reduction of the % elongation-at-

break values from 52% to 36% in the same time frame. The decline of both tensile

strength and % elongation-at-break in the samples occurred largely after the three 

months of storage.

The significant physical deterioration, observed in terms loss of tensile strength and 

increased brittleness of fibre in the fibre structure i.e. lowering of % elongation-at-break 

may be related to two main aspects. The first is that the tannin-metal interactions with 

the iron and vanadium containing samples changes because of redox interactions. The 

initially formed metal-tanning complexation may be disrupted due redox reactions 

involving the metal ions; in addition, the polyphenolic tanning structure may also 

undergo complex structural changes, the effects being reflected in the physical 

properties. The relatively lower tensile strength of the V(V) retanned samples may be 

the result of the occurrence of a change in the polyphenolic tanning matrix possibly 

resulting from the oxidative effect of V(V) species on polyphenols (Kustin et al. 1974; 

Ferguson and Kustin 1979). Comparison of changes in the tensile strength of samples 

over the 12 months (Figure 3.10) and the changes in the Ts of samples (Figure 3.4-7) 

shows that both parameters showed quite similar pattern of decline. The occurrence of
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simultaneous decline of Tsand the tensile strength vegetable tanned samples were also 

observed in artificially aged samples that undergone hydrolytic and oxidative 

degradation in sulfur dioxide chambers (Larsen et al. 1996).

3.3.5. The pH value of the semi-metal tanned leathers

As shown in Table 3.4, the pH value of the semi-AI(III) tanned leathers remained 

unchanged throughout the one year period. The initial pH of the leather samples 

indicates that the mimosa-Ti(IV) and mimosa-Fe(III) samples have relatively lower pH 

values as compared to the others samples. With both of the mimosa and myrabalan 

based semi-metal samples, the semi-Fe(II) samples showed a greater decline in pH after 

3 months. This may be related to the formation of Fe(III) in the leather and hydrolysis of 

the metal ion during measurement. The mimosa-V(IV), mimosa-Fe(II) samples also 

became more acidic during storage, with lowering of pH by 0.7-0.8. Similar changes of 

pH were observed with the myrabalan based semi-metal tanned leathers (Appendix 7).

Table 3.4 The pH values of the mimosa based semi-metal tanned 
leathers, at different times of storage at 21°C and 65% RH.

Sample Initial 3 months 6 months
mimosa 6.5 6.5 6.5

mimosa -AI(III) 6.1 6.1 6.1

mimosa -Ti(IV) 4.7 4.2 3.9

mimosa -V(IV) 5.2 4.5 4.5

mimosa -V(V) 5.4 4.7 4.6

mimosa -Fe(II) 5.2 4.3 3.9

mimosa -Fe(III) 4.8 4.1 3.8

The presence of relatively increased acidity of the samples may be related to the 

reversal of the semi-metal tanning interactions and chemical decomposition of the 

polyphenols. With the progress of degradation, increased proportion of metals became 

extractable by water. Lowering of the pH in most of the sample may be related to 

hydrolysis of the metal ions and solubilisation of degraded polyphenol components.

3.3.6. Metal contents of the semi-metal tanned leathers

The quantity of metal ions used during retanning was 1% w/w on the weight of the 

rehydrated vegetable tanned leather. Determination of the total metal content in the dry
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samples indicates that the semi-AI(III) samples contain greater concentration of metal 

as compared to others. As shown in Figure 3.12, the mimosa and myrabalan leathers 

treated with the same metal, have similar metal contents. The semi-Ti(IV) samples show 

slightly higher metal content as compared to the semi-metal tanned samples of the 

transition metals. The percentage of the metal ions extracted when the leather samples 

are immersed in deionised water is shown in Figure 3.13. The analysis was carried out 

after 3 months of storage of the samples at 21°C and 65% RH.
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Figure 3.12 Metal contents in mMol/g of the dry semi-metal tanned leathers
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Figure 3.13 Relative quantity of water-extractable metal from the semi-metal tanned leathers 
expressed as %(w/w) of total metal content.

The result shows that metal ions in the semi-V(IV) and semi-V(V) samples have 

appreciably soluble in water, approximately one-third of the total metal content was 

extracted by water. The increased tendency of the meta ions to dissolve in water is 

indicative of the disruption of the metal-tanning complexation. The initial colour of the 

semi-V(IV) and semi-V(VI) leathers was dark-blue; however, the leathers and their
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aqueous extracts (after 3 months) were dark-green. The cause of colour change is 

related to redox interactions resulting in the decomposition of tannins due to oxidation. 

In addition, the redox reactions may lead speciation of vanadium into the two oxidation 

states due to simultaneous occurrence of oxidation of V(IV) species by air and reduction 

of V(V) species by tannins.

Similarly, about one-fifth of the metal content of the semi-Fe(II) and semi-Fe(III) 

samples has become extractable by water. The extract was had a light blue colour, 

indicating solubilisation of Fe(III)-polyphenol complexes. The results indicated that the 

semi-metal tanning interaction in the iron and vanadium containing samples has been 

disrupted, allowing the metal to be solubilised. The fact that the iron and vanadium 

containing aqueous extracts from the leather have also indicated that certain low 

molecular weight fragments of the tannins (i.e. possible products of oxidation) may be 

solubilised along with the metals. This indicates that the structural changes in the 

tannin-metal crosslinks, occurring as a result of the redox reactions, may cause 

significant level of decompositon the large polyphenols (tannins), thereby the tanning 

matrix is eventually transformed to soluble molecular fragments of oxidised tannins.

The small percentage of the extractable metal content of the semi-AI(III) samples 

indicates the presence of loosely bound AI(III) complex deposited on the surface of the 

leather fibres. Whereas in the case of the semi-Ti(IV) samples, the presence of 

extractable metal indicates partial reversal of the semi-metal tanning interaction, which 

was also observed with the decline of Ts of the samples. Unlike the vanadium and iron 

leathers, the semi-Ti(IV) leathers did not show change in colour during storage i.e. 

remained orange, and the aqueous extract from the leather samples were colourless, 

indicating that there is no decomposition of the polyphenol structure into low molecular 

weight soluble species.

3.3.7. Vanadium content and the rate of degradation

The vanadium content of the mimosa tanned leather samples treated with different 

concentrations of V(IV) and V(V) were in the range of 0.11-1.42 %(w/w) relative to the
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dry weight of the mimosa-V(IV) samples and 0.05-1.42 %with the mimosa-V(V) samples. 

As shown in Table 3.5-6, the Ts of the mimosa-V(IV) samples increased with the increase 

in the vanadium content. In the case of the mimosa-V(V) the increase in Ts (compared to 

the mimosa leather (/'.e. Ts 84.5°C) is relatively low.

The Ts of all of the sampes of mimosa-V(IV) and mimosa-V(V) lowered to 57±3 °C in 60 

days of storage at 21°C and 65% RH. The rate of decline in the Ts of the semi-V(IV) and 

semi-V(V) apprears to be less dependent of the quantity of the metals absorbed into the 

leather. The vanadium ions in the degradation process may act as triggers and catalysts 

of the an oxidative degradation process. Hence it may require the presence of a 

relatively small quantity (/'.e. less than 1000 ppm) of vanadium to produce the same 

degradative effect as in the samples containing more than 1% w/w (or >10,000 ppm).

Table 3.5 Metal content of mimosa tanned leather samples treated with different 
concentrations of V(IV) and results of periodic Ts measurement carried out during storage of 
the samples at 21°C and 65% RH

vanadium applied on dry 
leather weight, % w/w

vanadium content 
in leather % w/w

Initial
Ts

Time (days)

2 8 32 64

0.25% V(IV) as VO(S04) 0.05 89.0 87.2 82.2 69.3 54.7

1.0% V(IV) as VO(S04) 0.47 102.1 85.9 82.1 59.6 54.0

4.0% V(IV) as VO(S04) 1.23 112.5 86.5 75.8 71.0 59.7

Table 3.6 Metal content of mimosa tanned leathers treated with different concentrations of 
V(V) and results of periodic Ts measurements carried out during storage of the samples at 
21°C and 65% RH

vanadium applied on dry 
leather weight, % w/w

Vanadium content 
in leather % w/w

Initial
Ts

Time (days)

2 8 32 64

0.25% V(V) as NH4(V03) 0.11 88.7 85.5 83.1 73.2 61.0

1.0% V(V) as NH4(V03) 0.67 94.5 88.4 86.6 69.7 54.6

4.0% V(V) as NH4(V03) 1.42 90.0 87.4 73.3 71.4 56.6

The results indicate that the presence of excess V(IV) or V(V), above certain thershold 

level, may have less effect on the rate of degradation in terms of speeding up the 

process. Hence the presence of V(IV) and V(V) in the leather may be considered as 

catalyst of oxidation of tannins.

3.3.8. Degradation of Cr(III) tanned leathers

The Ts of the Cr(III) tanned leather (111°C ±1) was not affected by treatment with 1%

of V(IV) and Fe(II), the Ts remained the same. The V(V) and Fe(II) salts have no
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additional hydrothermal stabilising effect on the Cr(III) tanned leather. In addition, no 

change in shrinkage temperaure of the samples was observed when V(IV) and Fe(II) 

sample were kept at ambient condition for 30 days. On the other hand, as shown in 

Figure 3.14 a&b, progressive decline in Ts was observed with the V(IV) and Fe(II) 

treated samples of Cr(III)-chestnut and Cr(III)-mimosa leathers that were stored for 30 

days. During the storage, the colour of the V(IV) samples changed from blue to dark 

green, similar to the the case of the semi-V(V) leathers. The Cr(III)-mimosa and Cr(III)- 

chestnut tanned leathers that were treated with Fe(II) also showed similar decline in Ts 

from 115°C to 73°C in 30 days, as shown in Figure 3.14a. These changes are however 

are relatively lower as compared the corresponding V(IV) treated samples shown in 

Figure 3.14b.

Cr(III)-chestnut Cr(III)-mimosa

Figure 3.14 Shrinkage temperature Cr(III)-chestnut and Cr(III)-mimosa tanned leathers (a) 
treated with 1% of Fe(II) (b) treated with 1% of V(IV)

Based on these results, it is recognised that Fe(II) and V(IV) induced degradation, cause 

similar effects in vegetable tanned leathers and vegetable retanned Cr(III) leathers. 

More importantly, the results reveal that the loss of hydrothermal stability and physical 

degradation caused by the instability, in the Fe(II)-tannin or V(IV)-tannin interaction, is 

not affected by the presence of a Cr(III) tanning interactions in the samples. The Ts of 

the Cr(III)-chestnut sample, treated with V(IV), dropped significantly below 60°C. In this
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case, it can be said that, the initial decline of Ts and the denaturation of collagen are not 

influenced by the presence of Cr(III) complexes in the tanning structture.

Tanning with Cr(III) salts imparts highest hydrothermal stability to leather (Ts >110°C) 

as a result of formation of stable coordinate-covalent links between Cr(III) and the 

collagen carboxyl groups (Riech 2007; Covington eta/. 2008). However, with regards to 

occurrence of V(IV) and Fe(II) induced degradation, the presence of the Cr(III) tanning 

matrix does not prevent the degradation process.

3.3.9. The ffbre structure in the degraded leathers

3.3.9.1. Semi-V(IV) tanned leather

The fibre structure of a degraded chestnut-V(IV) leather was visually compared with that 

of a undegraded sample of chestnut-AI(III) leather as reference. The SEM micrographs 

of the samples, shown in Figure 3.15 and Figure 3.16, indicates that there are

observable differences in terms of porosity and apprearance of fibre bundles.

(a) (b)
Figure 3.15. SEM micrograph of the cross-section of chestnut-AI(III) tanned leather at 
magnification of (a) X250 and (b) X1000.

The SEM micrograph of the chestnut-AI(III) sample shows distinct fibres and a relatively 

open structure as shown in Figure 3.15 a&b. In contrast, the inter-fibre space in the 

chestnut-V(IV) sample (Figure 3.16a-b) appears to be smaller and the structure looks

relatively compact as compared to the chestnut-AI(III) sample. The fact that the Ts of 

the vanadium and iron containing semi-metal tanned samples was reduced below 60°C 

has indicated that the collagen in the samples has been denatured by the redox 

reactions that take place inside the leathers.
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Figure 3.16. SEM micrograph of the cross-section of chestnut-V(V) tanned leather after storage 
for one year at 21°C and 65% RH at (a) magnification of X250 and (b) magnification of X1000.

In order to observe the effect of denaturation and ascertain the presence of partial 

gelatinisation, the semi-V(IV) samples were rehydrated with deionised water for 12 

hours and subsequently freeze dried at -40°C for 24 hours to completely remove the 

water. After drying, the sample became brittle, the cross-sectional surface showed

irregular structures that appreared like a 'melting' structure in which fibres are not 

visible distinctly (Figure 3.17a). The cross section of the sample showed what apprears 

to be fibre bundles fused together into irregular shapes (Figure 3.17b).

Figure 3.17 A SEM micrograph of chestnut-V(IV) sample, showing (a) gelatinised surface of the 
cross-section of the sample ,magnification X250 (b) internal section of the brittle sample, showing 
damaged fibre bundles fused together, magnification X1000.

The SEM observation of the samples indicates that degradtion in the semi-metal tanned 

leathers containing V(IV) and V(V) eventually results in disruption of the basic fibre 

structure and gelatinisation due occurrence of oxidative denaturation of the collagen .
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3.3.9.2. Cr(III)-Chestnut and Cr(III)-Mimosa leathers

The Cr(III)-chestnut and Cr(III)-mimosa tanned leathers, treated with V(IV) and kept at

ambient condition for 30 days, also showed a similar change in fibre structure as

described in section 3.3.8.1. During storage at 21°C and 65% RH for 3 months, the

leather became thiner and weak. Comparison of the normal sample of Cr(III)-chestnut

leather and the V(IV) treated Cr(III)chestnut leather (Figure 3.18a-b) shows that the

partially degraded leather has changed into a dense structure, where the fibre weave is 

not distinctly visible.

Figure 3.18. SEM micrograph of the cross-section of Cr(III)-Chestnut tanned leathers, 
magnification X250, after storage at 21°C and 65% RH; (a) control sample (b) sample treated with 
V(IV)

3.3.10. EPR spectroscopy of vanadium containing samples

The Vanadium(IV) ion carries an unpaired electron (d1) in its electronic configuration i.e. 

[Ar]3dx . The unpaired electron in oxovanadium ion (V02+) gives a characteristic eight-

line hyperfine splitting pattern in its EPR spectrum. This originates from the interaction of 

the nuclear magnetic moment of the V51 nuclei (characterised by nuclear magnetic 

quantum 1=7/2) with the magnetic moments of the unpaired electron (Murphy 2009).

As shown in Figure 3.19, the spectrum of the reference sample of V0(S04) and the hide 

powder and mimosa leather treated with V0(S04) showed hyperfine signals centred at 

360 mT. It is observed that the width of the signal of the V02+ treated mimosa tanned 

leather is narrow as compared to the others.
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Mimosa powder + V02+ salt

300 350 400 450

B, mT

Figure 3.19: EPR spectra V0(S04) salt and that of the hide powder and mimosa tannin powder 
samples treated with V(IV).

The oxovanadium ion (V02+) and its complexes have a distorted square pyramidal 

structure with one of the coordination sites being occupied by the V=0 bond (Nagaraju 

et at. 2013; Greenwood and Earnshaw 1984). However, the oxo-ligand may also be 

displaced by a ligand leading to formation of a non-oxo V(IV) complex. As described by 

Rangel et al. (2006), formation of the six coordinated tris-catecholate V(IV) complex 

from oxo-vanadium in aqueous solution is characterised by narrowing of the width of the

VO2 + hyperfine pattern. The hyperfine pattern of the mimosa-V02+ sample, which

contains complexes of the o-diphenolic complexes of VO +, is narrower compaied to the 

width in the other two hyperfine spectra, indicating the possible presence of tris-

catecholate type of structure of V02+ complex i.e. complexed by three chelating ligands.
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The EPR spectra of the reference sample of NH3(V03) and the sampes treated with

NH3(V03), are shown in Figure 3.20. Unlike V0(S04), the vanadate salt is EPR-silent due

to the absence of unpaired electron in its electronic configuration i.e. V(V) with [Ar]d°

(Murphy 2009). The spectra of the vanadate salt (Figure 3.20), merely shows a broad

but non-distinct signal in the region of 150-600 mT that may have originated possibly 

from trace impurity in the salt.

0 200 400 600

B, mT

Figure 3.20 EPR spectra NH3(V03) salt and vanadate (V03 ) treated samples of hide powder and 
mimosa tannin powder

Both the hide powder well as the mimosa powder samples, treated with the vanadate 

salt, show the characteristic hyperfine spectral profile, similar to the samples treated 

with VO+2. This suggests that the V(V) was reduced in situ by the hide powder and the 

mimosa tannin. Nakajima (2000) has confirmed that V(V) was reduced when it was 

absorbed from water by condensed tannin gel (exudate from persimmon fruit). Kustin et 

al. (1974) has also described that the interaction between catechol-derivatives
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(polyphenols) and V(V) ion is a fast redox reaction, resulting in the formation of a blue

coloured V(IV) complex (Amax 760 nm). This is a clear evidence that V(V) ions are strong

oxidising agents in their interaction with polyphenols. The result also indicates that V(IV)

was formed in the hide powder sample as a result of a possible redox reaction with 

functional groups at the side chains of collagen.

As described in Chapter 1, no increase or decline of shrinkage temperature was observed 

on hide powder that was treated with NH3(V03). With respect to hydrothermal 

stabilisation, the V(V) salt is assumed to have no effective interaction with collagen. The 

spectra of the V(V) treated hide powder indicates the occurrence of reduction of V(V) in 

to,V(IV). Most likely, some of the side chain functional groups of collagen may be prone 

to oxidation by V(V). Nevertheless, effect of this redox reaction on the collagen molecule 

did not lead to denaturation of collagen.

3.3.11. EPR spectra of mimosa powders

The tannin powder samples, a control sample and metal containing samples, were 

analysed using quartz tubes. However, the spectra of the empty tube (Figure 3.21), 

showed the presence of Mn(II) impurity, signal at the centre of the spectrum (340-380 

mT) that originated from EPR sample cavity. The signals of the organic radicals in the 

spectrum of the other samples also appeared in the same region and in all spectra the 

cavity signal (that of the empty tube) was subtracted from all.

As observed in the spectrum of the mimosa-Fe(II) powder samples, the low field signal 

(100-170 mT) corresponding to g=4.3 is attributed to Fe(III). This signal is also 

identified in Fe(III) containing mineral salts (Gopal et at. 2004; Allard et at. 2004). This 

characteristic signal was also used to confirm the presence of Fe(III) in archaeological

leathers by Bardet et at. (2009). The formation of Fe(III) species in the mimosa-Fe(II)
*

sample is due to oxidation of the Fe(II) by air.In all of the sample spectra, the 

characteristic signal of organic radicals (g=2.0023) is detected, appearing as sharp 

signals at 360 mT. In the case of the mimosa-V(IV), the organic radical signal overlaps 

with the broad V(IV) hyperfine signal which is characteristic of V(IV) complexes.
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empty tube (baseline signal)

mimosa powder

mimosa powder + AI(IXI)

mimosa powder + V(IV)

mimosa powder + Fe(IX)

Figure 3.21 First derivative X-band EPR spectra of mimosa powder and mimosa powder samples 
containing AI(III), V(IV) and Fe(II)

The formation of free-radicals in the samples may be related to oxidation tannins

reactions by air. Oxygen may abstract an electron from the o-diphenol groups producing

semi-quinone radical intermediates and a subsequent structural rearrangement (Porter 

1992; Lambert et a/. 2010). On the other hand, since Fe(III) is capable of oxidising 

polyphenols (Hynes and O'Coinceanainn 2001), its presence in the vegetable tanned 

leathers, may enhance the oxidation of the o-diphenol groups into semi-quinone radical

and quinone structures.

The formation of free-radicals in the semi-V(IV) leather may be enhanced by the 

oxidation of the o-diphenol moieties of tannins by V(V) species. In the EPR spectrum of 

the mimosa-V(IV) leather (Figure 3.21), the signal overlap of V(IV) does not allow clear 

analysis of the free-radical signal of the sample. It should be noted that, the formation of 

free-radicals in the tannin structures may be part of a spontaneous redox reactions



involving semi-quinone radical intermediates that are terminated by further oxidation 

resulting in the formation of quinones.

