Al-Khalil, A. B. A channel model and coding for vehicle to vehicle communication based on a developed V-SCME. PhD thesis. University of Northampton.
Item Type: | Thesis (PhD) |
---|---|
Abstract: | Over the recent years, VANET communication has attracted a lot of attention due to its potential in facilitating the implementation of 'Intelligent Transport System'. Vehicular applications need to be completely tested before deploying them in the real world. In this context, VANET simulations would be preferred in order to evaluate and validate the proposed model, these simulations are considered inexpensive compared to the real world (hardware) tests. The development of a more realistic simulation environment for VANET is critical in ensuring high performance. Any environment required for simulating VANET, needs to be more realistic and include a precise representation of vehicle movements, as well as passing signals among different vehicles. In order to achieve efficient results that reflect the reality, a high computational power during the simulation is needed which consumes a lot of time. The existing simulation tools could not simulate the exact physical conditions of the real world, so results can be viewed as unsatisfactory when compared with real world experiments. This thesis describes two approaches to improve such vehicle to vehicle communication. The first one is based on the development of an already existing approach, the Spatial Channel Model Extended (SCME) for cellular communication which is a verified, validated and well-established communication channel model. The new developed model, is called Vehicular - Spatial Channel Model Extended (V-SCME) and can be utilised for Vehicle to Vehicle communication. V-SCME is a statistical channel model which was specifically developed and configured to satisfy the requirements of the highly dynamic network topology such as vehicle to vehicle communication. V-SCME provides a precise channel coefficients library for vehicle to vehicle communication for use by the research community, so as to reduce the overall simulation time. The second approach is to apply V-BLAST (MIMO) coding which can be implemented with vehicle to vehicle communication and improve its performance over the V-SCME. The V- SCME channel model with V-BLAST coding system was used to improve vehicle to vehicle physical layer performance, which is a novel contribution. Based on analysis and simulations, it was found that the developed channel model V-SCME is a good solution to satisfy the requirements of vehicle to vehicle communication, where it has considered a lot of parameters in order to obtain more realistic results compared with the real world tests. In addition, V-BLAST (MIMO) coding with the V-SCME has shown an improvement in the bit error rate. The obtained results were intensively compared with other types of MIMO coding. |
Creators: | Al-Khalil, Ahmad Baheej |
Department: | Faculties > Faculty of Arts, Science & Technology |
Faculties, Divisions and Institutes: | Faculties > Faculty of Arts, Science & Technology |
Language: | English |
Status: | Published / Disseminated |
Refereed: | No |
Institution: | University of Northampton |
Related URLs: | |
URI: | http://nectar.northampton.ac.uk/id/eprint/12537 |
Actions (login required)
Edit Item |