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Abstract

Habitat restoration is an important tool in reducing the current decline in biodiversity.

To determine the success of restoration, ecologists have previously focused on species 

richness or on the presence of rare species; little is known of species interactions. This 

study examines both the potential of restored landfill sites to support pollinating insects 

and how flower-insect interactions can be used in determining successful restoration. 

These are important attributes of ecosystem function. Standard belt transects were used 

to record flowering insect pollinated plants and flower-visiting insects on nine paired 

restored landfill and reference nature sites, in the broader Northamptonshire region 

(UK). Over the duration of this study, an area of 25,000m2 was surveyed for floral 

characteristics and approximately 138,000 floral units were counted from c)8 plant 

species. A total of 201 flower visitor surveys were performed, with 942 flower-visiting 

insect samples taken. Flowering plant species richness and abundance of floral 

resources on restored landfill sites were not found to be significantly different from 

those on reference sites and the flower-visiting insect assemblages were similar in terms 

of species-richness and abundance. Interaction structures were examined and whilst the 

plant-insect assemblages had few species in common, both showed similar levels of 

nestedness and connectance. The differences in the species but similarity in the 

functioning of these assemblages emphasise the importance of examining interaction 

structures within a functional approach to the evaluation of restoration. There are 2,200 

landfill sites in England and Wales covering some 28,000 ha, and this study highlights 

that their restoration can potentially provide an important resource for the conservation 

of pollinating insects and the services that they provide for both natural and agricultural 

plants.

© Sam Tarrant 2009
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proper acknowledgement.
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Chapter descriptions, aims and objectives

The overall aim of this project was to explore the potential of restored landfill sites to 

support pollinating insects, to determine the floral resources, the pollinator richness and 

abundance and the interaction structure. A brief summary of the research questions are 

included in the following chapter descriptions:

Chapter 1 -  Introduction

An overview of themes in the literature relevant to the project. Within the introduction 

chapter, the following ideas will be developed.

• Habitat loss and the importance of restoration

o Habitat restoration methods

■ Grassland restoration and seed mixes vs. natural colonisation

■ Post-creation remediation methods 

o Measuring the success of restoration

■ Environmental interactions

• Pollination and pollinating insects

o Flowering plants and Floral resource provision 

o Interaction structure of plants and flower-visiting insects 

o Pollinator decline and conservation 

o Scales of effect on pollinating insects

■ Habitat quality

■ Landscape context

o Habitat Quality arid Landscape Context

• Pollination on restored habitats.

o The Waste industry and Landfill restoration 

o Plant assemblages and pollinators on restored landfill sites.

Chapter 2 -  General Methods

General methods: those methods which are used through out the thesis, critique of them, 

and alternatives available.



Chapter 3 - The floristic characteristics of restored landfill sites

The following research questions aim to determine this:

1. How does the richness of plants in flower and floral abundance compare between 

restored landfill sites and reference nature sites? How does the richness of plants in 

flower and floral abundance compare between landfill sites which have been sown and 

those which have naturally re-colonised?

2. What is the effect of soil characteristics on richness of plants in flower on restored 

landfill sites?

3. How do restored landfill sites compare with the reference sites for the provision of 

resources for flower-visiting insects?

Chapter 4 -  A comparison of flower-visiting insects on restored landfill and 

reference sites.

The following research questions aim to achieve this:

1. How does the flower visitor abundance and species richness compare between 

restored landfill and reference nature sites?

2. How does floral resource use compare between landfill and reference sites?

Chapter 5 - The flower-insect interaction web on restored landfill sites.

The following research question aims to achieve this :

How does the flower-insect interaction structure for the restored landfill sites compare 

to the reference sites in relation to connectance and nestedness?

Xll



Chapter 6 -  Conclusion, recommendations for landfill site operators and areas for 

further research

Can these results be used to understand the broader factors relating to the potential of 

restored landfill sites to support pollinating insects?

What recommendations can be made for landfill site operators with regards to 

restoration practice?

Areas for further research



Chapter

Introduction



Chapter 1 - Introduction

The potential of restored landfill sites to support assemblages 

of pollinating insects

“No more bees, no more pollination, no more plants, no more animals, no more 
man."
Albert Einstein (1879-1955) (attributed)

Within this chapter, the following ideas and relevant research will be developed.

• Pollinator decline and the global biodiversity crisis

• The importance of restoration

• Landfill restoration and the waste industry

• Pollination on restored sites

• General aims

• Chapter descriptions

Further details relating to specific chapter areas are contained within the stand-alone 

research chapters 3-6.