3.3.12. EPR spectra of mimosa tanned leathers

The spectra of the mimosa tanned leather and the mimosa based semi-metal tanned

leathers (shown in Figure 3.22) are generally similar to the spectra of the mimosa

powder samples (Figure 3.21). At the time of analysis, the leather samples were actually 

stored at 21°C and 65% RH for 6 months.

empty tube (baseline signal)

mimosa + AI(III)

mimosa + V(IV)

mimosa + Fe(II)

Figure 3.22 First derivative X-band EPR spectra of samples of mimosa 
AI(III) tanned leather, mimosa-V(IV) tanned leather and mimosa-Fe(II) 
21°C and 65% RH for 6 months.

tanned leather, mimosa- 
tanned leather stored at

The spectra of the mimosa-Fe(II) leather has the characteristic Fe(III) low-field peak at 

170 mT but also showed a broad signal from 200-500mT. This signal is also observed in 

oligomeric Fe(III) species complexes with organic ligands. During storage of the 

mimosa-Fe(II) sample and the metal-tannin interaction might be disrupted allowing for
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increased interaction between metal complexes, hence leading formation of oligomeric 

Fe(III) species.

3.3.13. Free-radical concentrations

The spectrum of the weak pitch standard, occupying the entire 2 cm height of the cavity, 

has estimated spin signal of 2.4 x io1 3  spins (i.e. calculated as 2cm x 1.2X1013 spins/cm 

based on the specification of the manufacturer Bruker Co. Ltd.) USA). The spectra of the 

standard (Figure 3.23) was collected under identical conditions used in the analysis of 

the sample, a sharp resonance signal of the pitch standard (at g = 2.007)

Figure 3.23. X-band EPR spectrum of the weak pitch standard recorded at 293 K and 9.861 GHz.

The quantities of free organic radicals determined using the standard, focusing at 

g = 2.0023, are shown in Table 3.7. The free-radical concentration in the mimosa powder 

samples is relatively low compared to the that contain Fe(II) and AI(III).

Table 3.7. Concentration of organic radicals in mimosa tannin powder and semi-metal 
tanned leathers: reference samples (not containing metals) and samples containing 
AI(III) and Fe(II)

Sample type

Tannin powders

Leather samples

Sample

Mimosa powder

Mimosa powder +AI (III) 

Mimosa powder + Fe(II)

Mimosa tanned

Mimosa + AI(III) tanned 

Mimosa + Fe(II) tanned

Radical concentration 
(spins/mg)

2.5 x 1013

8.9 x 1013

7.2 x 1013

13.8 x 1013

154.6 x 1013

18.8 x 1013

The AI(III) containing powder samples concentration of free radicals greater than that of 

the Fe(III) containing sample by 24% and nearly 3 times that of the mimosa powder. On 

the other hand, with the leather samples, the AI(III) treated leather show markedly the

hiqhest free-radical concentration. The Fe(II) treated leather shows only slightly greater
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concentration as compared to the control sample. The implication of the greater spin 

count in the AI(III)-mimosa sample is that the metal may either enhance or stabilise the

formation free radicals..

On account of its redox properties, not having multiple oxidation states, the AI(III) in the 

leather does not engage in redox reactions through one-electron transfer. On the other 

hand, free-radicals may be formed in the polyphenolic matrix due to oxidation of tannins 

by air. The o-diphenol moieties are susceptible to oxidation (Tanaka et al. 2009). It is 

known that oxidation in the presence of light in vegetable tanned leathers results in 

change of colour or reddening (Covington 2009). The reaction may involve oxidation of 

the o-diphenol groups of tannins to semi-quinone radicals and quinone structures as 

shown in Figure 3.24 (Lambert et al. 2010).

OH

OH O

o-diphenol moeties of tannins

0H

O’

semi-quinone radical

quinone

R

0

OH

Figure 3.24 Oxidation of the o-diphenol moieties of tannins into quinone structures by oxygen, 
through formation of resonance stabilised semi-quinone structures (Lambert et al. 2010).

The quinone structures are reactive and may form coupling products by reacting with an

unoxidised catechin (Bark et al. 2011; Hathaway et al. 1958). This coupling reaction is

also observed with enzymatic oxidation of catechin at pH 6-7 using polyphenol oxidase

(Tanaka et al. 2009). The oxidation of the o-diphenol moieties in the mimosa tanned

leather (and other similar leathers) may also lead to coupling reactions between

adjacent monomeric units in the tanning matrix. The free-radical concentration related to
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the mimosa powder and the mimosa tanned leather sample may be related to the

presence of the semi-quinone radicals as short-lived intermediates of the oxidation 

reactions.

In the mimosa-Fe(II) tanned leather, the oxidation of the o-diphenol moieties of tannins 

may occur in the same manner as described in Figure 3.24. However, the reaction is 

could be fast because iron ions (Fe2+/Fe3+) to catalyse univalent redox reactions (Perron 

et al. 2010). The Fe(II) species are readily oxidised in air to form Fe(III) ions, which are 

capable of oxidising the o-diphenol groups, thereby enhancing the formation of the semi- 

quinone and quinone structures The slightly higher concentration of free-radicals in the 

Fe(II) containing samples (Table 3.6) as compared to the control sample may be related 

to an increased rate of oxidation reaction.

The relatively strong interaction of Al(III) ions with the o-diphenol effectively prevents 

the oxidation of the o-diphenol groups to quinones. Nevertheless, the third hydroxyl 

group of the o-diphenol ligands may be oxidised, forming a resonance stabilised free- 

radical (Figure 3.25). Since further oxidation is prevented by complexation, the B-ring of 

the flavonoid structure may carry the unpaired electron delocalised in the aromatic ring. 

The Al3+ ion in the AI(III)-mimosa leather appears to have the effect of stabilising the 

resonance stabilised free-radical, by preventing further oxidation of the semi-quinone 

radical to quinone. As a result, the free-radical concentration, measured with the 

mimosa-AI(III) tanned leather is remarkably high compared to the other samples e.g. 

more than 8 times that of the mimosa-Fe(II) tanned leather sample.

Figure 3.25. The possible formation of resonance stabilised free-radicals by oxidation of AI(III) 
complexed o-diphenol moieties.

Semi-alum leathers are known for their resistance to ageing as observed from artificial

ageing tests (Larsen 1996). The semi-AI(III) tanning process is a confirmed standard for
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making bookbinding leathers i.e. standard number BS 7451:1991 (BSI 2011). This

property may be related to the strength of tannin-AI(III) interaction and inhibition of the 

of oxidation of tannins in vegetable tanned leathers.

With regards to the decline in the hydrothermal stability and the physical degradation

that resulted from treatment of vegetable tanned (or retanned) samples with iron and

vanadium salts, the implications of the results described in this chapter are summarised 

as follows.

3.3.13.1. The stabilities of semi-metal tanning interactions

The initially observed hydrothermal stabilisation by semi-metal tanning was only a 

transient form of stability imparted by tannin-metal complex formation. Storage of the 

samples at ambient conditions has resulted in loss of the hydrothermal stability. The 

changes observed in semi-V(IV) and semi-Fe(II) leathers may be related to oxidation of 

tannins by metal ions. The autoxidation of the Fe2+ and V02+ leads to formation of the 

Fe+3 and V02+. This has been shown with the detection of the characteristic Fe(III) and 

V(V). EPR signal features in the EPR spectra of semi-Fe(II) and semi-V(IV) leathers, 

respectively. Due to their relatively greater reduction potential (shown in Equation 3.1), 

Fe(III) and V(V) are oxidative ions, capable of oxidising the o-diphenol moieties of 

tannins (Perrron eta/.2010; Hynes and O'Coinceanainn 2009; Kustin eta/. 1974).

Equation 3.1. Standard reduction potentials of aqueous V(V), Fe(III) and Ti(IV) species in acidic 
media at 25°C (Shriver et al. 1979)

In contrast, Ti(IV) ions have low affinity for electrons and do not act as oxidising agent

considered to be a case of a reversal of the semi-metal tanning interaction, possibly 

caused by structural changes and hydrolysis, rather than oxidation of tannins. In

3.3.14. General aspects of metal induced autodegradation of leather

V02+ + 2H+ + e- V02+ + H20 e° = 1.00  v

E° = 0.77 V

Ti02+ + 2H+ + e- Ti3+ + H20 e° = o .io  v

in its interaction with tannins. Hence, the decline of Ts in semi-Ti(IV) leathers is
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contrast, the metal-tanning complexation interactions in semi-Fe(II) and semi-V(IV) 

leathers may be stable only until oxidation of the metal ions by atmospheric oxygen.

3.3.13.2. Redox reactions in semi-metal tanned leathers

The interaction of the metal with the polyphenolic tanning matrix may create a series of 

reactions that not only cause reversal of the semi-metal tanning interaction but also 

causes decomposition of the polyphenolic structure in the leather. It was observed that 

part of the polyphenol and the metal from these samples became extractable with water, 

indicating that the large molecular structures have decomposed into low molecular 

weight soluble components.

The oxidation of the o-diphenol groups may involve formation of the free-radical 

intermediates (semi-quinone radicals) and quinone groups. On the other hand, oxidised 

polyphenols are capable of undergoing oxidative coupling, leading to formation of a more

cross-linked structure.

The oxidation of the o-diphenol groups (and the subsequent reactions oxidative coupling)

does not explain the degradation of the polyphenol matrix in the semi-metal tanned

leathers. In fact, the opposite effect i.e. cross-linking of the tannin molecules, could be

expected. However, the most important redox reaction with respect to the degradation 

of the polyphenol and collagen structure in the leather may be the formation of the 

superoxide anion (02'~) and its derivatives i.e. hydroxyl radicals, hydrogen peroxide and 

hydroxy radicals. The oxidation of metals such as Fe(II) and V(IV) may be generalised as

shown in Equation 3.2.

Mn+ + O M+ (n+l) + o

Equation 3.2. Oxidation of metal ions by atmospheric oxygen

The Fe(II) and V(IV) ions that are chelated by the o-diphenol groups may be subjected 

to the above oxidation reaction. The consequences of oxidation o-diphenol complexed 

metal ions in the semi-metal tanned leather would be primarily the reversal of the semi-

metal tanning interaction and formation of superoxide anion. Secondly, the higher 

oxidation states of the metals i.e. Fe(III) and V(V) species may be reduced by o-
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diphenol groups. Hence, a redox cycling of the metal ions, with oxygen being the oxidant 

and polyphenols being the reductant, may be established. The presence of superoxide 

anion may lead to the formation of hydroxyl radicals, which are powerful oxidants that 

are capable of decomposing large organic molecules (Barbusinski 2001). The basic 

aspects related to the possible mechanism of the formation of hydroxyl radicals and their 

effect in the stability of leather are described in Chapter 4 and Chapter 5.

3.3.13.3. Denaturation of the collagen

The collagen in these samples was denatured as observed with the lowering the Ts 

values below that of the untanned collagen and loss of physical strength of the leathers; 

Chahine (2000) has observed similar changes in the Ts of artificially aged leather 

samples and deteriorated historical leathers. The effect of environmental conditions on 

the collagen degradation, in historical leathers and parchments, is mostly assessed in 

terms of the lowering of the Ts values below the 60°C (Badea et at. 2011). The 

occurrence of gelatinisation in semi-V(IV) tanned leathers, that have undergone 

degradative changes during storage at 21°C and 65% RH, has been physically confirmed 

with the SEM observation of the fibre structure in the degraded semi-V(IV) leather 

samples. The observed gelatinisation may be caused by the formation of oxygen-derived 

free-radicals. Collagen is susceptible to oxidative damage by hydroxyl radicals through 

cleavage of the peptide chain (Uchida et a i 1990; Kato et at. 1992) and reactions taking 

place in the side chain (Komsa-Penkova et at. 2000).

3.4. Summary

During semi-metal tanning, slightly greater Ts values were observed with the mimosa 

and chestnut based samples. With the exception of the non-transition metal AI(III), all of 

the semi-metal tanned samples showed characteristic colour changes during retanning 

with metal ions. The identical colour, of the semi-V(IV) and semi-V(V) leathers i.e. dark 

blue, indicated that the tannin-metal complex in both cases may be the same. Similarly, 

semi-Fe(II) and semi-Fe(III) showed the same blue colour. Based on the redox 

properties of the metal ions, it is assumed that the formation of tannin-metal complexes
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in the case of semi-V(IV) ions may involve reduction of the metal ion. While in the 

of Fe(II),the complexation may occur, along with oxidation of the metal to Fe(III).

The vegetable tanned samples and the semi-AI(III) tanned samples remained 

consistently stable in terms of physical properties and Ts during storage at 21°C and

65% RH for 12 months. At the same time, the semi-Ti(IV) exhibited a relatively slow 

decrease Ts, but no significant change in colour and physical properties was observed.

The reason for the observed change may be attributed to occurrence of reversal of the 

semi-metal tanning interaction due to hydrolysis.

In contrast, semi-Fe(II), semi(III), semi-V(IV) and semi-V(V) samples showed greater 

decline in Ts as well as reduction in tensile strength and % elongation-at-break. These 

changes indicate the occurrence of a progressive metal-induced degradation process; in 

which, the initially established tannin-metal complex interactions were disrupted 

(reversal of semi-metal tanning interaction), the polyphenol structure undergone

decomposition and eventually the collagen in the samples was subjected to

denaturation.The degradation process originating from the tannin-Fe(II) and tannin-

V(IV) interactions may also occur in the presence of a Cr(III) tanning structure, as

observed with autodegrdation of Cr(III)-mimosa and Cr(III)-chestnut tanned leathers.

The results showed that the observed cases of metal induced degradation are dependent

on V(IV)-tannin or Fe(II)-tannin interactions.

On the other hand, treatment leather tanned with Cr(III) salt (not retanned) with V(IV) 

and Fe(II) did not result in degradative changes, inducating that In addition, Cr(III) 

tanning does not create chemical stabilisation against the V(IV) or Fe(II) induced 

degration process. It is also observed that V(IV) and V(V) induced degradation of 

vegetable tanned leather samples occurs in a catalytic manner, the rate of decline of Ts 

was found to be less dependent of metal concentration. The presence of a minimum 

threshold level of metal ion i.e < 0.1% w/w in the leather was sufficient to cause decline 

in T= to that the untanned collagen (60°C) and further below.
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Using EPR analysis of leather samples, it was confirmed that oligomeric Fe(III) species 

are formed during storage of the semi-Fe(II) samples due to oxidation. Similarly, 

evidence for the formation of V(IV) species in the semi-V(V) tanned leathers was 

obtained. The results suggested the possibility of creation of a redox cycling process in 

which the lower oxidation states of the metals i.e Fe(II) and V(IV) may be oxidised by 

the atmospheric oxygen, while the higher oxidation states i.e. Fe(III) and V(V) may be 

reduced by the o-diphenol moieties of polyphenols.

The evidence that the most stable semi-metal tanned sample (semi-AI(III) tanned 

leather) has shown the largest concentration of free-radicals suggests that the chemical 

process of metal-induced degradation of leather is not determined by the presence of 

organic radicals but rather by the presence of catalytic metal ions that also result in the 

foration of reactive oxygen radicals (i.e. superoxide anion and hydroxy radicals). The 

progressive decomposition of the tanning structure and the denaturation of collagen may 

be related to the formation of superoxide anion and other similar oxidative species.

The degradation of the iron and vanadium containing leathers occurred at ambient 

conditions of storage (21°C and 65% RH) due to internal redox reactions in the samples 

that also involved atmospheric oxygen. In this context, the changes are recognised as 

oxidative autodegradation of leathers, catalysed by the transition metals.
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4.1. Introduction

As described in Chapter 1, hydrolysable tannins are polyphenolic molecules, while 

condensed tannins are polymeric flavonoids. In the structures of both types of tannins 

there are multiple o-diphenol moieties These functional groups are the most important

respect to the interaction of tannins with metal ions (Slabbert 1992). In thewith

investigation of tannin-metal complexes, low molecular weight polyphenols {e.g. gallic 

acid, methyl gallate, catechol and (-r)-catechin) have been used as models of the o- 

diphenolic moieties of tannins to analyse the features of complexation reactions and the 

stabilities of different types of metal-tannin complexes in aqueous solutions (Sykes et al. 

1980; Madhan et al. 2006). The stoichiometry of complexation of polyphenols with 

metals is influenced by pH (Liu et al. 2011; Madhan et al. 2006; McDonald et al. 1996).

In addition to complex formation, the o-diphenol moieties in tannin structures may also

be oxidised by metal ions through a one electron transfer process (Bark et al. 2011;

Yasuda et al. 2012). The purpose of the experimental work described in this chapter was

to explain the observed changes in the semi-metal tanned leathers (Chapter 2 & 3) in 

terms of the features of the stabilities of selected metal-polyphenol complexes in

aqueous solution.

In the experiments, the changes brought about by oxidation of the polyphenol 

compounds were examined at different pH. The stability of the polyphenol compounds in 

the presence and absence of transition metal ions i.e Ti(IV), Fe(II) and Fe(III) was 

studied. In addition, free-radical scavenging assay was used to study the relative effect 

of the metal ions in oxidising the o-diphenol moieties of polyphenols.
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4.2. Materials and methods

4.2.1. Chemicals

Analytical grade metal salts titanium(IV) sulfate [Ti(S04)2 15%w/v solution],

vanadium(IV) sulfate [V0(SC>4).5H20], iron(II) sulfate heptahydrate [Fe(S04).7H20],

anhydrous ammonium metavanadate [NH4(VC>3)] and anhydrous iron(III) sulfate

[Fe2(S04)3] were sourced from Fisher Scientific Ltd., UK. HPLC purified samples of (+)-

catechin, methyl gallate and 2,2 diphynyl picryl-l-hydrazyl (DPPH) were purchased from 

Sigma-Aldrich Ltd, UK.

4.2.2. Analytical instruments and apparatus

UV-Vis spectrophotometer

A Shimadzu UV-2501PC double beam spectrophotometer (Shimadzu Co. Ltd., Japan) 

was used. Measurements were performed using quartz cuvettes (1.5 mL, path length 10 

mm) in the range of 200-800nm, at 1 nm resolution and at scan rate of 600 nm/minute.

Aeration pump and nitrogen gas

A linear aeration pump (Dymax 2, Charles Austen Ltd. UK) having a fixed pump rate of 2

L/minute was used for aeration of sample solutions. Nitrogen gas with was also used for

purging of sample solution at the flow rate of 250 cm3/min.

Rotary evaporator

A Bucci rotary vacuum-evaporator (Buchi Labortechnik AG, Germany) was used to

evaporate water from sample solutions under vacuum.

4.2.3. Analysis of aerated solutions of polyphenol at different pH

Acetate buffers (pH 4.5, 6.0), phosphate buffer (pH 7.5) and carbonate buffer (pH 9.2), 

each having concentration of 0.01M were prepared. The buffer solutions were used for 

preparation of 0.1 mM solutions of methyl gallate and (-i-)-catechin. The solutions were 

aerated for 10 minutes by bubbling air and kept for 6 hours at room temperature. Then 

UV-Vis absorbance spectra of the solutions scanned in the range of 200-800 nm using

the UV-Vis spectrophotometer.
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4.2.4. Analysis of metal containing polyphenol solutions

Metal containing solutions of (+)-catechin and methyl gallate were prepared in 

deoxygenated acetate buffer solution (pH 5.0) as described in Section 4.2.4.1-2. A half 

portions of each of the solutions was aerated for 10 minutes every day for four days. 

The other half portion of each solution was kept oxygen free by purging with nitrogen 

gas. The progressive changes in absorption spectra of the sample solutions were 

monitored every 24 hours over a period of 4 days. The changes in the absorption 

spectra of aerated versus deoxygenated samples were compared.

4.2.4.1. ( + )-Catechin and methyl gallate solutions

Acetate buffer solution (0.01 M, pH 5.0) was degassed under vacuum for 30 minutes to 

remove oxygen and then purged with nitrogen gas for 10 minutes. Solutions of 

polyphenol compounds (3 mM) were prepared by dissolving 110 mg methyl gallate and 

176 mg (-i-)-catechin in 200 ml_ of acetate buffer (0.01 M, pH 5.0).

4.2.4.2. Metal containing ( + )-catechin and methyl gallate solutions

Solutions of 0.1M of Ti(IV), Fe(II) and V(IV) were prepared by dissolving calculated

quantities of the sulfate salts (Section 4.2.1) in acetate buffer (pH 5.0). To prepare the 

metal containing polyphenol solution, 50 pL of the metal solutions were added to 

separate samples tubes containing 50 mL of 3 mM solution of (+)-catechin and methyl 

gallate solutions. The mole ratio of metal ions to polyphenol was 1:30 (/'.e. 0.1 mM of 

metal ions and 3 mM of polyphenol). Metal-free sample solutions of methyl gallate and 

(+)-catechin were used as controls. The effect of the presence a relatively small 

proportion of the different metal ions in the stability of the polyphenol compounds was 

studied by analysing the UV-Vis spectra of the solutions aerated and deoxygenated

samples.

4.2.4.3. UV-Vis spectrophotometric analysis

The initial absorption spectra of the control solutions and the metal containing solutions

of ( + )-catechin and methyl gallate were scanned in the wavelength range range 200-800

nm with the spectrophotometer using the quartz cuvettes (1.5 mL, path length 10mm).
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Then each of the control samples and metal containing solutions were divided into two 

equal portions and treated as follows

(i) deoxygenated samples : 25mL portions of each sample solution were purged with 

nitrogen in separate sample tubes and kept closed at room temperature,

(ii) aerated samples: 25 mL of the samples were oxygenated by bubbling air into the 

sample tubes for 10 minutes and kept at room temperature,

Spectral measurements were carried out every 24 hours over four days. Aeration and 

purging of the sample solutions with nitrogen gas were done each UV-Vis measurement 

and the changes in the spectral patterns were analysed.

4.2.5. Thin layer chromatographic analysis

After completion of the experiment described in Section 4.2.5.3, the water from the 

solutions was removed using a rotary vacuum-evaporator at 35°C. The dry residue of the

samples were dissolved in methanol (4 mg/mL) and spotted on to an aluminium backed

thin layer chromatogram plate (Florescent- silica gel, 254nm) and developed with

chloroform: ethyl acetate: formic acid at the ratio of 5:4:1. The chromatograms were

viewed in UV-chamber at 254nm and developed by spraying 2% Fe(III) chloride solution

prepared in 50% methanol.

4.2.6. Free-radical scavenging assay

Polyphenol compounds found in various fruits and plant extracts from plants have been 

widely investigated to characterise their potential as free-radical scavengers or 

antioxidants (Dudonne et al. 2009; Villano et at. 2007; Jovanovic et al. 1994). 

Polyphenol compounds exhibit antioxidant activity by terminating free-radical reactions 

in biological system mainly through the hydrogen atom transfer (HAT) mechanism 

(Brand-Williams et al. 1995). In the HAT reactions, the o-diphenol groups are converted
9

to semi-quinone radicals and quinone products as shown in Figure 4.1a.

The most common method for evaluating and comparing the antioxidant efficiency of

polyphenol compounds is by a free-radical scavenging assay method in which the stable

free radical 2,2 diphenyl picryl-l-hydrazyl radical (DPPH) is used (referred to as DPPH
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assay). In this assay method, methanolic solution of DPPH, which has an intense purple 

colour with Amax at 517nm. The colour of DPPH changes into yellow when the DPPH 

radical is completely converted to a non-radical product by hydrogen atom transfer (HAT) 

reaction with hydroxyls of polyphenols (Dudonne et al. 2009) as shown in Figure 4.1b. 

The reduction in absorbance at the 517 nm resulting mainly from HAT reactions is used 

to determine the quantity of the DPPH radical scavenged by the HAT reaction.

(b)

Figure 4.1: Hydrogen atom transfer reactions:(a) anti-oxidant reaction of polyphenols with 
biological free-radicals denoted as RO* (e.g. lipid peroxy radicals), and (b) radical scavenging 
reaction of polyphenols with DPPH radical (Ionita 2005).

In flavonoid compounds, the aromatic hydroxy group in the C-ring of the structure may 

also take part in scavenging DPPH radical (Osman 2011). Oxidation of polyphenols 

results in the conversion of the o-diphenol groups of the polyphenols to quinone groups. 

Unlike the o-diphenol groups, quinone groups do not react with DPPH due to the absence 

of a labile (transferable) hydrogen atom. Hence, oxidation of the o-diphenol moieties of 

polyphenols is reflected in the loss of free-radical scavenging capacity. In this 

experiment the extent of metal induced oxidation of methyl gallate is examined in terms 

of the change in the free-radical scavenging activities of a metal containing solutions.

The procedures are described in Sections 4.2.7.1-2.

Polyphenol
Semi-quinone radical

(a)
Quinone

2,2 Diphenyl-l-picrylhydrazyl Polyphenol 2,2 Diphenyl-l-picrylhydrazin Semi-quinone radical
• � • I

radical
Purple colour in solution

non-radical
yellow colour in solution
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4.2.7.1. Metal containing solutions of methyl gallate

A solution of methyl gallate (140 ml_, ImM) was prepared in 50% methanolic acetate 

buffer (0.01 M, pH 5.0) solution and divided into 20 mL portions, 20 pL of the 0.1M 

solutions of AI(III), Ti(IV), Fe(II), Fe(III), V(IV) and V(V) were added into the first six 

solutions. A 20 mL portion was used as a control, i.e. no metal solution added. The mole 

ratio of methyl gallate to metal ion in the test samples was 10:1 in all cases. The sample 

solutions were kept in closed tubes for 24 hours at room temperature. Then the relative 

free-radical scavenging capacity of the solutions was determined.

4.2.7.2. Determination of free-radical scavenging capacity

A 1 mM solution of 2,2 diphynyl-picryl-l-hydrazyl was prepared in 50%(V/V) methanol 

that was adjusted to pH 5.0 using HCI (0.01 M). The solution was appropriately diluted in 

in 50% methanol to prepare five gradient solutions with concentrations of 0.04, 0.08,

0.12, 0.16 and 0.20mM. Measurements of absorbance of the gradient solutions at

517nm were performed using glass cuvetts (3.5 mL, 10 mm path length). A calibration 

curve with a linear correlation (R2=0.9968) was obtained.

Determination of the free-radical scavenging activity of the methyl gallate solutions was 

carried out as follows. Initially, 3400 pL of freshly prepared solution DPPH (0.03 mM) 

was transferred in to the cuvettes, then 100 pL the methyl gallate solutions were added 

into each. A blank control sample was prepared by adding 100 pL of 50% methanolic 

acetate buffer (pH 5.0). The sample cuvettes were kept for 30 minutes and the 

concentration of DPPH remaining after incubation was determined spectrophotometrically 

using the calibration curve. In each case, triplets measurements of each sample were 

carried out. The free-radical scavenging activity of the solutions were calculated as

follows.

Free radical scavenging in %
C - C M

c
X 100

Where:
• C is the concentration of the DPPH solution alone after 30 minutes of incubation,

• Cm is the concentration of DPPH after incubation with the methyl gallate solutions 
i.e. a control and metal containing samples.
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4.3. Results and discussion

4.3.1. Autoxidation of ( + )-catechin and methyl gallate

An aqueous solution of ( + )-catechin in acidic media is colourless and shows 

characteristic band of absorption in the UV-region with Amax at 276 nm (Bark et at. 2011). 

In this experiment, the ( + )-catechin solutions at pH 4.5 and pH 6.0 have produced the 

characteristic spectra (Figure 4.2a). However, the samples prepared at pH 7.5 and 9.2 

showed an additional absorption with a broader wavelength range 370nm to 550 nm 

having peak absorbance at 430nm (shown in Figure 4.2b)

(a) pH 4.5 pH 6.0
(b)

pH 7.5 pH 9.2

Figure 4.2 UV-Vis spectra of ( + )-catechin solutions at (a) pH 4.5 and 6.0 in acetate buffer (b) at 
pH 7.5 in phosphate buffer and at pH 9.2 in carbonate buffer.

The UV-Vis spectra of (+)-catechin in alkaline media has been investigated by (Bark et at. 

2011) and a similar pattern of changes were reported. According to Porter (1992), ( + )- 

catechin and other flavonoid compounds undergo autoxidation in alkaline pH, resulting in 

the formation of a semi-quinone radical and the quinone methide intermediate as shown 

in Figure 4.3. The reaction between molecular oxygen and the o-diphenol groups is 

enhanced by ionisation of the hydroxyl groups i.e. formation of phenolate groups (Bark 

et at. 2011). Rearrangement of the quinone methide intermediate leads to formation of 

an epimerisation product, namely (-) epicatechin and another intermolecular 

rearrangement product ( + ) catechinic acid (Ferreira et al. 1992). The emergence of the

new band of absorption of the ( + )-catechin spectra in alkaline (Figure 4.2b) media may
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be related to deprotonation of the o-diphenol and subsequent intermolecular 

rearrangement reactions as shown in Figure 4.3.

OH
OH

O
OH

OH
0 2/ OH HO O ^

o (-)  epicatechin

OH OH

( +  ) catechin
Quinone methide 

intermediate

OH

Figure 4.3. Epimerisation of ( + )-catechin and formation of ( + )-catechinic acid by oxidative 
rearrangement through a quinone methide intermediate formed by opening of the pyran ring at C- 
2 of the flavon-3-ol structure (Porter,1992)

Similar to the case of ( + )-catechin, the methyl gallate solutions with pH 6.0 and below

showed the characteristic absorption spectra of the compound with a peak at 271nm,

with narrow absorption band in the between 300 nm and 250 nm (Figure 4.4a). However,

at pH 7.5 and 9.2, the absorption bands of methyl gallate at 271 nm became broad; no

other distinct peak was observed in both cases, but rather broad bands of absorbance in

the region of 500nm and 300nm were obtained (Figure 4.4b).
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Figure 4.4 UV-Vis spectra of methyl gallate solutions at (a) pH 4.5 and 6.0 in acetate buffer (b) at 
pH 7.5 in phosphate buffer and pH 9.2 in carbonate buffer

These spectral changes are the result of alkali catalysed oxidative reactions and

intermolecular coupling reactions. According to Thulayathan (1989), gallic acid (Figure
111
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4.7a, structure 1) is oxidised to the respective quinone (Figure 4.5a, structure 2) in 

alkaline media. Then the quinone compound undergoes coupling reactions to form di-

gallic acid structure (Figure 4.5b, structure 3). The di-gallic acid intermediate exists in 

equilibrium with the intermolecular-estrification product ellagic acid (Figure 4.5b, 

structure 4). However di-gallic acid is oxidised further to form di-quinone product (Figure 

4.5b structure 5) and hydrogen peroxide.

a) 02/OH
+

(2)

H A

b)

OH

OH

OH (3)

OH

0,/OH

+ h 2 o 2

Figure 4.5 Reaction of autoxidation and dimerisation of gallic acid in aerobic environment in 
alkaline media showing autoxidation of (a) gallic acid and (b) di-gallic acid (Thulayathan 1989)

The alkali catalysed autoxidation of ( + )-catechin and methyl gallate indicates that large 

tannins, may also exhibit similar reactions. The products of autoxidation are larger 

structures created by intermolecular rearrangement (Ferriera eta/. 1992). In addition to 

structural changes in the organic compound, the autoxidation processes involve the 

formation of the superoxide anion and hydrogen peroxide. Mochizuki et al. (2002) and 

Tulyathan et al. (1989) have demonstrated the quantitative conversion of oxygen to 

hydrogen peroxide during the autoxidation of condensed tannin compounds.

4.3.2. Effect of metals on the stability polyphenols in acidic media.

In order to study the effect of oxygen, aerated and deoxygenated (nitrogen purged) 

sample solutions were used in the experiment, the spectra of the methyl gallate and ( + )-
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catechin solutions, in the presence and absence of metal ions, were monitored over 4 

days. The results are described in sections 4.3.2.1-3

4.3.2.1. Polyphenol-titanium(IV) solution

The absorption spectra of the methyl gallate and (-r)-catechin solutions (0.1 mM) 

containing with Ti(IV) in the ratio 30:1 (polyphenol: metal) showed no change in UV-Vis 

spectra over the five days regardless of the presence or absence of aeration. Ti(IV) is 

stable to autoxidation in acidic media (Lee 1998) and reduction of Ti(IV) can be achieved 

only in highly acidic media (pH<l) using electrochemical methods; the resulting Ti(III) 

spontaneously oxidises back to Ti(IV) in the presence of air (Kiekens et al. 1981). The 

results shows that the interaction of Ti(IV) with the polyphenol compounds is limited to 

complex formation.

4.3.2.2. Polyphenol-V(IV) solution

Progressive changes in the spectra were observed over the four days of aeration of the 

samples. In the case of the (+)-catechin solution (Figure 4.6a), the absorbance at 

275nm was progressively reduced and a new absorption band emerged with the peak 

centred around 370-380nm. Whereas, the absorbance peak of the methyl gallate 

solution at 271nm declined and showed a hypsochromic shift to 240nm (Figure 4.6b).

When V(IV) was added to the methyl gallate and (-i-)-catechin solutions, the colourless 

solution turned to a blue colour, which indicated the formations of V(IV) complex with 

the o-diphenol groups. However, the blue colour of the V(IV) containing samples turned 

to green in four days. The change in colour of the solution could be due to changes in 

the polyphenol structure and formation of new vanadium complexes as a result of 

oxidation. At the same time, the samples that were purged with nitrogen gas and 

showed no change of colour and the initial spectra also remained unchanged over the 

four days. The results indicate that the V(IV) may cause oxidation of the polyphenols in

aerobic conditions only.
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(b)
W a v e l e n g t h  ( n m )

Figure 4.6 Spectra of polyphenol solutions containing V(IV) in the ratio 30:1 scanned over 4 days 
of aeration of (a) ( + )-catechin solution (b) methyl gallate solution

Both methyl gallate and ( + )-catechin are relatively stable to oxidation in acidic media 

with respect to autoxidation (Bark eta/. 2011; Friedmann eta/. 2006; Zhu eta/. 1997). 

Hence the changes in the spectra (Figure 4.6), that indicate change in the composition of 

the solution, are evidently the results of the oxidation of V(IV) and subsequent reactions 

with the polyphenols. Vanadium compounds occur in four different oxidation states (II,

III, IV and V, but the most common oxidation states are IV and V. In aqueous solution, 

the two oxidation states exist as oxovanadium [V02+] and dioxo-vanadium [V021+] in

acidic media (pH <4). With increase in pH the dioxovanadium(IV) ions hydrolyse to form 

metavanadate (VO3), orthovanadate (VO43 ) and other oligomeric oxy-anions such as 

decavanadate [V10O286 ] ( Lee 1998; Sharpe 1986).

Aqueous V(IV) is known to oxidises in the presence of air to V(V) species (Greenwood et 

at. 1984), the resulting V(V) species exhibit the property of a strong oxidising agent, 

particularly in presence of reducing agents like SO2 as well as polyphenols (Sharpe 1986; 

Ramasarma 2003; Lee 1998). The redox interaction of V(V) with the catechol derivatives, 

which results in the formation of V(IV) and quinone, is known to be spontaneous because 

of the electron rich o-diphenol functional groups (Ferguson et al. 1979; Racheva et al.

2008).
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Kustin et al. (1974) investigated the reaction of vanadates with catechol derivatives in 

acidic media under anaerobic condition, the formation of V(IV) was quantitatively 

determined spectrophotometric analysis of ion-exchange fractions at 750nm 

Furthermore, by scanning in the region of 300-500nm the formation of o-quinone was 

confirmed with its characteristic absorption peak at 380nm; it was also observed that the 

absorbance of the quinone decayed during the reaction, indicating that formation of the 

quinone structure could be a precursor for coupling reactions. This may be related to a 

coupling reaction between unoxidised polyphenols and quinones, which is also is also

observed when ( + )-catechin and similar compounds are enzymaticaly oxidised in acidic 

media (Bailey eta/. 1993; Matsuo eta/. 2008)

The observed changes in the spectra (Figure 4.6) of the aerated solution may be related 

to oxidation of the V(IV) to V(V) and subsequent oxidation of the o-diphenol ligands by 

V(V), leading to the formation of quinone products and V(IV). The emergence of a new

absorption band centred at 380nm may also be related to a similar formation of quinone

species in the solution as a result of oxidation of the o-diphenols of the B-ring of ( + )-

catechin. The changes in the spectra in the (+)-catechin and methyl gallate solution may

is related to oxidation of the metal complex due to aeration. Based on the literature on

V(IV)-polyphenol interaction and the results in this experiment, it is proposed that the 

reactions described in Figure 4.7 may occur in the process of V(IV) catalysed oxidative

autoxidation of polyphenols.
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Figure 4.7 Interactions of V(IV) with o-diphenol groups of polyphenols in acidic media under
aerobic conditions.
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The reactions shown in Figure 4.8 involve:-

• Complex formation reaction between the V(IV) and the o-diphenol groups of

polyphenols in acidic media, shown in Figure 4.7a (Yasarawan et at. 2013; Kustin et 

al. 1974; Racheva et at. 2002).

• Oxidation of the V(IV) complex by oxygen, resulting in the breaking of the

coordinate covalent bonds of the complex and the formation of the superoxide

radical, shown in Figure 4.7b (Valko eta/. 2006; Kustin et al. 1974; Ferguson et al. 

1979).

• Oxidation of the polyphenol by V(V) resulting in the formation of a quinone 

compound and V(IV), shown in Figure 4.7c (Nakajoma et al. 2002, Kustin et al. 

1974; Ferguson et al. 1979; Butler et al. 1992).

Based on the above suggested mechanism, the concentration of the V(V) ions may be 

kept replenished by oxidation of V(IV) while the concentration of the V(IV) is also 

maintained as the V(V) is reduced by the o-diphenol groups. The mechanism is in effect 

a cyclic redox process (i.e. with respect to V(IV)/V(V) changes). At the same time, the 

oxidative effect of V(V) results in the depletion of the concentrations of methyl gallate 

and ( + )-catechin as reflected with progressive changes in the spectra of the aerated 

solutions.

4.3.2.3. Polyphenol-Fe(II) solution

The spectra of the Fe(II) containing polyphenol solutions that were purged with nitrogen 

remained unchanged over the four days, showing no reduction in the peak absorbance at 

27inm and 276 nm for the methyl gallate and (-t-)-catechin samples, respectively. On 

the other hand, the peak absorbance of the aerated samples of both of the Fe(II) 

containing samples showed decline after aeration,indicating lowering of the 

concentration of polyphenols. With the ( + )-catechin sample (Figure 4.8a), a new band of 

absorbance emerged with peak at 400nm and its absorbance successively increased over

the four days.
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Figure 4.8 Overlaid spectra of polyphenol solutions containing Fe(II) in the ratio 30:1 scanned 
over 4 days of aeration (a) ( + )-catechin solution (b) methyl gallate solution

In the case of the Fe(II) containing methyl gallate solution (Figure 4.8b) , after the first 

day of aeration, the spectra of the sample showed a decrease in absorbance at 271 nm 

and formation of a shoulder peak between 360 nm and 270 nm. Further analysis of the 

Fe(II) containing methyl gallate solution was not possible due to the formation of a 

precipitate in the sample, that may be related to the The precipitate in the Fe(II) 

containing methyl gallate solution may be related to the formation of water insoluble 

Fe(III) complexes. On the other hand, the oxidation of the o-diphenol groups of methyl 

gallate might have resulted in oxidative coupling reactions, similar to the case of 

autoxidation of gallic acid described by Thulayathan (1989) and Nikolic et at. (2011).

The observed changes in the spectra of the Fe(II) containing samples may be because of

oxidation of Fe(II) to Fe(III) and the subsequent redox reactions of Fe(III) with the o-

diphenol groups of the compounds. Similar to V(IV), aqueous Fe(II) also oxidises in the

aerobic conditions, it is known that autoxidation of Fe(II) in solution is influenced by the

pH which determines the proportion of the different species of the metal, namely Fe2+,

Fe(OH)1+ and Fe(OH)2 (Morgan et at., 2007). Hydrolysed ferrous species are more readily

oxidised than the hydrolysed complexes in the increasing order of Fe2+< Fe(OH)1+<

Fe(OH)2° (Stumm et at. 1996; Santana-Casiano 2006). According to Morgan et al.