Pollinator decline and the global biodiversity crisis

Populations of plants and pollinators are being lost due to habitat degradation and 

fragmentation across a number of regions of the world (Allen-Wardell et al., 1998; 

Corbet, 2000; Steffan-Dewenter et al., 2002). Possible reasons for these declines are 

many-fold and include factors such as: introduced species, disease, and climate change; 

but the biggest impact has come from the intensification of agriculture over the last 50 

years. Agricultural intensification has had the effect of habitat loss and fragmentation 

and the increased use of agro-chemicals, including insecticides, herbicides and 

fertilisers. There has also been the development of monoculture crop landscapes, 

overgrazing and land clearance, which removes nesting sites and the wild flowers that 

provide diverse food resources whether the agricultural crops are in bloom or not.
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The global human population has grown exponentially, from 791 million in 1750 AD to 

6500 million in 2005 (U.N., 2006). This rapid increase in human population resulted 

primarily from better health services and the growing abundance of food. Agricultural 

land use covers more than 45% of the European Union (Henle et al., 2008), and the UK 

is now one of the most densely populated and intensively farmed countries in Europe, 

following its drive for self-sufficiency following WWII (Green, 1989). Between 1930 

and 1984, 97% of unimproved grasslands in England and Wales were lost, and it is 

unlikely that this trend will have reversed (Dryden, 1997). A great deal of marginal 

agricultural land has been brought into intensive arable production; between 1947 and 

1980, in England and Wales 110,000 miles of hedgerow and some 25% of semi-natural 

vegetation was removed (Countryside Commission, 1986; Green, 1989).

Many pollinating insect species are experiencing steep declines in population size 

(Kearns et al., 1998). For example, declines have been reported for bees in North West 

Europe (Williams, 1982; Williams, 2005; Kosior et al., 2007) and bumblebee declines 

in North America (Colla and Packer, 2008; Grixti et al., 2009). Declines in non-bee taxa 

include butterflies in central Europe (Wenzel et al., 2006), and hoverflies in North West 

Europe (Biesmeijer et al., 2006).

Pollinator conservation concerns have been raised in numerous publications over the 

last couple of decades (Williams, 1995; Buchmann and Nabhan, 1996; Withgott, 1999; 

Carvell, 2002; Goulson, 2003b; Steffan-Dewenter, 2003; Pauw, 2007). Much of the 

current crisis relates to the decline of pollination services provided by the managed 

European honey bee colonies and much less information is available concerning wild 

pollinators (Ghazoul, 2005). However, the available evidence suggests that many wild 

pollinators have declined dramatically in recent decades, in the UK, in Europe and 

globally (Williams, 1982; Buchmann and Nabhan, 1996; Westrich, 1996; Kearns and 

Inouye, 1997; Corbet, 2000; Biesmeijer et al., 2006).

There are various causes believed to be driving the decline. Bumblebees for example, 

have been decreasing in both diversity and abundance, mainly due to loss of habitat 

from agricultural intensification (Forup and Memmott, 2005a). Other drivers for
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declines in certain species and groups include those with specialised diets (Goulson et 

al„ 2005), those species which are late in emerging (Fitzpatrick et al., 2007) and those 

which are climate specialists (Williams et al., 2007; Williams and Osborne, 2009).The 

research community seems to be in consensus that the decline in pollinators is an 

important issue in conservation biology (e.g. Allen-Wardell et al., 1998; Kearns et al., 

1998; Kevan et al., 2002; Carvell et al., 2006; Morandin et al., 2007; Ricketts et al., 

2008). Concerns about the worldwide decline in pollinator species has been 

acknowledged by the high profile Convention on Biological Diversity which launched 

the International Pollinator Initiative in 2002. This is an important issue, because 

pollinators provide an important ecosystem service for crops.

Ecosystem services, including climate regulation, water purification, spoil production, 

pest control and crop pollination, are critical to human survival (UNEP, 2005). Natural 

ecosystems and the human environment rely on interactions with animals and 

organisms. Such interactions perform a vast number of functions, including soil 

aeration, recycling nutrients, seed dispersal, nitrogen cycling, carbon sequestration, 

natural selection and providing pollination services.

Pollination is a vital process in almost all terrestrial ecosystems (UNEP, 2005). 