(2007), the presence of anions in the aqueous solution may slow down the rate of

oxidation of Fe(II) because of complex formation. Since Fe(II) does not form stable
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complexes with o-diphenol groups (Slabbert 1992), the effect of the polyphenol ligands 

in slowing down the autoxidation of Fe(II) is likely to be less effective as compared with 

anionic ligands such as chloride, carbonate and sulfate

As described by Perron et at. (2010), both complex formation and redox transformations 

may occur concurrently when Fe(II) binds to polyphenol compounds. The initial reaction 

may be the formation of Fe(II) complex of o-diphenolic compounds as shown in Figure 

4.9a. Subsequently, an intermolecular electron transfer from Fe(II) to the oxy-ligand of 

the o-diphenol group may occur (Figure 4.9b), resulting in the formation of an Fe(III) 

complex with a free-radical bearing o-diphenolic ligand. At the same time, the o- 

diphenolic complex of Fe(II) complex may also be oxidised to produce the corresponding 

complex of Fe(III) and superoxide anion (Figure 4.9c).
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Figure 4.9 Interaction of polyphenols with Fe(II) in under aerobic condition in acidic media 
(Perron et al. 2010)

Aqueous Fe(II) oxidises relatively slowly in aerobic condition, Fe(II)-polyphenols complex 

formation may speed up the rate of oxidation of the metal, mainly because the oxidation 

product (Fe(III)-polyphenol complex) is more stable than the Fe(II)-polyphenol complex 

(Kawabata et al. 1996, Perron et al. 2010). On the other hand, aqueous Fe(III) oxidises 

the o-diphenol groups of polyphenols into quinone structures. Bark et al. (2012)
9

demonstrated that deaerated methanolic solution of ( + )-catechin is oxidised by Fe(III) in 

acidic media. A study by Hynes and O'Coinceanainn (2001) and Hider et al. (2001) have 

shown that Fe(III) forms 1:1 complexes with (+)-catechin and gallic acid derivatives in 

acidic media (Figure 4.10a). However, the concentration of the complexes in all cases



decays due to an internal redox reactions (within the complex) that subsequently leads 

to dissociation in to Fe(II) and phenolate ion (Figure 4.10b).

(b) L_ —1
Figure 4.10 Reduction of Fe(III) by o-diphenolic groups in acid media (Hynes and 
O'Coinceanainn 2001)

4.3.3. Metal catalysed autoxidation of polyphenols

An important aspect of the reactions described in Sections 4.3.2.2-3 (Figure 4.7 & Figure 

4.9) is the formation of the superoxide radical (02*). In the presence of water superoxide 

anions are protonated to form hydroperoxyl radical (HCV), the two species exist in 

equilibrium as shown in Equation 4.1.

     

Equation 4.1. The equilibrium of superoxideanion and hydroperoxylradical in aqueous media 
(Stumm et at. 1996)

The superoxide anion and hydroperoxyl radical are oxidants; in the presence of 

polyphenols, they these radicals form hydrogen peroxide by abstracting hydrogen from 

the hydroxy groups of polyphenols. In the presence of metal ions such as Fe(III), Fe(II), 

V(IV) and Cu(II), hydrogen peroxide is decomposed to form hydroxyl radical (HO*) 

through the Fenton reaction (Valko et at. 2006; Barbusinski et at. (2009). Therefore, the 

role of the redox-active metal ions in the oxidative transformation of the compounds

may occur in reactions that may involve:-
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oxidation of the o diphenol groups by the most oxidised form of the transition 

metals ions i.e. Fe(III),V(V)

formation of oxygen derived free radicals, as the lower oxidation states of the 

metal ions are oxidised by atmospheric oxygen, the reaction being enhanced by 

oxidation of polyphenols (as described in Section 4.3.2.3).

In biological systems, metal ions such as Fe2+, Cu+ and V02+ act as pro-oxidants due to 

the their role in catalysing the formation of hydroxyl radicals from hydrogen peroxide 

(Carmichael 1989, Halliwell et at. 1990). On the other hand, polyphenols are commonly 

are known for their anti-oxidant roles as they inhibit formation of hydroxy radicals from 

hydrogen peroxide by chelating metal ions. In addition, polyphenols involve in hydrogen 

atom transfer (HAT) that converts other organic radicals (e.g. lipid-peroxy radicals) into 

non-radical species (Apak et al. 2013, Niki et al. 2005). However, Nakayama etal. (2002)

suggested that polyphenols may also create a pro-oxidant mechanism, particularly in the 

presence of Fe3+and Cu2+. This is related to the formation of hydrogen peroxide from the

superoxide anion generated by metal catalysed autoxidation of polyphenols, as described

in Sections 4.3.2.2-3. Despite the initial formation of metal-polyphenol complexes; in

aerobic conditions, the effect of the redox active transition metal ions, such as Fe(II) and 

V(IV), is to act as catalyst in speeding up autoxidation of polyphenols in acidic media 

(Haslam 1998; Bark etal. 2012; Kustin et al. 1974) .

4.3.4. Thin layer chromatography of metal containing polyphenol solutions

The TLC of the metal containing solutions of methyl gallate and (-i-)-catechin shows that 

the deoxygenated samples remained unaffected by the presence of metals. In addition 

there was no difference in the TLC profiles of the samples as a result of storage at room 

temperature in nitrogen-purged sample tubes (shown Figure 4.11a). In the 

chromatogram of the deoxygenated samples (Figure 4.11 a&b), the coloured complexes 

of the metal-polyphenol complex, did not migrate upwards in the solvent system 

chloroform: ethyl-acetate:formic acid (50:40:10). The retardation factor (Rr) values and 

description of the spots in the chromatogram are given in Table 4.1. In all of the
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nitrogen purged samples, the methyl gal,ate spots appear at the R, vaiue of 0.78 as 

marked by the reference sample spotted alongside the metal containing samples.

c -

-- :•
> * -  • ‘ X

-

'

(a)
C Cl C2 C3 M3 M2 Ml M

(b) Cl C2 C3 M3 M2 Ml M

Fi9“ r<: Th'? laVer chromatograms of V(IV), Fe(II) and Ti(IV) containing (+)-catechin and
methyl gallatc so|ut|°ns (a) samples kept in deoxygenated condition (b) aerated samples. Details
of the TLC are described in Table 4.1

Table 4.1 Description of the thin layer chromatogram of V(IV), Fe(II) and Ti(IV) containing 
solutions of (+)-catechin and methyl gallate (aerated samples)

____Label/Sample | Rf values Description
C -( + )-catechin 0.44 ( + )-catechin s, reference sample

C l-( + )-catechin + V(IV)

C2-( + )-catechin + Fe(II) 

C3-( + )-catechin+ Ti(IV)
0.44

( + )-catechin- V(IV) complex (green coloured) and polar 
oxidation products, No ( + )-catechin spot

( + )-catechin-Fe(II) complex (blue coloured,) and polar 
oxidation products, No ( + )-catechin spot
+ )-catechin-Fe(II) complex (oranqe coloured 

( + )-catechin

M-methyl gallate

Ml-methyl gallate +V(IV)

M2-methyl gallate+ Fe(II)

M3-methyl gallate +Ti(IV)

0.78

0.78

0.78-0.85 

<0.78

0.78

methyl gallate, reference spot 

methyl gallate-V(IV) complex (green coloured) 

methyl gallate spot 

Tailing spots (oxidation products)

Blue, methyl gallate-Fe(II) 
methyl gallate

Oxidation product

Tailing spots (oxidation products)

Methy gallate - Ti(IV) complex (orange coloured)

methyl gallate
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Similarly the ( + )-catechin spots showed Rf value of 0.44. No other extra spots are

detected, hence the sample solutions are pure and their composition is unaltered in the

anaerobic environment. The chromatogram of the aerated sample solutions (Figure

4.11b) shows that the ( + )-catechin spots containing Fe(II) and V(IV) have completely

disappeared, the spots of both of the aerated metal containing (+)-catechin solutions

were immobile, which indicates the products of the metal catalysed reactions might be 

have lower affinity for the mobile phase.

According to Azam et al. (2004), TLC analysis oxidised (+) catechin developed using 

solvent mixture of toluene:ethyl acetate (1:8), also showed immobile spots. The 

immobility of the oxidation products may be related to formation of polymeric structures. 

Bailey et al. (1993) showed that oxidation of (+)catechin and other flavan-3-ol 

compounds in the presence of metal salts such as potassium hexacyanoferrate(III) in 

acid media results in the formation of high molecular weight coloured compounds that 

are insoluble in water. Dimerisation of ( + )-catechin and similar polyphenols occurs with 

initial oxidation of the o-diphenol groups of the B-ring, followed by coupling reaction

between the quinone groups of an oxidised polyphenol and the B-ring of the initial 

flavan-3-ol molecule (Guyot et al. 1996).

The chromatogram of the metal containing methyl gallate samples show the presence of 

the original compound in the aerated samples, however additional spots of oxidation 

products also emerged. The Fe(II) containing sample showed overlapping or tailing spots 

with most them having lower R f  than that of methyl gallate. The V(IV) containing methyl 

gallate spot showed similar appearance of the spots of oxidation products with Rf values 

than that of methyl gallate. The tri-hydroxy groups of gallic acid and gallates are prone 

to oxidation with the formation of quinone and semi-quinone (Tulyathan et al. 1989), the 

oxidations of the o-diphenol groups of methyl gallate may be similar to that of gallic
v

acid, except for difference that from the presence of the methylation, that prevents 

reversible intra-molecular ester link formation in di-gallic to form ellagic acid. In 

acidicmedia, the oxidation of the trihydroxy groups of the gallic acid derivative (methyl
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gallate) may take place through direct oxidation of the chelating o-diphenols by the

Figure 4.12. Proposed structures of oxidation products of gallic acid (a) C-C dimer oxidation 
product (b) C-0 dimer oxidation product (Nikolic et al. 2011)

Using thin layer chromatography, Tulayathan et al. (1989) has demonstrated that the 

oxidation products derived of gallic acid and the ellagic acid (product of gallic acid 

coupling) are similar and it has been suggested that further oxidation of quinoid 

oxidation products may lead to molecular rearrangements. In addition to the C-C dimer 

products (Section 4.3.1). Nikolic et al. (2011) has also described that C-0 dimeric 

oxidation products (Figure 4.12) may also be formed. Hence, the multiple spots 

observed in the chromatogram of the Fe(II) and V(IV) containing solutions of methyl 

gallate could be the different forms of the oxidation products of the tri-hydroxyl units.

4.3.5. Determination of free-radical scavenging activity

As shown in Figure 4.13, the methyl gallate solution caused the greatest reduction in 

DPPH concentration, scavenging 95% of the free-radical. During the 30 minutes of 

incubation, the initial DPPH concentration (0.3 mM) was consumed by hydrogen atom 

transfer reaction and reduced to 0.067 mM. The pyrogallol groups of polyphenols such as 

gallocatechins have greater reactivty with respect to free-redical scavenging reactions as 

compared to compounds having only di-hydroxyl units (Rice-Evans et al. 1997; Villano et 

al. 2007).

metal ions i.e. Fe(III) and V(V). In addition, the oxygen derived free-radicals (02-, HO-) 

and hydrogen peroxide (H2O2), generated as a result of autoxidation of the metal ions inions in

acidic media, create a more oxidative environment.
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Figure 4.13 DPPH concentration after 30 minutes of incubation (primary axis) and the relataive
free-radical scavenging activity (secondary axis) methyl gallate solutions; control samples and 
metal containing solutions.

The presence of metals in the methyl gallate solutions, at the mole ratio 1:10 (metal: 

methyl gallate) resulted in significant changes in the free-radical scavenging action of 

the polyphenol (P<0.05 one-way ANOVA, Appendix 9). The AI(III) and Ti(IV) containing 

methyl gallate solutions also showed nearly the same free-radical scavenging activity as 

that of the methyl gallate solution. This indicates that the presence of the metal ions and 

the reversible formation complex with the trihydroxy group of methyl gallate does net 

influence the hydrogen atom transfer reaction of the compound with the DPPH radical.

Whereas, the Fe(II), Fe(III) and V(IV) containing solutions showed free-radical

scanvenging activity that are relatively lower by 8-11%, compared to the corresponding

value of the methyl gallate reference solution and the Al(III) or Ti(IV) containing methyl

gallatesolutions.

The free-radical scavenging activity of the V(V) containing methyl gallate solution (69%) 

was found to be the lowest, nearly one third of the DPPH radical remained unreacted. 

The main reason for the decline in the DPPH radical scavenging activity of the Fe(II), 

Fe(III), V(IV) and V(V) is related to the occurrence of redox interaction between the 

metal ions and the polyphenol as described in the earlier sections. The conversion of the 

o-dihydroxy groups into quinone groups lowers the possibility of formation of hydrogen

atom transfer reaction with the DPPH radical (Brand-Williams et al. 1995).
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4.4. Summary

Evaluation of the stability of (+)-catechin and methyl gallate, in aerobic conditions at 

different pH, showed that o-diphenol moieties are susceptible to autoxidation in alkaline 

media; however they may have relative stability in acidic media below pH 6.0. The metal

ions of Fe(II), Fe(III), V(IV) and V(V) form complexes with the o-diphenol groups and 

also undergo redox interactions in acid media in the presence of oxygen.

Autoxidation of the polyphenols in acidic media may be catalysed by the transition metal 

ions. The catalysis of the oxidation of (+)-catechin and methyl gallate by Fe(II) and V(IV) 

ions may involve the in situ oxidation of the metal ions in the metal-polyphenol complex 

as well as reduction of Fe(III) and V(V) species by o-diphenol groups. Vanadium(V) 

appears to have relatively greater effect in oxidising the polyphenols as compared to that 

of Fe(III), as observed with the greater decline of the free-radical scavenging activity of 

the V(V) containing methyl gallate solution. In addition, oxidation of Fe(II) and V(IV) in 

aqueous media results in the formation of superoxide radical (02*) and other oxygen 

derived radicals. The presence of oxygen radicals speeds up the oxidation of the o- 

diphenol groups and leads to the formation of hydrogen peroxide.

The oxidation of tannins as well as low molecular weight polyphenols in aerobic 

conditions are catalysed by redox reactions involving redox cycling of Fe2+/Fe3+ or 

V4+/V5+driven by autoxidation of lower oxidation state metal ions and reduction of the 

higher oxidation states by the o-diphenol groups of polyphenols. These redox reactions 

are also likely to occur with the tannin-V(IV) and tannin-Fe(II) interaction in semi-metal 

tanned leathers and subsequently result in the autodegradation of the leathers at 

ambient conditions (described in Chapter 3).
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Chapter 5 Effect of hydroxy radicals on the stability of leather

5.1. Introduction

The effect of Fe(II) and V(IV) in triggering and catalysing oxidative degradation in the 

semi-metal tanned samples (described in Chapter 2 and 3) were explained in terms of 

the redox reactions between the metal ions and tannins (Chapter 4). Results of 

experiments indicated that the interactions responsible for the Fe(II) and V(IV) catalysed 

oxidation of polyphenols may involve in-situ oxidation of the metals in the tannin

complexes of Fe(II) and V(IV) by molecular oxygen (02) and the reduction of Fe(III) and 

V(V) species by the o-diphenol moieties of tannins.

The involvement of molecular oxygen in the redox interactions results in the formation of 

the superoxide anion that subsequently forms hydrogen peroxide (FI2O2) as shown in 

Equation 5.1a-b. Hydrogen peroxide is relatively a weak oxidant as can be observed 

from its reduction potential. However, it can be reduced by certain metal ions and 

generate hydroxyl radicals (Equation 5.1c). Hydroxyl radicals are powerful electrophilic 

agents (oxidants) as reflected by their greater reduction potential (Equation 5.1). In 

contrast, the reduction of molecular oxygen is slow (i.e. negative value of standard

potential)

(a) o 2 + e- ---------------------------- o 2 - E-= -0.16

(b) o 2 - + e- + 2H + -----> H2O2 E-�-+0.89

(c) H202 + e- + H + —— HO + H2O f =-+0.38

(d) HO + e- + H + ----- > H2O E-�+2.32

Eq u ation  5.1 Successive steps of one electron reduction of oxygen (O2 ) in aqueous media in the presence
metal ions or molecules with labile electrons (Stumm and Morgan 1996) and the corresponding standard 
reduction potential (Wood 1998).

In the formation of oxygen derived free radicals and hydrogen peroxide through the 

above mentioned redox reactions, the formation of superoxide anion (Equation 5.1a) is 

the slowest reaction and hence a rate limiting step (Perron et at. 2010). The superoxide
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moreanion and hydroxyl radical are stronger oxidants than molecular oxygen and

reactive in terms of reacting with organic molecules (Kashima 1999; Mochizuki et. al 

2002; Wood 1998).

H2O2 can be spontaneously reduced to hydroxyl radical and hydroxide anion by metal

ions such as Fe(II), Fe(III), V(IV), Cu(II) in acidic media. The reaction of metal

catalysed decomposition of FI2O2 to form hydroxyl radicals is known as the Fenton 

reaction (Barbusinski eta/. 2009).

5.1.1. The chemistry of Fenton reaction

The Fenton reaction generates the powerful oxidative free radicals (hydroxyl radicals) in 

acidic media. It was discovered more than a century ago by a British chemist Henry J. H. 

Fenton, who observed the complete oxidation of tartaric acid by H2O2 in the presence of 

Fe(II) ions (Kehrer 2000).

The Fenton reaction has also been applied for oxidation organic compounds (Barbusinski

et al. 2001) in waste treatment activities such as enhancement the biodegradability of

organic compounds (Chamarro et al. 2001; Kitis et al. 1999), effluent treatment and

detoxification (Pulgarin et al. 1994; Oiler et al. 2011), degradation and disposal of

pesticides (Barbusinski and Filipek 2001; Felsot et al. 2003) and treatment of leachate

from composting sites (Trujillo eta/. 2006).

The occurrence of the Fenton reaction and its mechanisms has also been investigated in

research related to free-radical mediated oxidative damage of biological molecules and

the pro-oxidant role of metal ions in vivo (Henle and Linn 1997; Halliwell and Gutteridge 

1990; Valko et al. 2006). The mechanism of metal catalysed generation of hydroxyl 

radicals via the Fenton or Fenton-like reactions has been a subject of controversy. While 

there is general agreement on the catalytic formation of oxidative species by the 

reaction, there are differing views on the type of oxidative species formed and the 

pathway of the reaction; a free-radical mechanism (Section 5.1.2) and a non-radical
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mechanism (Section 5.1.3) have been suggested by various researchers (Barbusinski

2009)

5.1.2. The free-radical mechanism of the Fenton reaction

According to the description of the Fenton reaction by Haber et at. (1934), formation of 

free-radical species by iron catalysed decomposition of H202 is a chain reaction initiated 

by a spontaneous oxidation of Fe(II) ions by H202 (Equation 5.2a). Another initiation of 

the reaction may also be the reduction of Fe(III), which is a slow reaction that generates

hydroperoxyl radicals (HOO*) shown in Equation 5.2b. Reduction H2O2 with

hydroxyl radicals (HO*) and hydroperoxyl radicals (HOO*) shown in Equation 5.2 b&c are

the propagation steps. At the end of the reaction, the hydroxyl radicals are terminated 

by oxidation of the Fe(II) with hydroxyl radical.

(a) Fe2+ + H2O2 Fe3+ + HO* +

(b) Fe3+ + H2O2 —a Fe2+ + HOO* +

(c) HO + H2O2 H2O + HOO*

(d) HOO* + H2O2 —5 O2 + H2O + HQ

(e) Fe2+ + HO* — 5 Fe3+ + HO-

HO 

H +

Equation 5.2 Mechanism of Fenton reaction, iron catalysed decomposition of H20 2, originally 
proposed by (Haber and Weiss 1934)

The radical generation mechanism of Haber and Weiss (1934) was later revised by Barb

et at. (1951), who suggested that the oxygen evolution occurs as a result of reduction of

Fe(III) by hydroperoxyl radical (HOO*) as shown in Equation 5.3a, rather than the

reduction of H202 by hydroperoxyl radical (Equation 5.2c). In addition, oxidation of

Fe(II) by hydroperoxyl radical (Equation 5.3b) was also suggested.

HOO* + H+ + O2

HOO* HOO

Equation 5.3 Reactions of the hydroperoxyl radical with Fe2+ and Fe3+ proposed by Barb et at. 
(1951) as modification of the Fenton chain reaction originally suggested by Haber and Weiss
(1934)
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The Fenton reaction may also take place with several transition ions such as Cu+, Cr3+,

Co2+, Ti3+ and Ni2+, V4+ and V2+ (Barbusinski et at.2009) and with some inner-transition 

metal ions such as the cerium (Ce3+) ion (Heckert eta/. 2003). A general mechanism of 

metal catalysed free-radical generating mechanism is shown in Equation 5.4.