Pollination is the transfer of a pollen grain (containing the male gamete) from a flower’s 

anther to the stigma of the same or different flower. Plants are sessile and so sexual 

reproduction in plants requires pollen vectors. Such cross pollination provides a 

movement of genes between plants. These vectors can either be abiotic or biotic.

Abiotic modes of pollination include pollen movement via wind, water or gravity, 

whereas biotic modes of pollination are through the “use” of animals to assist the pollen 

transfer. Globally, pollinating animals include both vertebrate and invertebrates; 

vertebrates include birds, bats, lizards, and invertebrates include predominantly insects 

but also some arthropods (Carter, 1892; Kevan and Baker, 1983; Ollerton, 1999). The 

most diverse and numerous are the insect pollinators (Buchmann and Nabhan, 1996).

Insects comprise more than half of all living species (Strong et al., 1984). They are 

large, in terms of numbers, biomass, species diversity and functional roles, and play a 

crucial part in most ecosystems, creating and maintaining habitats for numerous other

4
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species (Hook, 1997). It is estimated that of the described metazoan species, 

approximately 80% are insects (Samways, 1992). Plants gain from mutualistic 

interactions such as pollination, herbivory protection and seed dispersal provided by 

insects (Burd, 1994). Insect species are succumbing to anthropogenic effects such as 

habitat loss and chemical pollutants; however getting accurate figures for their general 

decline is difficult, since it is estimated that only 5% globally of insect species have 

been described (Samways, 1992; Hook, 1997), hence some species may be disappearing 

before they are even identified. It is estimated that less than two thirds of the worlds’ 

bee species have been identified, and even within highly studied areas such as Western 

Europe, estimates vary between 2000 -  4500 species (Williams, 1995; Buchmann and 

Nabhan, 1996).

Pollinating insect orders include such organisms as bees, wasps, ants (Hymenoptera), 

true flies (Diptera), moths and butterflies (Lepidoptera) and beetles (Coleoptera), and 

are vital for effective pollination in numerous wild plants and crops (Rothrock, 1867; 

Todd, 1879; Trelease, 1881). In terms of biodiversity conservation the pollinators play a 

pivotal role and their loss can have a cascading impact on other species (Bond, 1994; 

Allen-Wardell et al., 1998; Colla and Packer, 2008). Globally, it is estimated that 

approximately 85% of flowering plants use insects and other animal pollinators in their 

reproduction; this varies from about 76% in the temperate regions of the world to over 

94% in the tropics (Ollerton et al., in prep.) and in Western Europe about 80% of the 

plant species are insect pollinated (Kwak, 1994). Pollinators perform an important role 

in ecosystems helping to maintain diversity and populations of wild plants and 

agricultural crops (Kearns et al., 1998; Kremen et al., 2004; Tscharntke et al., 2005). 

From a human viewpoint we should be interested in pollinators owing to thirty five 

percent of the global production volumes of food crops being dependent on pollinators 

(Klein et al., 2007). However, the extent of our dependence on pollinators has been 

questioned, since most obligate animal-pollinated crops are economically small scale 

(Ghazoul, 2005), and few major crop species depend exclusively or solely on animal 

pollination. Therefore in the UK in relation to crops the current loss of pollinators is not 

critical for human food supply.

5
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Few natural areas are managed or valued for the services they provide, although many 

are managed for the goods they produce. This may be because the ecology of ecosystem 

services such as crop pollination is poorly known, limiting our ability to understand 

their value. Public perception is that bees and particularly honey bees are our primary 

pollinating insects. However, relying solely on honey bees will not be as successful as a 

community of native insect pollinators (Goulson, 2003b; Morandin and Winston, 2006; 

Winfree et al., 2007). Native unmanaged bee populations provide important pollination 

services to various crops (Kremen et al., 2004), and are generally more diverse and 

abundant near to natural habitat (Dormann et al., 2007; Klein et al., 2007). The best 

economical agriculture option is to provide habitat for native pollinators since they 

produce higher yields but require little land (Kremen et al., 2004).

Placing a value on the services of ecological systems is difficult since one cannot place 

a value on intangibles. However they are indicative of the importance and relative 

magnitude of ecological service provision. The value per year for global pollination 

services, based on research of 2005 values, was US$214 Billion (Gallai et al., 2009). 

There are a number of caveats relating to this figure such as relative value of crops, 

extent of pollen limitation and inflation, but it does give an indication of the immense 

value of pollination services.