Mn+ + H2O2 > M(n+1) + HO- + HO*

Equation 5.4 General formula of the initiation reaction of Fenton and Fenton-like reaction 
reactions exhibited by Fe(II) and other cations. (Walling eta/. 1975; Barbusinsky 2009).

According to Strlic et al. (2003), the catalytic efficiency of some of the transition metal 

ion in Fenton-like reactions at neutral pH is in the order of Cu(II) > Cr(III) > Co(II) > 

Fe(III) > Mn(II) > Ni(II).

5.1.3. The non-radical mechanism of the Fenton reaction

In contrast to the free-radical mechanism, an alternative non-radical mechanism 

(Equation 5.5) has also been proposed in which a metastable Fe+4 oxycation species, 

known as ferryl ion (Fe=0)2+ can be formed as an intermediate (Bray et al. 1932; 

Kramer 1999). It has been demonstrated that the ferryl ion is known to be a powerful 

oxidant It is extremely electrophilic, to the extent that it can abstract electrons from 

poor electron from poor electron donor such as aliphatic C-H bonds, the C-H bond 

orbital acting as electron donor in a charge transfer type of interaction (Louwerse and 

Baerends 2007).

(a) Fe2+ + H2O2 Fe02+ + H2O

(b) FeO2+ + H2O2 Fe2+ + H2O + O2

Equation 5.5 Non-radical mechanism of the Fenton reaction through (a) formation of a ferryl 
cation intermediate (FeO)2+ and (b) subsequent oxidation of H2O2 (Kremer 1999)

It is assumed that ferryl ion may be stable only near the neutral pH, at lower pH it may 

become protonated into (Fe-OH)+3 and dissociate releasing the hydroxyl radical (OH*)

and Fe(III) ion (Gozzo et al. 2001; Rush et al. 1998). There is evidence indicating the 

validity of both the radical the non-radical pathways (Barbusinsky 2009). Reviews of the

Fenton reaction mechanism (Prousek 2007; Liochev and Fridovich 2002) suggested that
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the free-radical and non-radical pathways may occur at different conditions of pH and 

type of ligands present in the system.

Currently, the free-radical pathway of the Fenton reaction is the most accepted

mechanism, commonly invoked to explain the pro-oxidant mechanisms of metal

complexes in biochemical systems (Valko et at. 2007; Halliwell et at. 1990; Moriwaki et 

at. 2008; Henleefa/. 1997; Carmichael 1989)

5.1.4. Free-radical mediated oxidation of leather

Based on the features of oxidation of polyphenols in aqueous solution in the presence of 

V(IV) and Fe(II) and the degradation of the semi-V(IV) and semi-Fe(II) leathers, it was 

postulated that the occurrence of oxidative degradation might be related to the 

formation of hydroxyl radicals that caused non-specific oxidation, including damage to 

the collagen of the leather samples. The potential formation of H2O2 and iron catalysed 

formation of hydroxyl radical has also been suggested by Phillips (1954) and Haslam 

(1998). Literatures on the degradation of aged vegetable tanned leathers have also 

related the presence of certain types of metals (e.g. iron and copper) to the 

enhancement of the oxidative deterioration of leathers ( Thomson 2006; Florian 1987 

and Thomson 2006).

In Chapter 4, the catalytic effect of Fe(II) and V(IV) in oxidation of polyphenols was 

demonstrated and the possibility for the formation of H2O2 in acid media was also 

indicated. It is believed that the formation of H2O2 may occur in the semi-metal tanned 

samples as a result of tannin-metal redox interaction occurring in aerobic conditions. In 

the presence of the Fe(II) and V(IV), hydroxyl ions may also be formed through the 

Fenton mechanism (Equation 5.5). In the experiments described in this chapter, the 

effects of H2O2 and Fenton-generated hydroxyl radicals on the hydrothermal stability and 

structural integrity of leather were studied.
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5.2. Materials and methods

5.2.1. Chemicals

Analytical grade hydrogen peroxide (30% w/w, H2O2, specific gravity 1.10), iron(II) 

sulfate [FeS04.7H20], glacial acetic acid (99% w/w, CH3COOH) and sodium acetate 

(CHsCOONa) obtained from Fisher-Scientific Ltd (UK) were used in the experiment.

5.2.2. Samples

The following samples were used in the experiments described in this chapter.

Untanned hide powder: acetone dried pelt prepared as described in Section 2.2.3 of 

Chapter 2 for the hide power preparation,

Mimosa tanned leather : leather sample prepared by tanning pickled sheep skins with 

a condensed tannin powder (Mimosa ME, Forestal Ltd., UK) as described in Appendix 3,

Chromium(III) tanned leather : leather sample prepared by tanning pickled sheep

skins with Chromosa (chromium(III) sulfate, 33% basicity, 25% Cr203, Lanxess

GmbFL, Germany) as described in Appendix 5,

Cr(III)-mimosa tanned leather: leather sample prepared by retanning chromium(III) 

tanned leather using Mimosa ME as described in Appendix 6.

5.2.3. Analytical instruments

Differential scanning calorimeter (DSC): Mettler-Toledo 822e DSC (Mettler-Toledo

Gmbh. Switzerland) was used to measure the shrinkage transition of samples.

Scanning electron microscope (SEM): Hitachi 3000N SEN (Hitachi Co. Ltd., Japan)

was used to assess the fibre structure of dry samples.

pH meter : Multi-Seven pH meter (Mettler-Toledo Gmbh., Switzerland) calibrated with 

standard buffer solutions was used.
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5.2.4. Procedures of sample treatment and analysis

Samples described in Section 5.2.2, each weighing 5g were placed in separate beakers

and conditioned to pH 6.0 over 24 hours using 20 mL of 1.0 M acetate buffer. One

sample of each type was kept as control in the acetate buffer without further treatment. 

The remaining three samples of each type were treated as follows.

5.2.4.1. Treatment with hydrogen peroxide

Into the each of the beakers containing the rehydrated samples, 10 mL of a 2% w/v

solution H2O2 was added. The concentration of H2O2 in the treatment solution was 0.2 M.

The pH of all sample solutions after addition of the H2O2 was in the range of 5.6-6.0. The

samples were kept in the solution for 48 hours at ambient temperature and then washed 

excess deionised water.

5.2.4.2. Treatment with Fenton reaction

Two separate treatments of the samples (Section 5.2.2) were carried out in the same 

manner but with different concentration of H2O2 used. The Fenton treatment with 

relatively lower concentration of H2O2 is designated as Fenton-A treatment and the other 

treatment carried out with greater concentration of H2O2 is designated as Fenton-B 

treatment.

Fenton-A : samples were immersed in separate fiasks containing 20 mL of 0.05M 

Fe(S04) prepared in the acetate buffer and stirred on a rotary shaker for 2 hours to allow 

absorption of Fe(II) ions into the samples. Then, 10 mL of 2% (w/v) H2O2 solution was 

added to each of them. The samples were kept covered for 48 hours at room 

temperature. Finally, the samples were rinsed with excess deionised water and dried at 

room temperature.

Fenton-B: another set of the four samples were treated in the same manner as 

described in Fenton-A treatment, the only difference was addition of 10 mL of 4% H2O2 

instead of 10 mL 2% w/w H2O2 solution.
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The concentration of Fe2+ in the treatment solutions was 0.03 M in both cases. However,

the concentrations of H202 in the Fenton-A and Fenton-B treatment solutions were 0.2M

and 0.4M. Hence the mole ratio (H202 to Fe2+) in the first and second Fenton reactions 

was 6:1 and 12:1, respectively.

5.2.4.3. Measurement of shrinkage temperature (Ts)

Measurement of Ts of the samples was carried out using DSC in standard aluminium 

pans (40 pL) by scanning in the range of 0-140°C at the heating rate of 5°C/minute. 

Triplet measurements were carried out and the averages and standard deviation of on-

set temperature values were calculated

5.2.4.4. Scanning electron microscopy

Sections of the samples were cut perpendicular to the grain surface and coated with gold 

using an Emitec K550 vacuum sputter coater (Quorum technologies Ltd., UK). The fibre 

structures in the samples were examined at different magnifications.

5.3. Results and discussion

5.3.1. Effect of treatment with hydrogen peroxide

As shown in Table 5.1, the Ts of the untanned collagen was slightly reduced by 5°C after

treatment with H20 2. While the that of the Cr(III) tanned and Cr(III)-mimosa tanned

leathers were reduced to a large extent by 59°C and 30°C, respectively. The change

indicates that the covalent link between Cr(III) and collagen is broken and oxidative

reactions have disrupted the tanning structure of the Cr(III) tanned leather, which is

composed of interlinked oligomeric Cr(III) complexes (Covington 2008). According to 

Bakore et al. (2011), dimer and trimer Cr(III) complexes may be oxidised by H202 at

pH>5, the rate the reaction increases with pH.

In alkaline media, H202 is utilised in an oxidative detanning process Cr(III) tanned 

shaving waste Cot et al. (1991). Since the Cr(III)-collagen covalent bond is broken as a
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result of oxidation into Cr(VI), the tanning effect of Cr(III) compl 

products is considered to be disrupted or non-existent.

exes in the H2O2 treated

Table 5 1. Average Ts of control samples of untanned collagen and leather samples and 

(0^3MFe2"Toe5MTi?o20)'2M ^  a'°ne ^  Fent°n A (0 03MFe2+/ °-2M H2O2) and Fenton B

Sample
treatment

untanned 
hide powder

mimosa
tanned
leather

Cr(III)-mimosa 
tanned leather

Cr(III) tanned 
leather

No treatment (control) 60. l± l 81±1 111.6±1 110.9±1

0.2 M H2O2 solution 54.5±1 80.2±1 82.9±4 52.1±2

Fenton-A :
0.03 M Fe(II) + 0.2 M H20 2 36.5±3 38.6±2 37.9±2 42.7±1

Fenton-B :
0.03 M Fe(II) + 0.4 M H20 2 —

In addition, investigations on the pro-oxidant effect of chromium species in biological 

system indicate that a Fenton-like reaction may also occur with Cr(III) and H2O2 system, 

generating hydroxy radicals as well as intermediate species of Cr(IV) and Cr(V), as 

shown in Equation 5.6a-d (Tsou and Yang 1996; Strlic, et al. 2003). The reaction occurs 

through successive steps in which other Cr(IV) species are involved in further oxidation 

with to Cr(V) with H2O2 (Equation 5.6 b&c) as well as a disproportionation reaction 

(Equation 5.6d).

H2O2 OH HO

H2O2 OH" + HO

( c :) H2O2 Cr5+ + OH HO*

f ct t 2 Cr4

Equation 5.6. Oxidation of Cr(III) to Cr(III) in neutral and alkaline solutions, involving formation 
of hydroxyl radicals (Bokare et al. 2011)

Shi et al. (1998) showed that Cr(III) may be reduced to Cr(II) by superoxide anion to 

form H2O2, thereby creating a Fenton-like reaction in which both Cr(II) and Cr(III) may 

decompose the H2O2 to hydroxyl radical. The Fenton-like reactions exhibited by the 

chromium ions, with oxidation states ranging from +2 to +6, is evidently more complex

than that of iron, which involves oxidation states +2, +3 and possibly +4 (via the non-
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radical Fenton mechanism). The decline in the Ts of the peroxide treated Cr(III) tanned 

leather might also be related to occurrence of Fenton-like reaction in the leather (Figure 

5.6). The Ts of the Cr(III) tanned sample dropped to 89°C (Table 5.1). However, it is 

known that complete detanning of Cr(III) tanned leather may also be achieved with 

greater concentrations of H2O2 applied in alkaline media i.e. pH >8.0 (Cot et a/. 1991).

On the other hand, the mimosa tanned sample did not show decline of Ts, indicating that 

the polyphenolic tanning matrix doesn't react with H2O2, which actually has lower 

reduction potential as compared to hydroxyl and superoxide radicals (Equation 5.1). The 

decrease in the Ts of the Fenton-A treated sample of Cr(III)-mimosa tanned leather is 

relatively lower than that of the Cr(III) tanned leather. It appears that, the polyphenolic 

matrix in the Cr(III)-mimosa leather has not been affected significantly. The decline in Ts 

in this sample may be related mainly to the oxidation of Cr(III) by H2O2.

5.3.2. The effects of Fenton reaction

The Ts of all samples after treatment with the Fenton-A system resulted in a remarkable 

decrease of Ts, most of the sample showed Ts values of 40°C and below. Whereas, in the 

case of the samples treated with the Fenton-B, it was not possible to obtain distinct 

thermal transitions in the DSC measurements. The collagen in the Fenton-A treated 

samples is considered to be partially denatured. The degree of structural disruption and

denaturation by oxidation appears to occur to a greater extent in the Fenton-B treated

samples. It appears that the triple helical structure of the collagen in the Fenton-B

samples may already been structurally disrupted by the chemical treatment, hence no

endothermic transition of denaturation could be detected during DSC analysis.

With the samples treated using Fenton-A, the decrease in the Ts of all of the samples 

appears to occur to a narrow range of 36-42°C, regardless of the large difference in the 

Ts of the initial samples, as shown in Table 5.1. The extent of lowering of the 

hydrothermal stability observed with the Fenton treated samples indicates that both the
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tanning structures and the collagen matrix are damaged by the oxidative action. Unlike

the case of the treatment H202 alone, treatment with the Fenton-A and Fenton-B

systems have caused oxidative damage in all of the samples, including the mimosa 

tanned sample.

5.3.3. The fibre structure of the Fenton treated samples

The structure of fibre network and morphological appearance in the oxidised samples 

showed significant difference as compared to the corresponding untreated control 

samples. The SEM micrograph of the control samples of mimosa tanned leathers (Figure 

5.1 a&b) show an intact structure with distinctly visible fibre weave and fibre-bundles. In 

contrast, the samples after treatment with Fenton-A (Figure 5.1 c&d) have a structure 

that is relatively loose and composed of irregularly shaped fibres fused together.

(a) (b)

(C) (d)

Figure 5.1. SEM micrograph of the cross-sectional view of mimosa tanned leather at (a) 
magnification X250, (b) magnification X600; cross-sectional view of mimosa tanned leather 
treated with Fenton reaction using 0.03M Fe2+ and 0.2 M H20 2 at (c) magnification of X250 and (d) 
magnification X600.
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The Cr(III)-mimosa tanned samples treated with Fenton-A system also showed change

in the fibre structure, similar to the case of the mimosa tanned. As shown in Figure 5.2,

the normal fibre structure of the leather (Figure 5.2 a&b) was converted to an

amorphous structure of fibres having distorted shapes in the Fenton treated Cr(III)-

mimosa leather (Figure 5.2 c&d). The physical degradation and the decline of Ts of the

Fenton treated Cr(III)-mimosa and Mimosa-tanned leathers appear to occur similarly,

regardless of the difference in the composition of the leather in terms of the presence or 

absence of Cr(III) tanning.

Figure 5.2. SEM micrograph of the cross-sectional view of Cr(III)-mimosa tanned leather at (a) 
magnification X250, (b) magnification X600 and the corresponding micrographs of Cr(III)-mimosa
tanned leather treated with Fenton reaction using 0.03M Fe2+ and 0.2 M H2O2 at (c) magnification 
of X250 and (d) magnification of X600.

The Cr(III) tanned leather also showed a similar type of physical degradation as a result

of treatment with the Fenton reaction, regardless of the high hydrothermal stability of

the leather. The Fenton-A treated sample (Figure 5.3 c&d) showed a different

appearance as compared to the controls (Figure 5.3 a&b). Broken fibres with irregular
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morphology were observed (Figure 5.3 c&d) and the cross-section became a compact

structure.

The physical degradation of the leathers by the Fenton reaction indicates that the

presence of hydroxyl radicals in leather causes oxidative degradation in which, not only

tanning structures may be decomposed, but the fibrous collagen matrix may also be

denatured. The results indicate that leather is susceptible to a rapid oxidative damage

under ambient conditions with application of dilute Fenton reagent (Fe2+/H202). The

degree of oxidative damage may be proportional to the quantity of oxidant used and

extent of oxidative damage could extend to complete structural denaturation as well as 

decomposition of the whole material.

(a) 6i\M .

(c) i (d)

Figure 5.3. SEM micrograph of cross-sectional view of Cr(III)-tanned leather at (a) magnification 
X250, (b) magnification X600 and the corresponding micrographs of Cr(III)-mimosa tanned 
leather treated with Fenton reaction using 0.03M Fe2+ and 0.2 M FI2O 2 (c) at magnification of X250 
and (d) magnification of X600
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5.3.4. Free-radical mediated degradation of leather

The mechanism for oxidative degradation of tannins by metals in semi-metal tanned has 

already been described earlier as a chemical process. The potential for the formation of 

free-radicals was also described in Chapter 4, based on evidence from research on 

metal-tannin interaction and the pro-oxidant mechanisms of metal ions, i.e. Fe(II),

V(IV).

The results shown in Sections 5.3.2 indicate the formation of hydroxyl radicals in 

vegetable tanned leather causes a deleterious effect on the polyphenolic tanning matrix 

as the causes denaturation of the collagen. Thus, the decline in Ts and degradation 

observed on the Fe(II) and V(IV) containing leather samples can be attributed to the 

formation of H2O2 and hydroxyl radicals as a result of the metal catalysed oxidation of 

tannins (Section 5.1) and Fenton reaction (Equation 5.4)

In relation to the deterioration of age old historical leather artefacts, it has been 

assumed that the presence of certain metal ions in vegetable tanned leathers, 

originating from the tanning process may enhance oxidative breakdown of the collagen 

matrix in the leathers (Kite 2006, Florian 1987). The formation of H2O2 during 

accelerated-ageing of vegetable tanned leathers in sulphur dioxide chambers is assumed 

to be an important part of the oxidative degradation of leather in acid media (Stambolov 

1969). The catalytic effect of metal ions in decomposing FI2O2 and enhancing oxidative 

degradation historical leathers (vegetable tanned) was proposed in earlier studies by

Phillips (1954).

Flaslam(1998) proposed that FI2O2 may also be formed due to the autoxidation of

polyphenols and the principal mechanism for the degradation of vegetable tanned 

leather is may be related to the catalytic effect of trace quantities of iron ions present in

the leather. Assuming the presence of trace amounts of Fe(II) or Fe(III) ions in leather,

the redox interactions (Figure 5.4) that involves reduction of Fe(III) by aromatic
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hydroxyl or phenolate ions (Figure 5.4a) and oxidation of Fe(II) by air with subsequent 

formation of superoxide radical (Figure 5.4b) were suggested.

(a)

(b)

(c)

( d )

Figure 5.4 Proposed mechanism of iron-catalysed degradation of vegetable tanned leather 
(Haslam 1998) involving (a) oxidation of polyphenols by Fe3+, (b) autoxidation of Fe2+, (c) 
formation of hydroperoxyl radical (H02-) and (d) formation of H2O 2.

The superoxide radical formed in the leather may abstract a hydrogen ion from the 

phenolic hydroxyl groups (Figure 5.4c) or react with the hydroperoxyl radical to form 

H2O2 (Figure 5.4d). The presence of H2O2 leathers would give rise to the catalytic 

formation of hydroxyl radicals (OH*) and subsequent oxidative breakdown of the 

collagen. The suggested sequence of reactions represents a mechanism in which 

molecular oxygen may be continually converted in to oxygen derived radicals and H2O2, 

through the catalytic effect of assume trace quantities of iron.

The experiments described in Chapter 4 on the stability of phenolic compounds in the

presence of Fe(II) and V(IV) ions, indicate that the autoxidation of phenolic compounds

may occur in acid media, in which the o-diphenol groups are largely not ionised.

Therefore, the presence of phenolate ions is not a requirement for the reaction of

polyphenols with Fe3+. On the other hand, it is known that at conditions where phenolate

ions are formed in large proportions (/'.e. alkaline conditions), autoxidation of

polyphenols occurs spontaneously resulting in oxidative rearrangement reactions
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(Ferriera et at. 1992). The reactions in proposed mechanism of Haslam (1998) may not

completely represent the redox interaction responsible for degradation of vegetable

tanned leather. But it highlights the important role of metal ions and oxygen derived

radicals in the leather degradation process. The general concept of this mechanism, in

relation to the possibility of formation of H202 and the role of metals in catalysing

oxidative reactions was considered in explaining the occurrence of metal-induced 

degradation in the semi-metal tanned leathers (Chapter 3)

5.3.5. Oxidative fragmentation of collagen

The collagen in the leather samples treated with Fenton-A and Fenton-B systems is 

evidently damaged by the oxidative effect of hydroxyl radicals. An investigation by 

Komsa-Penkova (2000) has shown that the treatment of collagen with hydroxyl radicals 

has shown that the quantity of free amino groups in the oxidised product was 

significantly lower than acid-hydrolysed collagen. Accordingly, it is assumed that the 

highly electrophilic hydroxyl radicals are most likely to attack side chain amino groups 

mainly lysine, argenine and Histidine.

Uchida et at. (1990) and Kato et at. (1992) have also investigated the oxidative 

breakdown of collagen by hydroxyl radicals. It was discovered that the peptide links at 

the proline residues (prolyl peptides) may be the initial sites for the fragmentation of the

collagen polypeptide. Nevertheless, considering that hydroxyl radicals are powerful

oxidants, the oxidative fragmentation of collagen is also assumed in other location of the

collagen chain. As demonstrated by Mukhopadhyay et at. (1994), oxidatively fragmentedW l  I V . . .  . .  ' w  w  ~  /  ■    I--------------/  /     \ ---------------- I  i    ■ ■ —  3 7  . . .  —

collagen is most likely to be susceptible to proteolytic attack by enzymes that

a a ■ I I  • • i ■ I I

are

normally incapable of hydrolysing intact collagen.
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5.4. Conclusion

The formation of oxygen derived free radicals plays a crucial role in metal induced 

degradation of leathers. Vegetable tanned leather are not susceptible to oxidation by 

H2O2, while the Ts of Cr(III) tanned leathers is lowered by nearly 59°C due to the 

oxidative action of a 2% w/v solution of H2O2 via a Fenton-like reaction with Cr(III) ion. 

Collagen also showed a slight decrease in Ts from 60°c to 54°C. All leather samples and 

the hide powder sample were degraded by Fenton reaction in 2% of H2O2.

The Ts of hide powder and leather samples treated with the Fenton reaction i.e. 0.2M of 

H2O2 and 0.03M Fe2+dropped to less than 40°C, indicating the occurrence of oxidative 

denaturation of collagen by hydroxyl radicals. The effect of hydroxyl radical mediated 

oxidation of hide powder and leather samples, observed with SEM, showed deformation 

of the fibres and formation of amorphous structures. Application of increased quantity of 

H2O2 in a separate Fenton treatment of samples i.e. 0.4 M H2O2 caused greater oxidative 

decomposition of the samples. In this case, the fact that no thermal transition was 

detected might indicate that the collagen in the samples has undergone complete 

structural disruption. The results described in this chapter also provide further evidence 

regarding the role of hydroxyl radicals in the autoxidative degradation of the semi-Fe(II) 

and semi-V(IV) tanned samples (described in Chapter 2 and 3).

In addition, the observed changes in the leathers treated with Fenton reactions 

represent a case of an efficient means of degrading leather. The Fenton reaction is 

widely applied industrially and in waste management operations. Based on the results 

obtained in this research, it is suggested that oxidative pre-treatment of leather waste 

using Fenton reagent may be useful in developing efficient methods for recycling of 

leather waste through biodegradation methods. This may be viewed in terms of the 

efficiency of the reaction in bringing about chemical breakdown of the macro-molecular 

structures in leather, thereby enhancing its susceptibility to enzymatic and/or microbial

degradation.
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CHAPTER 6

ENZYMATIC HYDROLYSIS OF OXIDATIVELY
DEGRADED LEATHERS



6.1. Introduction

Resistance to putrefaction and enzymatic degradation are the fundamental property of 

leather and defining criteria for tanning (Reich 2007). Tanning agents prevent proteolytic 

degradation of leather by through steric hindrance, blocking of the active sites of the 

enzymes and causing changes in the secondary structure of the enzymes 

(Krishnamoorthy et al. 2008;Gayatri et al. 2000). It is known that removal of tanning 

agents from leather by detanning treatments and thermal denaturation of the collagen in 

leather may enhance the susceptibility of leather to degradation by enzymes (Dhayalan 

et al. 2005; Yagoub 2006).

As demonstrated in Chapter 3, the occurrence of metal induced autodegradation has led 

a decrease in the shrinkage temperature (Ts) of the leathers below that of the untanned 

collagen. The collagen in the degraded leather samples is considered to chemically 

denatured by oxidative reactions. As demonstrated in Chapter 5, treatment of leathers 

with dilute solution of Fenton reagent (H202/Fe2+) has resulted in oxidative degradation 

in which the collagen in the leather was denatured. Metal-tannin redox reactions and 

hydroxyl radicals in leather causes significant changes in the structure of the tanning 

matrix and the collagen. Therefore, an increased susceptibility of partially degraded 

leathers to proteolytic degradation is also expected to be a possible outcome.

This chapter includes descriptions of the experiments carried out to evaluate the action 

of bacterial enzymes on the oxidatively degraded leather samples. The relevance of the 

results obtained in the experiments are also discussed in the context of application of 

oxidative treatments to enhance the biodegradation of leather waste.
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6.2. Materials and methods

6.2.1. Chemicals and enzymes

The buffer salt tris-hydroxymethylaminomethane-HCI (Tris-HCI), chloramine-T reagent, 

hydroxyproline standard (L-4-hydroxyproline >99.9% w/w) and p-Dimethyl-amino- 

benzaldehyde were purchased from Sigma-Aldrich Ltd (UK). Calcium chloride [99.9% 

w/w CaCb] , propan-2-ole, concentrated hydrochloric acid (36.5% w/w) concentrated 

perchloric acid (70% w/w), citric acid monohydrate, anhydrous sodium acetate and 

trisodium citrate, iron(II) sulfate heptahydrate [Fe(S04).7H20], chromium(III) chloride 

[CrCl6. 6H2O], vanadium sulfate [V0(S04).5H20] and hydrochloric acid (36% w/v) were 

obtained from Fisher Scientific Ltd.(UK). The bacterial enzymes used in the experiments 

(Table 6.1) were obtained from Sigma-Aldrich Ltd., (UK).

Table 6.1 - General description of bacterial enzymes, collagenase and subtilisin, based on 
product information from Sigma-Aldrich Ltd. (UK) and general information from Barrett et 
al. (1998).

Enzyme name

Type and
main enzyme component 

Source
(microorganism/culture)

collagen subtilisin

Metalloprotinase; 
collagenase Type I

Serine endopeptidase; 
subtilisin A

Clostridium Histolyticum Bacillus Licheniformis

Enzyme Commission number EC 3.4.24.3 EC 3.4.21.62

Substrate specificity

Optimum pH

Digestion of native collagen in 
the triple helical region

Hydrolyses peptide amides., 
broad specificity with 
preference to uncharged 
residues

Temperature 37 °C 45-50°C

Form of enzyme product Salt-free Lyophilised powder 200 mg/mL solution in borate 
buffer (pH 8.0), specific 
gravity 1.25 g/ml.

6.2.2. Untanned collagen and leather samples

The main samples for the investigation of enzymatic degradability were the leather 

samples that have undergone autodegradation during storage at 21°C and 65% RH for 

more than 6 months. The first group of samples are the semi-V(IV), semi-Fe(II) 

leathers. In addition, the Cr(III)-mimosa and Cr(III)-chestnut leathers that showed 

autodegradation at the ambient condition of storage after treatment with V(IV) and
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Fe(II) salts were also used in the experiment (Table 6.2). The second group of degraded 

samples were the leathers that were oxidised by the Fenton reaction as described in 

Chapter 5, i.e. Fenton-A treatment method with 0.2 M H202 and 0.03 M Fe2+.

In addition, reference samples of untanned collagen and control samples of leathers (not

degraded or not exhibiting lowering of Ts) were used for comparative analysis. A

description of the samples and their Ts at the time of the enzyme degradability analysis 

is given in Table. 6.2

Table 6.2 - Description of samples used in the analysis of enzymatic degradability of leather 
using collagenase and subtilisin enzymes.

Type and name of Samples Ts (°C)

1 a) Hide powder

59.5

fb T Leather samples

• Cr(III) tanned 110.5

• mimosa tanned 84A

• chestnut tanned
7 6 , 2

c) Partially degraded leather samples

• mimosa-V(IV) 40.1

• chestnut-V(IV) 38.5

• mimosa-Fe(II) 52.5

• chestnut-Fe(II) 56.2

• Cr(III)-mimosa + Fe(II) 84.3

• Cr(III)-chestnut + Fe(II) 87.9

• Cr(III)-mimosa +V(IV) 43.4

"• Cr(III)-chestnut +V(V)
4 2 , 1

[ d f Fenton oxidised samples

• Hide powder 36?5

• Chrome tanned 42/7

• mimosa tanned 38̂ 6

• Cr(III)-mimosa tanned 37̂ 9

Description

Untanned collagen

leather samples prepared as 
described in Appendix 3 and 
Appendix 5

semi-metal tanned leathers that have 
undergone autodegradation at 
ambient condition for six months,

Cr(III)-mimosa and Cr(III)-chestnut 
tanned leathers treated with V(IV) 
and Fe(II) and undergone during 
storage at ambient condition for 6 
months

Leather samples treated with Fenton 
reaction (0.03M Fe2+ and 0.2M H2O2) 
for 48 hours as described in Chapter 
5, Section 5.2.4.2 as Fenton-A 
treatment
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6.2.3. Determination of the degree of enzymatic hydrolysis

Enzymatic hydrolysis of the samples by collagenase and subtilisi n enzymes was

measured in terms of the hydroxyproline concentration in the digestion solutions after 48

set of five samples (lOOmg) of each sample type were treated as follows.

Acid digestion: - Samples from each type were digested in sample tubes with 5 mL of 

6M HCI at 100°C for 6 hours and prepared as analyte solutions of 50 mL volume.

Enzymatic digestion: - Two samples were separately incubated collagenase and 

subtilisin enzymes for 48 hours as described in Section 6.3.2.1. After incubation, all 

sample tubes were cooled, centrifuged at 3000 rpm for 30 minutes at 4°C and filtered. 

The filtrates were digested at 100°C for 6 hours after addition of 5 mL of 6M HCI 

solution. The resulting solutions were prepared as analyte solutions by adjusting to 50 

mL in using deionised water.

Incubation in buffer solutions: The remaining two samples that were incubated for 

48 hours in the buffer solutions in absence of enzyme (control samples) and the 

filtrates (5 mL) from each sample were digested with 5M of HCI for 6 hours and 

prepared as analyte solutions by adjusting to 50 mL.

The concentration of hydroxyproline in each of the analyte solution was determined. The 

experiment procedures were carried out twice and the average of hydroxyproiine 

concentrations were calculated. The degree of enzymatic hydrolysis for each sample was 

estimated by calculating the percentage of hydroxyproline concentration in the analyte 

solutions of the enzyme digestions with respect to that obtained by acid digestion i.e. the 

maximum hydroxyproline concentration from the sample obtained by chemical digestion.

hours of incubation. The samples (Table 6.2) were dried in a desiccator for 48 hours. A

Enzymatic degradation (%) -
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6.2.3.1. Enzymatic digestion of samples

Samples were treated with collagenase and subtilisin enzymes as follows

mg/mL methanolic solutionDigestion with collagenase: lOOpL

collagenase was added in to sample tubes containing the 100 mg samples immersed

in 5 mL of 0.1M tris-HCI buffer (pH 7.5) containing 40 mM of CaCI2. Incubation was

done at 37°C in a water bath for 48 hours. In each case, a control sample was also 

incubated concurrently in the absence of the enzyme.

Digestion with subtilisin: 50 pL of subtilisin enzyme (200 mg/mL) was added to 

sample tubes containing 5 mL of tris-HCI buffer (pH 8.0) containing 40 mM CaCI2 and 

the lOOmg samples. Incubation was done at 50°C for 48 hours. In each case, a 

control sample was also incubated concurrently in the absence of the enzyme.

6.2.3.2. Determination of hydroxyproline content

The concentrations of hydroxyproline in the analyte solutions (50 mL) were determined 

using the method of Bergman et al. (1963). The method is based on the oxidation of free 

hydroxyproline and the subsequent spectrophotometric determination of the 

chromophore generated by the condensation of the oxidation product with para- 

diaminobenzaldehyde. The chloramin T reagent (oxidising agent) was prepared by 

dissolving 1.4g of N-chloro-4-methylbenzenesulfonamide in 100 mL of citrate-acetate

buffer (pH 6.0) containing 50% (v/v) of propan-2-ol. bhriich's reagent was prepared by

dissolving 24 g of dimethylaminobenzaldehyde with 36 mL of perchloric acid and adding

200 mL of propan-2-ol.

A blank and five standard hydroxyproline sample solutions of 1.0, 2.5, 5.0, 7.5 and 10.0 

mg/L were prepared, 0.55 mL portions of each of the standard solutions were mixed with 

1.27 mL of 67% v/v propane-2-ole and 0.88 mL of chloramin T reagent in sample tubes 

and left for 5 minutes. Then Ehlrich's reagent (2.3 mL) was added followed by heating 

for 20 minutes at 70°C. After cooling to room temperature, the absorbance of each 

sample was measured at 555 nm using a spectrophotometer (Shimadzu 2400PC, 

Shimadzu Ltd. Japan) using glass cuvettes (3.5 mL volume, 10mm path-length).
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The standard curve of absorbance versus concentration of hydroxyproline concentration 

with a linear correlation coefficient (R2) of 0.9984 was obtained. The analyte solutions 

were diluted 50 times with deionised water and treated in the same manner as the 

standard hydroxyproline standard solutions. From the calibration curve, the 

hydroxyproline concentrations of the analyte solutions were obtained

6.2.4. Analysis of collagenase activity in presence of metal ions

To investigate the inhibition effect of metal ions on the enzymatic activity of collagenase,

enzymatic digestions of untanned collagen samples (hide powder) were carried out in

the absence and presence of V(IV), Cr(III) and Fe(II) ions. Four groups of six samples of

dry hide powder samples (100 mg) were weighed in to digestion tubes. Buffer solutions

(pH 7.5) with the following compositions were used for the incubations of the four 

groups of samples.

• 5.5 mL tris-HCI buffer (pH 7.5) + 200 pL of 1M CaCI2

• 5.0 mL tris-HCI buffer (pH 7.5) + 200 pL of 1M CaCI2 + 500 pL 0.5M Fe(S04)

• 5.0 mL tris-HCI buffer (pH 7.5) + 200 pL of 1M CaCI2 + 500 pL 0.5M CrCb

• 5.0 mL tris-HCI buffer (pH 7.5) + 200 pL of 1M CaCI2 + 500 pL 0.5M VO(S04)

In each case, the buffer immersed hide powder samples were allowed to rehydrate for 2 

hours at 37°C in the buffer solutions containing CaCI2. In each case, incubation at 37°C 

was started with addition of 100 pL of 10 mg/mL collagenase solution to all of the 

samples at the same time. Incubation of the individual samples was stopped every 30 

minute by instant freezing, i.e. dipping the sample tubes in liquid nitrogen; six samples 

with incubation times of 30, 60, 90, 120, 150 and 180 minutes were produced.

The frozen samples were thawed at 5°C, centrifuged at 3000 rpm for 30 minutes and 

then filtered. The filtrates were digested with 5 mL of 6M HCI, analyte solutions were 

prepared by adjusting the volume of the digest solutions to 50 mL. Determination of 

hydroxyproline content of the filtrates was carried out as described in Section 6.2.3.2. 

The extent of collagen degradation at different incubation times, in the presence and 

absence of the different metal ions were compared.
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Results and Discussion

6.3.1. Action of enzymes on leather samples and hide powder

untanned collagen samples were digested enzymes, complete

solubilisation of 100 mg sample of hide powder with collagenase was observed in 6 hours 

time, while subtilisin took more than 12 hours to completely solubilise the collagen hide 

powder. The vegetable tanned and Cr(III) tanned leather samples showed no enzymatic 

degradation after incubation with both of the enzymes. No hydroxyproline was detected 

in the filtrates of the enzyme incubations as well as the respective controls. This is an

expected result considering that the tanning structure is still intact and hence leather 

not enzymatically degradable.

is

A form of subtilisin enzyme, commercialised as Alcalase 2.5L, (Novozymes Co. Ltd, 

Denmark) has been used to enzymatic hydrolysis of Cr(III) containing leathers waste at 

temperatures reaching 50°C (Mu et at. 2003; Kupec eta/. 2002). The enzymatic action is 

effective only after an extended alkaline treatment of the leather waste, often in the 

presence of magnesium oxide or lime. This treatment partially removes the Cr(III) for 

the leather waste making the collagen more vulnerable to enzymatic digestion. In this

experiment, subtilisin was applied in a weak alkaline buffer medium in which there was

no condition for sufficient detanning of the leather. Hence the Cr(III) tanned samples are

not degrade at all by the alkaline protease. However, subtilisin effectively degraded the

untanned collagen sample (hide powder) at pH 8 and temperature of 50°C. Subtilisin- 

enzymes are known to have collagenolytic action (Okamoto et al. 2001; Kurata et at. 

2010)and are thermophilic due to their stability and increased activity at higher

temperatures reaching 50°C.

6.3.2. Effect of enzymes on oxidatively degraded leathers

Based on the observation that the semi-V(IV) tanned samples (autodegraded for more 

than 6 months) showed gelatinization, it was suspected that the protein in the 

autodegraded semi-metal tanned samples may possibly be dissolved without the action 

of enzymes. The control samples digested with buffer solutions (without enzyme) did not
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'lise the collagen i.e. no hydroxyproline was detected in the analyte solutions. This 

may indicate that there are no sufficiently degraded peptides to be solubilised.

It appears that denaturation of collagen in the degraded samples, e.g. semi-V(IV) 

tanned samples, and the possible formation of peptide segments do not result 

solubilisation of amino acids or peptides in the aqueous media. Interactions between 

oxidised polyphenols and functional groups of the protein may prevent solubilisation of 

the peptide fragments created, one of such interactions could be the formation of 

quinone mediated crosslinks (Heidemann 1993; Haslam 1998). Quinones, derived from 

the oxidation of polyphenols are generally known to be highly reactive and undergo 

polymerisation reaction (Hathway 1958). In oxidatively degraded vegetable tanned 

leathers, quinones may form covalent links with the amino groups of peptide fragments 

as shown in Figure 6.1. The effect of quinone crosslink formation could be that the 

peptide segments formed by oxidative denaturation would be insoluble in water.

[Ox]

[Ox )

OH

orthoquinone

HoN

%
NH

m i l l

O

Lysyl groups of 
collagen or peptides

Figure 6.1 Mechanism of formation of quinone-crosslinks between lysine groups of collagen 
(peptides) in degraded vegetable tanned leather (Haslam 1998).
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Incubation of some the semi-metal tanned leathers and the Fenton-oxidised leather 

samples in the presence of collagenase and subtilisin showed varying levels of enzymatic 

digestion as observed with quantitative determination of the hydroxyproline liberated.

6.3.2.1. Semi-metal tanned leathers

Analysis of hydroxyproline content in the control incubation, in the absence of enzyme,

showed no hydroxyproline content in all of the cases. The collagenase enzyme

completely degraded the hide powder sample completely as expected. The mimosa-V(IV)

and chestnut-V(IV) leather samples were also partially hydrolysed by collagenase,

showing 58-61 pg/L of hydroxyproline in the analyte solutions (Table 6.3), which

corresponds to a degradation of 45-48% of the total hydroxyproline content. No

hydroxyproline was detected in the analyte solutions from collagenase treatment of

mimosa-Fe(II) and chestnut-Fe(II) samples, indicating that the samples did not respond 

to the action of the enzyme.

Table 6.3 Concentration of hydroxyproline in analyte solutions (50 mL) of acid- 
hydrolysis and enzymatic digestions of untanned collagen and autodegraded 
semi-metal tanned leathers using collagenase.

Sample

Fiydroxyproline concentration 
(pg/ml) in analyte solutions (50 mL) Degree of enzymatic 

hydrolysis (%)
acid hydrolysis collagenase

collaqen 286.0 278.8 98.4

mimosa-V(IV) 130.4 58.5 44.9

chestnut-V(IV) 125.5 61.0 48.6

mimosa-Fe(II) 132.2 0 0

chestnut-Fe(II) 128.2 0 0

About 80% of the untanned collagen sample was hydrolysed by subtilisin (Table 6.4), 

showing a slightly reduced enzymatic action as compared to collagenase. However, 

subtilisin showed hydrolysis of protein from all of the semi-metal tanned samples, 

including the mimosa-Fe(II) and chestnut-Fe(II) leathers.