Globally pollinators are suffering from the loss of suitable habitats (Kremen and 

Ricketts, 2000). In the UK, notable loss of pollinator habitats include the loss of 

unimproved flower-rich grasslands (formerly valued as pasture and for hay production) 

and the removal of hedgerows (Goulson, 2003b; Goulson et al., 2005; Carvell et al., 

2006; Williams, 2006). The loss of habitats and semi-natural vegetation causes loss of 

food resources, suitable nesting sites and materials (Ockinger and Smith, 2007). 

Pollinating insects may depend on many life history factors being met in relation to 

their occurrence on a habitat site and their population numbers. These are not simply the 

presence of food resources but also nesting sites and materials; for example bees may 

need bare earth or holes in wood to nest in or use for building materials, and butterflies 

and hoverflies require alternative larval food sources (Table 1.01).
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Table 1.01 Habitat requirements for principle pollinating insects (Shepcrd et al., 2003)

Insect Order Food source Nesting

Larvae

Pollen

Adult

Hymenoptera Bees and wasps

Lepidoptera Butterflies and moths plant host

Dipt era 

Coleoptera

nectar / pollen site and material

plant host for eggs

Flies

Beetles

carrion / prey

nectar

nectar n/a

Plant host / pollen nectar / pollen n/a

The typical generalist nature of many pollinating insects makes no single plant a 

determining factor for their persistence in a habitat. Populations of solitary bees have 

been found to be limited by nesting opportunities and can be enhanced by placing 

suitable nesting houses in their habitats (Tschamtke et al., 1998). Therefore, nesting 

sites are more often limiting factors than pollen and nectar resources (Gathmann and 

Tschamtke, 2002). Local variability of vegetation height has been found to affect 

pollinator composition on grassland sites in Sweden (Sjodin et al., 2008); here it was 

deduced that the increased biomass provided more food for herbivorous adult beetles 

and their larvae, whereas bee community composition was mainly determined by flower 

abundance.

At the local scale, insect species richness is often positively correlated with habitat 

quality. This is often measured as plant species richness (Banaszak, 1980; Steffan- 

Dewenter and Tschamtke, 2001) or the abundance of plants needed for food and 

reproduction (Thomas et al., 2001). Different pollinating insects are influenced by 

factors operating over different spatial scales. Small bee species are dependent on floral 

resources close to the nest (Gathmann and Tschamtke, 2002; Vulliamy et al., 2006), 

whereas larger bees may often fly further for floral resources (Westrich, 1996).

Plant assemblages on isolated or fragmented habitat sites may in turn have amplified 

ecological pressures on their ongoing survival. Where low population densities exist 

there can be a knock-on effect of decreased fitness owing to the decreased chance of 

genetic out crossing (Holt et al., 2004). With animal pollinated plants, a small 

population size of resource plants may be less attractive to pollinators, resulting in 

fewer visitations and so further decreasing the likelihood of pollen transfer (Cheptou
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intensification may lead to fewer natural habitats and pollinating insects, but with 

restoration of wild habitats this cycle of degradation may be mitigated (Figure 1.01). It 

is an issue which can be seen in two ways: pollinators are important to restoration since 

many species of plants rely on insect mediated pollen transfer in their reproduction; but 

restoration or conservation sites are important to pollinators facing threats to habitats.
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Landfill restoration and the waste industry

There are approximately 2,200 working landfill sites in England and Wales, covering 

28,000 ha. and they are closing at a rate of about 100 per year (Environment Agency, 

2006). For the most recent data available, in England and Wales in 2005, 119 million 

tonnes of waste were disposed of, and 60% went to landfill, 22% for treatment, 6% for 

incineration, and 10% went into metal recycling facilities (Environment Agency,

2007c). A total of 72 million tonnes of waste was deposited at landfill sites. This 

compares to 75 million tonnes in 2004/5 a reduction of around 5%. Overall landfill 

deposits have fallen by 15% since 2000/1. For the East of England region, nearly 11.7 

million tonnes of waste was disposed of in landfill sites in 2005 (Environment Agency, 

2007b). In total in England and Wales there was 685 million cubic metres of remaining 

landfill capacity at existing permitted sites in England and Wales on December 31s' 

2005.