The Ts of the mimosa-Fe(II) and chestnut-Fe(II) samples were 52-57°C (Table 6.1), 

indicating that the -metal tanning matrix that initially created greater hydrothermal 

stability of 95-110°C has been disrupted by metal induced oxidation. However, the
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collagen in the semi-Fe(II) samples having Ts of 52-56°C may have relatively less degree 

of degradation compared to the semi-V(IV) samples which has T
s <40°C. On the other

hand, the absence of enzymatic degradation with the semi-Fe(II) tanned samples may

also be related to the greater degree of inhibition of collagenase by the Fe(II) ions as 

compared the V(IV) ions (as described in Section 6.3.3).

Table 6.4 - Concentration of hydroxyproline in analyte solutions (50 mL) of acid-
ydrolysis and enzymatic digestions of untanned collagen and autodegraded semi-

metal tanned leathers using subtilisin.

Sample

Hydroxyproline concentration (pg/ml) in
analyte solutions (50 mL) Degree of 

enzymatic

acid hydrolysis enzymatic hydrolysis 
_____with subtilisin_____

hydrolysis
(%)

collagen 286.0 229.5 80.2

mimosa-V(IV) 130.4 57.4 44.0

chestnut-V(IV) 125.5 49.3 39.3

mimosa-Fe(II) 132.2 43.1 32.6

chestnut-Fe(II) 128.2 38.9 30.3

The difference in the response of the semi-V(IV) and semi-Fe(II) samples to the action 

of collagenase could be related to the degree of susceptibility of the sample to enzymatic 

action and the degree of inhibition of the enzyme by the metal ions in the sample. Based 

on comparison of T s , it can be observed that the semi-V(IV) leathers have greater

degree of physico-chemical degradation as compared to the semi-Fe(II) leathers.

Consequently, the protein in the semi-V(IV) samples may be more readily hydrolysed by

enzymes.

Subtilisin enzymes are known for their greater proteolytic activity in alkaline media and 

their stability at temperatures exceeding 50°C (Toyokawa et al. 2010, Barrett et al. 

1998). At such conditions the untanned collagen samples as well as the other samples 

may undergo thermal denaturation over the long hours of incubation at the slightly 

alkaline medium, thereby enhancing the hydrolysis of peptide bonds by the enzyme.

Similarly, enzymatic treatments of the mimosa-V(IV) and chestnut-V(IV) samples with

collagenase was carried out at 37°C, this temperature is nearly the same as the
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observed onset temperature of shrinkage for the semi-V(IV) leathers (/.e. 38-39°C).

Hence, thermal denaturation of the collagen in the partially degraded samples and the

subsequent unravelling of the remaining triple helical segments should have resulted in

complete solubilisation of the collagen in the leathers. Since no hydroxyproline was

detected in the control incubations (without enzyme) the hydroxyproline found in the

enzyme digestion solutions of the semi-V(IV) leather leathers is totally attributed to the 

actions of enzymes.

6.3.2.2. Cr(III) tanned leathers

The Cr(III)-mimosa and Cr(III)-chestnut tanned leathers treated with V(IV) had Ts of

42-43°C after 6 months of autodegradation at 21°C and 65% RH, These samples showed

enzymatic degradation by subtilisin as shown in Table 6.5. None of the Cr(III) containing

samples showed degradation by collagenase. The absence of collagenolytic action in this

case may be related to the inhibition of the enzyme by Fe(II) and Cr(III) complexes (See 

section 6.3.3).

Table 6.5 Enzymatic degradation of Cr(III)-mimosa and Cr(III)-chestnut tanned leathers that 
have undergone autodegradation for after treatment with vanadium(IV)

Sample
Hydroxyproline concentration (pg/ml)

Acid hydrolysis

Cr(III)-mimosa -V(IV)

Cr(III)-chestnut-V(IV)

enzymatic hydrolysis 
with subtilisin

29.81

27.32

Degree of
enzymatic hydrolysis

(%)

22.5

19.3

On the other hand, the Fe(II) treated Cr(III)-mimosa and Cr(III)-chestnut leathers, 

having Ts of 84-87°C showed no sign of susceptibility to enzymatic action. The Ts of 

these samples are above 80°C, indicating that the Fe(II) induced degradation has not 

resulted in a complete decomposition of tanning structure. Hence, the collagen may be 

still protected from enzymatic action by Cr(III) complexes as well as the polyphenolic 

tanning matrix. The results in indicated that enzymatic digestion of the leathers occurs

only when the tanning matrix has been disrupted and after the collagen molecule has

also undergone significant structural changes as a result of the oxidative degradation.
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6.3.2.3. Fenton oxidised samples

As demonstrated in Chapter 5, oxidation of leather and untanned collagen through 

Fenton reaction resulted in large decline of Ts and deformation of fibre structure in the 

samples. The oxidation of leathers by the Fenton reaction appears to be a simple 

procedure that brings about a rapid decomposition of the tanning matrix and 

denaturation of the collagen in the leather. The results of enzymatic treatments of the 

Fenton oxidised samples (Table 6.6 and Table 6.7) also showed that the protein 

component of the samples is susceptible to solubilisation by the action of the enzymes.

Table 6.6 - Concentrations of hydroxyproline in analyte solutions (50 mL) of acid- 
hydrolysis and enzymatic digestions of samples oxidised with the Fenton reaction 
(0.2M H20 2/0.03M Fe2+) using collagenase; the degree of enzymatic hydrolysis (%)

Sample

collagen 

Cr(III)-Leather 

Cr(III)-mimosa leather 

Cr(III)-chestnut leather

mimosa

chestnut

Hydroxyproline concentration 
(pg/ml) in analyte solutions (50 mL)

acid hydrolysis

212.5

146.0

112.0

105.0

191.0

202.0

collagenase

85.0 

0 

0 

0

55.0

85.0

Degree of 
enzymatic 

hydrolysis (%)

40.2 

0 

0 

0

29.6

42.8

Table 6.7 Concentrations of hydroxyproline in analyte solutions (50 mL) of 
acid-hydrolysis and enzymatic digestions of Fenton-oxidised samples (0.2M 
H20 2/0.03 M Fe2+) using subtilisin; degree of enzymatic hydrolysis (%)

Sample

Hydroxyproline concentration 
(pg/ml) in analyte solutions (50 mL) Degree of 

enzymatic 
hydrolysis (%)acid hydrolysis subtilisin

collagen 212.5 147.0 69.3

Cr(III) tanned leather 146.0 48.5 33.3

Cr(III)-mimosa leather 112.0 34.5 30.7

Cr(III)-chestnut leather 105.0 41.5 39.8

Mimosa tanned leather 191.0 57.0 29.8

Chestnut leather *202.0 71.0 35.1

As shown in, collagenase hydrolysed 30-43% the protein component of the oxidised 

vegetable tanned leathers, about 40 % of the Fenton oxidised collagen was also 

hydrolysed by subtilisin. In contrast, all of the Fenton oxidised Cr(III) containing

samples, showed no sign degradation activity with collagenase (Table 6.6). In contrast,
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all of the Fenton treated leathers were partially digested with subtilisin enzyme, showing 

solubilisation of the protein in the samples, including the Cr(III) containing samples, by 

by 49-71% (Table 6.7).

It was also observed that the hydroxyproline concentration obtained from acid hydrolysis 

of the Fenton oxidised collagen sample (212.5 pg/mL) was lower than that of the same 

analyte solution obtained by acid hydrolysis of the control sample of untanned collagen 

(286.0 pg/ml). This is because the oxidation collagen may involve reduction in the

number hydroxyproline residues. It is known that oxidation hydroxyproline

containing peptides results in the formation of pyrrol ring (Heidemann 1980). Earlier 

methods of hydroxyproline analysis indicate that oxidation of hydrolysed collagen can be 

done using hydroxyl radicals generated by Cu2+/H202 (Neuman and Logan 1950).

6.3.3. Inhibition of ccollagenase by metal ions

Comparison of the rate of hydroxyproline released by enzymatic digestion of untanned 

collagen (hide powder) in the presence and absence of metal ions (Figure 6.5), indicates 

that V(IV), Fe(II) and Cr(III) cause lowering in concentration of hydroxyproline liberated 

as compared to the control sample (not containing metal).

Figure 6.2 Concentrations of hydroxyproline (pg/mL) liberated by digestion of hide powder 
(lOOmg) using collagenase enzyme in the presence and absence of metal ions.
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After 30 minutes of incubation, the control sample showed 55 pg/mL of hydroxyproline 

in the 50 ml. analyte solutions; whereas the corresponding values for the Fe(II), Cr(III) 

and V(IV) containing samples were 22, 36 and 40 pg/mL, respectively. Compared to the 

control sample, the initial rate of the enzyme reactions in the Fe(II), Cr(III), and V(IV) 

containing samples were inhibited by 60%, 35% and 28% respectively. A similar pattern 

of differences in the enzyme activity was observed with the metal containing samples 

incubated for longer durations (i.e. 60-180 minutes)

This result clearly indicates that the presence of transition metals ions causes inhibition 

of collagenase activity in the a decreasing order of Fe(II)>Cr(III)>V(IV). According to 

Gayatri et al. (2000), inhibition of collagenase by Cr(III) complexes may occur by 

blocking the active sites and causing changes on the secondary structure of the enzyme. 

Collagenase enzymes contain Zn2+ ions in their structure at the active sites (Bond et at. 

1984). According to Karakiulakis et al. (1991), the inhibitory effect of Fe(II) may be due 

to displacement of the Zn2+ ions in the enzyme structure by the other cations. The 

absence of collagen degradation during digestion of the Fenton-oxidised Cr(III) 

containing samples with collagenase (Section 6.3.2.2-3) could be related to inhibition of 

the enzyme by Cr(III), rather than resistance of the partially degraded substrate to the 

enzymatic action. In both cases, the Cr(III) containing samples showed relatively greater 

degree of degradation by subtilisin.

It is observed that the thermophilic and bread-specific bacterial alkaline protease 

(subtilisin) is more effective in degrading oxidatively degraded leathers. Bacterial 

enzymes with a subtilisin-like properties (i.e. thermophilic and bread-specificity) may be 

the most important degradative agents in biodegradation of protein containing waste. In 

fact, the subtilisin and other similar enzymes are produced by a wide range of bacteria 

that also survive in soil, including Bacillus Lichniformis, which is the source of the 

enzyme used in this experiment (see enzyme descriptions in Table 6.1), the Bacillus 

species, commonly found in soil, are also one the different types of micro-organisms 

responsible for the biodegradation in composting and anaerobic digestion.
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6.4. Summary

The results in this chapter indicate that metal-induced degradation of vegetable tanned

leathers and direct oxidative degradation of leather through Fenton reaction result in an

increased susceptibility of all types of leathers to enzymatic degradation. However, the

collagenase activity may also be inhibited by metal ions, particularly by Fe(II) and 

Cr(III).

The overall results of the enzymatic degradation tests indicate that the thermophilic and

broad-specificity enzymes such as subtilisin may be effective in hydrolysing oxidatively

degraded leather as they can remain stable and active at higher temperatures. Oxidative

degradation of leather causes decomposition of tanning structures and denaturation the

collagen. Subsequently, leather that have undergone oxidative degradation are 

significantly degradable by enzymes.

In terms of the application of this finding in waste management, the implication of the 

results obtained in this research is that, oxidative pre-treatment may be applied to make 

leather waste biodegradable; this may open new possibilities for recycling of leather 

waste through aerobic digestion (composting) and anaerobic digestion methods.
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7. Conclusions and Future Work

The results obtained in this research on the stability of semi-metal tanned leathers and

metal catalysed oxidative degradation are hereby summarised in Sections 7.1-3 and the

potential application of Fenton reaction in the recycling of leather waste are also

described in Section 7.4 along with important aspects on future research work in this 

area (Section 7.4)

7.1. Reversal of tanning interaction and autodegradation of leather

Cross-linking of polyphenolic structures in vegetable tanned leathers by formation of 

chelate complexes with metals, reinforces tanning structure. As a result, semi-metal 

tanned leathers, prepared by retanning vegetable tanned leathers with metal, generally 

have show increased hydrothermal stability. The results described in Chapter 2 (Section 

2.3.4) showed that vegetable tanned samples retanned with AI(III) salt show the highest 

shrinkage temperature. Similarly, the semi-metal tanned samples prepared using Ti(IV), 

V(IV) and Cr(III) salts showed shrinkage temperature greater than 100°C. The increased 

hydrothermal stabilisation in the semi-AI(III), semi-Ti(IV) and semi-V(IV) samples is 

attributed to a synergistic effect of the metal-tannin, tannin-collagen and metal-collagen 

interactions. Whereas, in the case of semi-Cr(III) tanned leathers, the relatively greater 

Ts (100-103°C) is considered to be mainly due to the Cr(III)-collagen interaction

Periodic DSC analysis of semi-metal tanned hide powder samples showed that while 

most of the semi-metal tanned samples of the first-row transition metals (i.e. sulfate 

salts) showed consistent Ts during storage, the V(IV) and Fe(II) retanned samples 

exhibited progressive lowering Ts. Based on comparative analysis of the observed 

changes in the Tsof metal-tanned and semi-metal tanned samples, it is concluded that in 

Ts in the semi-V(IV) and semi-Fe(II) samples is caused by redox reactions involving the 

tannins and the metal ions in the samples (Chapter 2, Section 2.3.7.1-2). It is observed 

that autoxidation of metal ions (e.g. Fe2+/Fe3+ and V02+/V02+) and subsequent metal- 

tannin redox reaction may lead to decomposition polyphenolic tannin structures and
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subsequently cause collagen denaturation as observed with the results of periodic

analysis of enthalpy and temperature of shrinkage of the semi-V(IV) tanned hide powder 

samples (Chapter 1, Sections 2.3.7.2-3).

As described in Chapter 3 (Section 3.3.2.2), The semi-Ti(IV) leathers, produced using

different vegetable tanned leathers, exhibited a slow decline of hydrothermal stability

over 12 months year to that of the vegetable tanned leathers. The observed changes are

considered to be results of a reversal of the Ti(IV)-tannin interaction occurring due to 

hydrolysis of Ti(IV) ions.

On the other hand, progressive lowering of Ts as well as occurrence of physical 

degradation and chemical denaturation of collagen were observed in the semi-metal 

tanned leather samples produced using iron (Fe2+, Fe3+) and vanadium (V02+ and V02+) 

as described in Sections 3.3.2.2-3. These changes were characterised as metal-induced 

autodegradation occurring at ambient conditions. It was shown that V(IV) and Fe(II) 

induced degradations may also occur in the presence of Cr(III) tanning structure i.e. 

Cr(III)-mimosa and Cr(III)-chestnut tanned leathers (Section 3.3.7). Based on the fact 

that hide powder and Cr(III)-tanned samples, treated with V(IV) or Fe(II) salts did not 

show degradation, it is considered that the degradation mechanism is essentially related 

to metal-tannin interactions, rather than metal-collagen interactions. In addition to DSC 

analysis, the process of autodegration in the different semi-metal tanned leathers was 

also characterised by periodic analysis of tensile strength, extractable metal content, pH 

value of the leathers as well as SEM analysis of fibre structure (Sections 3.3)

The results of comparison of changes in Ts of mimosa tanned leather samples treated 

with different concentrations of V(IV) and V(V) revealed that V(IV) induced degradation 

may occurs in the presence of a relatively small quantity (<1000 ppm) of vanadium 

(Chapter 3, Section 3.3.6). It is concluded that the role of V(IV) in the autodegradation
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of the leather is related to triggering of redox reactions and catalysis of the oxidation of 

tannins in the tanning matrix.

7.2. Mechanism of metal induced degradation

The loss of hydrothermal stability and autodegradation observed in the semi-Fe(II) and 

semi-V(IV) tanned leathers are considered to be the results of redox interactions. The 

occurrence of Fe(II) and V(IV) catalysed oxidative decomposition of polyphenols was 

explained based on the results the experiments described in (Chapter 4, Sections 4.3.2- 

5) and literature metal-tannin redox reactions. The formation of oxygen derived free 

radicals is considered to be an important aspect in relation to catalysis of the oxidative 

decomposition of tannins in the presence of iron (Fe2+/Fe3+), vanadium (V4+/V5+) is 

considered to be an important aspect, particularly in relation to the cause of the 

observed denaturation of collagen. The mechanism proposed to explain metal-induced 

degradation show that the reactions responsible for metal induced degradation of leather 

includes autoxidation of Fe(II) and V(IV) by air to the higher oxidation states with

subsequent formation of superoxide anion and reduction of the higher oxidation states of 

the metal ions by polyphenols.
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The concurrence of these two reactions (Figure 6.1) leads to creation of a cyclic redox 

mechanism in which the polyphenols are continually oxidised i.e. the o-diphenol groups 

of the tannins are converted to quinone groups. The degradation of the metal containing 

vegetable tanned leathers is enhanced further due to the formation of hydrogen peroxide 

through a subsequent catalytic generation of hydroxyl radicals (the Fenton mechanism) 

as shown in Figure 7.2. Hydroxyl radicals are powerful oxidants that can progressively 

oxidise the large polyphenolic structure of tannins as well as the collagen in the leather.
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Figure 7.2. Schematic representation of redox reactions including oxidation of the o-diphenol 
moieties of tannins by superoxide anions leading to formation of hydrogen peroxide and the 
formation of hydroxyl radicals through the metal catalysed decomposition of hydrogen peroxide.

The observation that some transition metals may catalyse deterioration of leather has 

been described by literature of leather conservation (Haines 2006; Thomson 2006). The 

mechanism proposed in this research (shown in Figure 7.1 and 7.2) may also be applied

to explain the role of metal ions (mainly Fe2+ and Cu2+) in catalysing oxidative 

deterioration of vegetable tanned leathers. Investigation of the degradation mechanism 

of Fe(II) and V(IV) has led to the understanding that the principal cause for the 

observed physico-chemical degradation and collagen denaturation is the formation of

hydroxyl radicals in leather through metal catalysed redox processes. As described in
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Chapter 5 (Sections 5.3.2-4), exposure of leathers to hydroxyl radical generated by

Fenton reaction resulted in a rapid oxidative degradation of the tanning structure as well 

as the collagen in the leather.

7.3. Enzymatic degradability of oxidatively degraded leather

As described in Chapter 6, oxidative degradation of leather causes chemical 

decomposition of the tanning matrix and chemical denaturation of the collagen in the 

leathers, thereby subsequently resulting in an increased level of enzymatic degradability. 

Thermophilic alkaline protease enzymes that have broad substrate specificity (e.g. 

subtilisin) substrate specificity may be more effective in digesting the partially degraded 

leathers. Oxidatively degraded leathers may also be digested by collagenase enzyme; 

but susceptibility of the enzyme to inhibition by metal ions is also an important aspect.

Previous studies related to recycling of leather waste (Dhayalan 2005; Yagoub 2006), 

indicated that susceptibility of leather to microbial degradation may be enhanced 

through chemical treatments (detanning) and thermal denaturation. Based on the 

findings in this research, it is considered that partial degradation of different types of 

leathers through oxidative methods, particularly using Fenton reactions, may result in 

increased susceptibility of the resulting material to microbial degradation. Flence, 

oxidative pre-treatment of leather waste has a potential application in developing 

recycling methods such as composting and anaerobic digestion of leather waste.

7.4. Potential application of oxidative degradation of leather

The stability of leather against biodegradation has been the major hindrance with 

respect to attempts made in the past to recycle leather waste into fertilizer (through 

composting) as well as into biogas (through anaerobic digestion). The possibility for 

enhancement of the biodegradability of different types of leather waste through 

detanning-treatments, thermal treatments and alkaline hydrolysis was recognised 

(Ferriera et. at. 2013; Lima etal. 2010).
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As described in Chapter 1 (Section 1.9.3), Covington (2009), suggested that the 

mechanism of vanadium(IV) induced degradation of vegetable tanned leather may be 

emulated to develop tanning methods for producing usable leather that also incorporates 

within it a system of slow degradation. However, the results described in Chapter 3 

indicated that the presence of vanadium may cause a rapid degradation even at 

relatively small quantities (<1000ppm). The spontaneous nature of V(IV) induced 

degradation would negatively affect the usability of the leather. Hence, producing 

autodegradable leather using metal ions such as vanadium is most likely to be 

impractical. On the other hand, the results from this research on the mechanism of 

metal catalysed oxidative degradation of leather revealed that the degradation process 

occurs through decomposition of tanning structures and denaturation of collagen, 

eventually leading to susceptibility of the leather to enzymatic degradation. As stated in 

Section 7.2, metal induced degradation of leathers (containing iron and vanadium ions) 

occurs through a mechanism that involves hydroxyl radical mediated oxidation.

A direct application of hydroxyl radical mediated oxidative degradation, by means of 

Fenton reaction (solution of H2O2, in presence of Fe2+) causes a rapid degradation of 

different types of leathers in less than a day (Chapter 5). The concentration the Fenton 

reagent required for oxidative treatment (lab scale) is relatively dilute i.e. 0.2M H2O2, 

0.07M Fe2+. This shows that Fenton reaction may be an efficient oxidation method that 

may be applied for pre-treatment of leather waste to enhance its biodegradation, 

particularly in the context of recycling through composting or anaerobic digestion. The 

efficiency of the reaction implies that at larger scale biodegradation enhancing pre-

treatment operations may be cost-effective.

7.5. Future work

The Fenton reaction has already been for detoxification of organic waste, treatment of 

pesticides and leachate from composting plants. Treatment of leather waste Fenton 

oxidation process may be developed as efficient method for pre-treatment of leather 

waste, prior to biodegradation of leather waste. Alternatively, composting of leather
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waste may carried out in the form of an accelerate-compost process in which an 

optimised application Fenton reagent (Fe2+/H202) may be used enhance decomposition 

of organic matter and enhance biodegradation. The effectiveness of Fenton reaction in

compost acceleration thorough enhancement of decomposition of macromolecules (such 

as lignin) has been demonstrated by Balis et at. (2002).

The application of Fenton oxidation for treatment of non-Cr(III) tanned leathers may be 

developed into an effective recycling of leather waste to fertiliser. On the other hand, the 

presence of Cr(III) in most types of leathers would also entail the need to extract the 

metal through an effective method. In Europe, the allowable limits of Cr(III) for compost 

fertilisers are 70-200 mg/kg of dry matter, while in North America the Cr(III) limit is 

1200 mg/kg (Flogg et al. 2002; Brinton 2000). In addition, oxidative treatment of Cr(III) 

containing leather waste through Fenton reaction may involve formation of Cr(VI), which 

is a carcinogen. Based on recognition of the potential of the Fenton reaction as a means 

of enhancing biodegradability of leather waste and considering the environmental issues 

related to Cr(VI), the following areas of further research are indicated:-

• Oxidative treatment of leather waste using Fenton reaction may have to be 

optimised considering parameters such as particle size, pH profile of the reaction, 

oxidant/substrate ratio, and further study in this area is relevant.

• The extraction of Cr(III) may be considered as part of the oxidative treatment of 

leather waste; in this regard, the detanning using a-hydroxyl carboxylates (Malek et 

al. 2009) such as tartrate salts, may be investigated further.
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Appendix 1

A general outline of operations in the leather m anufacturing

Process Operation

Beam  house  
process

Soak ing

Main effects of the 
operation on the

o

o

Removal of surface dirt 
preservation salt

Uniform rehydration

o

Liming

o

o

Mechan ica l
opera t ions

o

Delim ing o

o

Removal of hair

alkaline hydrolysis of non-
collagen proteins and 
proteoglycans

Saponification of fats

Increased separation of fibres 
(opening up of fibre structure)

Removal of subcutaneous tissue 

Thickness adjustment

Lowering the pH to 8.0-8.5 

Removal of Ca2+ ions

Description of operation 
and chem icals used

o Washing

o Treatment of pelts at pH 7-9 
in presence of bactericide and 
surfactants.

o Treatment with sodium 
sulfide (Na2S) and other 
unhairing chemicals in 
presence of lime (CaO)

Treatment of pelts in alkaline 
media (pH>12.5) in saturated 
solution of lime (CaO)

o Mechanical operations 
(fleshing and splitting)

Treatment with ammonium 
salts or weak salts

Bating
o Further removal of partially _

degraded non-collagenous ° t rea tm en t using pancreatic or
impurities________________________  bacterial enzymes_____________

Pickling
o Adjustment of the pH of pelts to A .

prepare for subsequent tanning ° cidification in the presence 
operations ____________  | of common salt (NaCI)

Tanning  Tann ing 
process

o Permanent stabilisation of 
collagen against putrefaction

o Treatment of pelt with a
o Increase in hydrothermal stability selected tanning chemical 

and change in physical
______ characteristics_______________________________________________

Retann ing

P o s t  Dyeing 
tann ing
process -------------------------

o Modification of physical and
‘ chemical properties (e.g. ° Addlt,onal tannm9 operations

fullness, stiffness, resistance to [° usjng a one or more 
perspiration,) tanning agents

o Altering the colour imparted by o Dyeing mainly with anionic, 
tannage as desired in the final cationic and metal-complex 
product | dyes |■

Fatliquoring
o Prevention of fibre cohesion upon o Treatment with oil- in-water

drying emulsions using neutral oils
_ . and modified oils (sulfated 

o  Enhancing softness_______________ _____and sulfited oils)______________

Fin ish ing _. . , . 
process F imsh in9

o Formation pf a protective layer, A .. .. r r. . . rM
modification of surface texture ° Application of finish films by 
and colour spraying and roller-coating.

o Enhancement of aesthetic quality
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Appendix 2

Shrinkage tem perature and enthalpy of hide powder sam ples
(a) Metal tanned hide powder samples

Shrinkage temperature (TS,°C) of hide powder samples (2g) tanned with metal salts (equivalent to 
100 mg of metal ion) and stored at 21°C and 65% RH for 64 days

Time (days)

Metal 0 2 8 32 64
AI(III) 73.5 73.4 73.8 73.8 73.8
Ti(IV) 68.5 68.7 69.0 69.0 69.0
V(IV) 71.7 65.3 58.9 58.9 58.9
V(V) 60.1 60.1 59.2 59.5 58.9
Cr(III) 94.0 94.0 95.0 94.8 94.9
Mn(II) 62.5 62.5 61.4 61.4 61.4
Fe(II) 70.4 70.4 73.7 72.9 72.8
Co(II) 69.6 69.9 70.2 70.3 70.3
Ni(II) 64.7 64.9 64.0 64.3 64.1
Cu (II) 67.7 67.4 67.7 67.3 67.5
Zn(II) 61.3 61.3 61.6 60.7 61.1

(b) Semi-metal tanned hide powder sam ples

Shrinkage temperatures (Ts) of hide powder samples tanned with 10 % (w/w) of myrababan powder 
mimosa powder and retanned with different metal salts. Measurements of Ts were carried out at 
different t imes over 64 days of storage at 21°C and 65% relative humidity

Myrabalan based semi-metal tanned hide powder 
sam ples

Time (days')
metal 0 2 32 64

AI(III) 103.4 103.2 103.5 103.9 103.9

Ti(IV) 99.8 99.5 98.8 98.2 97.8

V(IV) 95.7 74.7 72.6 67.3 47.4

Cr(III) 103.0 104.1 105.2 104.2 104.1

Mn(II) 76.8 72.1 72.2 74.2 74.1

Fe(II) 97.9 91.2 90.0 81.7 68.7

Co(II) 78.0 76.6 77.9 77.3 77.6

Ni(II) 78.7 77.2 76.0 76.3 76.1

Cu(II) 89.9 88.7 87.0 80.6 77.6

Zn(II) 75.7 76.5 77.5 76.5 77.1

Mimosa based semi-metal tanned 
samples

hide powder

metal 0
Time (days;

2 32 64
AI(III) 108.6 109.3 108.5 108.3 108.7
Ti(IV) 101.1 00 0 99.8 99.7 98.9
V(IV)
Cr(III)

105.3 90.8 72.4 67.6
104.1 105.4 101.5 104.5

46.5
104.2

Mn(II) 6.3 85.7 85.0 84.5
Fe(II) 97.9 91.3 90.2 80.7
Co(II) 85.8 4.7 6.1 84.3 84.1
Ni(II) 84.0 4.9 83.0 82.7 84.0
Cu(II)
Zn(II)

88.9
84.9

88.7
85.0

87,0
86.4

83.6
84.2

82.5
84.0
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Appendix 2 (continued)

Enthalpy of the shrinkage transition in Joules per gram of the semi-metal tanned hide powder samples, 
measured at different t imes of storage at 21°C and 65% RH

Myrabalan bases semi-metal tanned hide powder 
sam ples

metal Tim e (days)

0 2 8 32 64

AI(III) 11.9 11.2 11.9 12.2 11.4

TKIV) 11.4 12.3 11.6 12.4 13.5

V(IV) 13.2 13.3 12.1 9.8 6.7

Cr(III) 11.0 11.6 12.4 12.5 13.1

Mn(II) 12.4 11.3 11.6 11.4 12.4

Fe(H) 12.4 11.5 11.6 12.5 12.1

Co(II) 12.4 12.7 13.6 12.2 13.2

Ni(II) 12.4 11.0 11.6 11.4 11.7

Cu(II) 11.4 12.2 12.8 13.4 11.5

Zn(II) 12.4 13.1 12.0 11.7 11.9

Mimosa based sem i-m etal tanned hide powder 
sam ples

metal Tim e (days)

0 2 8 32 64
AI(III) 12.6 11.6 12.9 11.1 12.5

Ti(IV) 12.0 13.7 12.2 12.7 14.8

V(IV) 12.1 11.3 11.9 11.3 7.5

Cr(III) 13.6 13.4 11.7 10.9 12.9

Mn(II) 14.1 12.2 11.7 11.4 11.8

Fe(II) 12.5 12.7 11.8 13.7 12.2

Co(II) 13.6 12.5 13.7 12.8 12.7

Ni(II) 12.5 10.8 10.6 11.7 11.8

Cu(II) 11.5 12.6 12.8 13.5 12.3

Zn(II) 13.6 13.4 11.7 10.9 12.9



Appendix 3

Preparation of vegetable tanned sheep skins

Raw material: 

Vessel:

Degreased pickled sheep skins

Pilot scale trial drum , DOSE drum, 60cm d iam eter (Dose Gmbh, Germ any)

Inputs Parameters

Process Material and 
Chemicals

Qty.
(%)<a>

Run Time 
(min)

Temp.
°C

(± d

H Specific 

(±0.1) gravity

Weighing

De-pickling Water 150 20

Salt 7.5 5 ________ 6°Be

pH
adjustm ent Load pickled skins. 30 2.3

Sodium  formate 0.5 3.2

Pre-tanning Derugan 3080 (b) 3% 60 25

Sodium  formate 1.0% 45 4.2

Sodium  bicarbonate
0.75

% 45 6.0

Sodium  hydrogen 
sulfite 0.1% 20

Degreasing Pastozol BZ cone. (c) 1% 90 35

Wash (2X),water 150 35

Water 150 25 ________ 6°Be

Sodium  sulfate 8% 10

Tanning Veg-tan powder (d) 3% 30

Veg-tan powder 3% 60

Veg-tan powder 4% 120

Check pH Form ic acid 0.5% 30 4.0

Water 100 5

Antifungal Preventol WB (e) 0.1% 5

Horse up overnight, Samm, Shave, Toggle dry

(a) All weights are calculated as percents of the weight of the pickled skins

(b) Derugan 3080 : Glutaraldehyde based pre-tanning agent (from Trumpler Chemicals Gmbh),

(c) Pastozole BZ : Non-ionic degreasing agent (surfactant), Trumpler Gmbh

(d) Veg-tan powder: four different type of samples were prepared using myrobalan, Quebracho (Indusol ATO) and
chestnut tanning powders (from SilvaTeam Spa.); Mimosa ME tanning powder from Mimosa-chemicals SA 
Ltd

(e) Preventol WB : Anti-fungal chemical from Lanxess Ltd. UK
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Appendix 4

Preparation of sem i-m etal tanned sheep skin sam ples

Raw material: Vegetable tanned crust leather sam ple pieces (20cm X20cm )

Vessel: Lab-scale drums (30 cm diameter)

Process

Inputs Param eters

Material and 
Chem icals

Qty.

(% ) <a>

Run
Tim e
(m in)

Tem p.

°C

pH

(±0.1)

Re-wetting Water 1 It 35

Corilene W85 (b) 5 g

Oxalic acid i  g 20

W ash,drain and 
weigh

Re-tanning Water 100% 20 25

Acetic acid 0.5% 20 3.2-3.5

Metal ion (c) i% 120

Basification to pH4.0
Sodium
Bicarbonate (d) 0.25% 30 5.0

Run drum 60 35

Drain

Rinse, Water 100%

Drying in air

(a) All quantities mentioned in % were calculated based on the weight of the wet vegetable tanned leathers.

(b) Corilene W385 (from Stahl Chemicals B.V, Netherlands) = anionic surfactant (wetting agent) generally used for
uniform rehydration dry leather

(c) Metal ion:- added in the 1% of the metal (on the weight of the wet-leather)

(d) Basification: addition of 0.25% sodium bicarbonate and running 20 minute, carried out repeatedly until the pH
reached 5.0±0.1
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Appendix 5

Preparation of Cr(III) tanned sheep skins

Raw material: Degreased pickled sheep skins

Vessel: Pilot scale trial drum, DOSE drum, 60cm d iam eter (Dose Gmbh, Germany)

Process

Inputs Param eters

Material and 
Chem icals Q ty.(a)

Tim e
(m in)

Tem p.
°C

( ± D
p H (±1)

Run Rest

Weighing

pH adjustm ent Water 200 25

Sodium  chloride 5.% 10

Load pickled skins 30 2.3

Sodium
bicarbonate 1.5% 45 4.5

Degreasing Pastozol BZ 1.0 60 30

Wash, Drain

Water 100 5 6.5

Salt 5.0 5

Form ic acid 0.75 20 2

Sulfuric acid 1.0 20 O/N 2.7

Tanning Chromosal B (b) 6% 180 30

Preventol WB 0.1%

Sod. bicarbonate 0.5 30
4.0

Drain, Horse up 24 hours

Sam m ying (remove excess water),

Shaving : th ickness 1.5mm

(a) All weights calculated as percent of the pickled weight

(b) Chromosal B (Lanxess Ltd. UK)- Basic Chromium(III) Sulfate powder (25%Cr203/ 33% basicity)
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Appendix 6

Preparation of Cr(III)-M im osa and Cr(III)-Chestnut leathers

Raw material: 

Vessel:

Chrom ium (III) tanned skins, sammed and shaved to 1.5 mm

Pilot scale trial drum, DOSE drum, 60cm d iam eter (Dose Gmbh, Germany)

Process

Inputs

Material and 
Chemicals

Rehydration

Neutralisation 

/pH adjustment/

Tanning

pH adjustment

Chromium(III) 
tanned leather

Water

Qty.<a>

100%

Corilene W385

Sodium acetate

Sodium bicarbonate

Veg-tanning powder

Formic acid

0.50%

0.75%

5%

0.5%

Parameters

Time
(min)

60

120

30

Horse up 24hours, Wash, Sammying (remove 
excess water)

Dry and store at 21°C and 65% relative humidity 

(a) All weights calculated as percent of the wet Cr(III) tanned leather after shaving

Temp. °C

( ± 1 )

35

35

pH
( ± 1 )

5.4

3.8-4.0
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Appendix 7

Tensile strength and Elongation-at-break of sem i-m etal tanned leathers

(a) Tensile strength (MPa) of mimosa based semi-metal tanned leathers 
stored at 21°C and 65% RH for a year

(b) Elongation at break (%) of mimosa based semi-metal tanned leathers 
stored at 21°C and 65% RH for a year

Metal Time (months)
0 1 3 6 12

AI(III) 45.8±2.6 46.6 + 3.1 42.5 + 3.0 48.7 + 3.5 45.0 + 2.2
Ti(IV) 69 .9±5.1 68.4+4.8 69.5 + 6.0 70.2 + 5.2 64.9+4.6
Fe(II) 54 .4±5.1 49.6 + 3.3 38.1 + 3.6 39.2+4.8 35.3 + 3.4
Fe(III) 60.3 + 5.4 55.8 + 5.1 45.3 + 2.8 38.6 + 3.2 33.1 + 2.8
V(IV)______ 69.8 + 5.5 55.2+4.8 46.9+4.6 39.4+4.0 38.7+2.6
V(V) 53.3 + 2.8 50.0 + 2.5 44.9+4.2 42.9 + 5.5 30.2+4.8

(c)  Tensile strength (MPa) of Myrabalan based semi-metal tanned leathers 
stored at 21°C and 65% RH for a year

Metal Time (months)
0 1 3 6 12

AI(III) 11.0 10.7 10.2 10.7 10.4
Ti(IV) 9.9 10.3 10.2 10.2 10.4
Fe(II) 10.6 9.3 8.8 7.5 6.7
Fe(III) 9.9 8.7 7.9 7.1 5.9
V(IV) 6.3 4.9 4.2 3.5 2.9
V(V) 8.4 5.5 5.0 3.5 3.1

(d) Elongation at break (%) of Myrabalan based semi-metal tanned leathers 
stored at 21°C and 65% RH for a year

Metal
Time (months

Initial 1 3 6 12

AI(III) 47.0 + 3.6 48.6 + 7.1 48.1 + 5.1 47.6 + 5.2 49.2 + 2.1

Ti(IV) 60.1+4.1 55:1 + 6.8 61.2 + 6.3 58.3 + 5.9 57.3 + 3.9

Fe(II) 44.9 + 5.0 46.9 + 5.2 48.1 + 5.4 36.0 + 5.2 37.2+2.5

Fe(III) 47.3+6.3 46.5+4.8 34.9+4.8 32.5+4.1 30.2+4.7

V(IV) 66.1+6.2 39.4+4.2 36.5 + 3.5 31.7+4.4 32.1 + 2.0

V(V) 56.0+4.0 59.0 + 5.7 45.0 + 5.1 32.1 + 5.6 28.1+4.2



Appendix 8

pH of m yrabalan-based sem i-m etal tanned leathers
Table 3.5 The pH values ( ±0.1) of the Myrabalan based semi-metal tanned leathers

Appendix 9

Summary of ANOVA - Free radical scavenging assay
Absorbance data

S/N

1

2

3

4

5

6

7

8

Sample

DPPH blank

Methyl qallate

Methyl qallate- AI(III)

Methyl qallate- Ti(IV)

Methyl qallate- Fe(II)

Methyl qallate- Fe(III)

Methyl qallate-V(IV)

Methyl gallate-V(V)

Absorbance data
(2 trials, triplet measurements)

2.347

0.108

0.109

0.365

0.371

0.353

0.333

0.716

2.351

0.109

2.358

0.110

0.108

0.357

0.357

0.359

0.332

0.716

0.109

0.364

0.356

0.352

0.331

0.716

2.408

0.109

0.109

0.367

0.362

0.355

0.330

0.719

2.348

0.109

0.109

0.365

0.357

0.347

0.331

0.714

2.347

0.108

0.109

0.367

0.361

0.352

0.333

0.722

Mean SD

2.360

0.109

0.109

0.364

0.363

0.353

0.332

0.717

0.024

0.001

0.000

0.004

0.012

0.004

0.001

0.003

Error,
%

1.017

0.569

0.324

1.100

1.204

1.142

0.404

0.38

N . B . S t a n d a r d  deviation is denoted as SD and the Error % is estimated as relative standard deviation calculated as percentage of the 
SD to the mean value

Descriptive Statistics

S u m  of S q u a re s df M ean S q u are F Sig.

Between Groups 25.520 13 1.963 100.566 .000

Within Groups 1.366 70 .020

Total 26.886 83

Oneway ANOVA

S u m  of S q u a re s df M ean S q u a re F Sig .

Between Groups 25.520 13 1.963 100.566 .000

Within Groups 1.366 70 .020

Total 26.886 83

Hypothesis test summary
|~ N ull H ypothesis Test S ig . D ecision

The d istribu tion  o f A b so rb a n ce  is
1 the  s a m e  a c ro s s  ca tego r ie s  o f oam p ile s  .000

S a m p le  .K W a llis  Test

R e je c t the 
null
h ypo th e s is .

A s y m p to t ic  s ig n if ic a n ce s  are d isp la yed  The s ig n if ic a n ce  level Is .05.
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