Prior to the 1990 Environmental Protection Act, restoration and aftercare standards for 

landfill sites were highly variable, with little in the way of engineering systems (Watson 

and Hack, 2000). The extent of restoration on older sites can be very poor, with thin 

capping and limited pollution control measures. Since the 1990 Environmental 

Protection Act, landfill operators have been required to be responsible for after-use on 

their sites. There is currently a five year statutory aftercare period (Watson and Hack, 

2000). Landfill site operators in England have a regulatory mandate to monitor gas and 

leachate production from landfill sites and report at least annually to the Environment 

Agency (HMSO, 2002).This statutory aftercare period and the procedural ecological 

impact assessment, has required landfill operators to consider specific habitat creation 

and the maintenance required for long term conservation benefit. The UK Biodiversity 

Action Plan set up targets for the conservation of habitats and species over the 

following years (Anon., 1994). This has been one of the driving forces behind the waste 

industry's restoration policy for closed landfill sites (Watson and Hack, 2000).

Standard contemporary practice for site closure depends on its waste composition, i.e. 

whether inert, domestic or hazardous waste. The practice for the most common type,

1 1
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domestic waste, involves capping off, using a synthetic liner or compacted clay, then 

overlaying sub-soil followed by top soil. The site is then hydro-seeded, a method of 

sowing where a liquid emulsion of seed, fertiliser and binding agent is sprayed onto the 

site (Watson and Hack, 2000). Hydro-seeding has the advantage that it does not 

compact the soil with heavy machinery. Seed is typically bought in bulk from seed 

merchants. This method continues due to it being cost effective, low maintenance and 

increasing the likelihood of successful revegetation.

The characteristics of a modern restored landfill site (Figures 1.02 - 1.04), including its 

domed landform, compacted clay cap, and artificial topsoil, can present a difficult 

environment for habitat creation as they become dry in the summer and waterlogged in 

the winter (Watson and Hack, 2000; Rawlinson et al., 2004). The major outputs from a 

landfill site following decomposition processes are landfill gas and leachate. These 

outputs are at their peak during the first few years after land filling, but are contained 

within the engineering systems (Farquhar and Rovers, 1973; Watson and Hack, 2000). 

These gases can be vented off, but are usually collected and burned to produce 

electricity. In 2006, energy from waste contributed approximately one third of 

renewable energy in the UK (Stiles, 2008).

12
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Pollinators in restored habitats.

Pollinators are important vectors in plant reproduction; however they do have complex 

habitat requirements which may affect their ability to colonise restored sites. They also 

have differing dispersal abilities and flight ranges which affect their dispersal between 

habitats. Those groups of pollinating insects with greater dispersal abilities and less 

specific habitat requirements have greater colonisation abilities (Tscharntke et al.,

2002). For example, bumblebees are not generally habitat specialists (Goulson, 2003a), 

and their foraging ranges and hence dispersal ability are at least several hundred metres 

and up to several kilometres from their nests (Dramstad, 1996; Osborne et al., 1999; 

Goulson and Stout, 2001; Kreyer et al., 2004; Knight et al., 2005; Westphal et al., 2006; 

Osborne et al., 2008b). Therefore it would be expected that bumblebees disperse easily 

across the landscape and colonise or utilise new habitat sites readily. Those pollinating 

insect groups with poorer dispersal abilities and more specific habitat requirements have 

poorer colonisation abilities (Tschamtke et al., 2002). There is little information 

regarding the dispersal abilities of non-bee pollinator groups; however, butterflies often 

require specific host plants for their larvae and have been found to be species poor in 

fragmented habitats, suggesting that they have poor dispersal abilities (Steffan- 

Dewenter and Tschamtke, 2000; Krauss et al., 2003).

Pollinators can be important for plant ecology restoration as they enable fertilization 

and hence seed production. Seeds are important as they allow plants to escape and 

disperse spatially and in time, something that vegetative or clonal growth rarely does 

(Fenner and Thompson, 2005). Seeds allow annual plants to re-grow the following 

years. The effects of a healthy pollinator community increases seed and fruit 

production, providing valuable food resources for a variety of frugivore wildlife 

including birds, small mammals and other insects.

Studies concerning restoration ecology have indicated the importance of proximity to 

local natural habitat for restoration sites, being reservoirs of colonising and later 

successional species (Handel et al., 1994; Montalvo et al., 1997). Pollinators are 

important for the success of a restoration project and must colonise from nearby natural
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habitats or be deliberately introduced. Semi-natural areas provide habitats for 

populations of pollinators and resources to pollinators that live in the surrounding 

landscape (Steffan-Dewenter et al., 2002). Conserving fragments of semi-natural habitat 

within intense agricultural areas can benefit biodiversity generally and improve crop 

productivity (Tschamtke et al., 1998; Ghazoul, 2005; Morandin and Winston, 2006). 

Increased semi-natural habitats in a regional area can promote diversity and abundance 

for butterflies, bees and hoverflies (Steffan-Dewenter et al., 2002; Kleijn and van 

Langevelde, 2006). Greater distances from semi-natural habitats negatively affect the 

species richness and abundance of pollinators on crops (Steffan-Dewenter et al., 2005), 

and in parts of the world where there are decreased pollinator populations this has 

resulted in reduced plant reproduction (Kevan et al., 2002).

Conservation initiatives within the agricultural landscape are often aimed towards 

restoring and conserving linear semi-natural vegetation features such as hedgerows and 

field margin strips, often being subsidised through agri-environmental schemes 

(Banaszak, 1980; Pywell et al., 2005; Morandin and Winston, 2006). In deteriorated 

agricultural environments the provision of semi-natural areas can have a greater effect 

than semi-natural linear features (Kleijn and van Langevelde, 2006). Pollinator insect 

movement and the resulting gene flow may be diminished by distance and 

fragmentation, in particular for smaller populations of less rewarding flowering plants. 

Therefore rare species within the landscape which have few flowering resources will be 

affected most (Kwak et al., 1998; Courchamp et al., 2006).

The restoration of pollinator communities is a complex problem due to the multiple 

requirements of pollinators, requiring varying food and nesting materials and sites 

(Table 1.01). The relationship between habitat restoration and flower-visiting insects, as 

stated previously may be seen in two ways, relating to the potential of these sites to 

support flower-visiting insect conservation efforts, and for the potential of these 

mutualistic interactions to illustrate the underlying functioning of the habitats and how 

successful the restoration of habitats has been.

15
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Studies have examined the positive role that restored sites can have for flower-visiting 

insect conservation. Roadside verges are one such resource of land not competing with 

agricultural land use, which provide floral resources. A study on prairie restoration on 

road verges in North America, found that those sites with greater abundance and 

richness of native flowers supported a greater bee abundance and species richness 

(Hopwood, 2008). Another valuable source of land is reclaimed opencast mines; again 

these are another source of land not competing with agricultural use. Butterfly 

communities and floral resources were assessed on 18 reclaimed mine sites in North 

America (Holl, 1995). The sites were found to provide 300 times the nectar abundance 

of the surrounding land use, but this decreased with time following reclamation. 

Butterflies’ species richness and abundance was significantly correlated with floral 

resources, but they require a number of habitat variables which must be considered in 

their conservation. These studies highlight the potential value of restoring substantial 

areas of land benefiting pollinator conservation efforts.

In Britain research relating to the restoration of pollinator communities has been 

conducted in hay meadows by Forup and Memmott (2005b). They found that in 

comparing two newly restored hay meadows with two older sites, the restoration 

process had been successful since although there was some structural variation between 

the sites, the pollen transport webs showed the same level of connectance between the 

old and new sites. However, it should be noted that the level of conspecific pollen 

deposition on plant stigmas was not measured, and hence true levels of pollination were 

not assessed. Studies of pollinator interaction on restored heathlands have compared 

four pairs of restored and ancient sites (Forup et al., 2008). Restoration was determined 

as successful through similar species richness, although there was little species overlap 

between the sites. The interaction networks were less complex, with regards to 

connectance for the restored sites. They highlight how a key ecological process can be a 

valuable yardstick for measuring the success of restoration.

This research project is of importance as it improves our relatively limited knowledge 

relating to flower-visiting insects within the restoration process; regarding both the 

conservation benefits for insects and their use in determining successful restoration. No 

studies have examined the pollinator community on restored landfill sites in the UK.

16
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The outcomes from this research may influence both the landfill operators and 

government policy, to create more flower-visitor friendly habitat sites, and so bolster 

the conservation effort for pollinating insects. The research will also further our 

knowledge in using the assessment of community structural elements to determine 

successful restoration.

General aims

This research project comes at an appropriate time as pollinating insects are suffering 

population declines. The restoration of habitats is of great importance due to our current 

land use policy and farming practice in the UK. If restored landfill sites can support a 

viable and abundant assemblage of pollinating insects then they have great potential for 

conserving these species. This study will further our knowledge related to plant and 

pollinating insect assemblages within restoration practice and its success in relation to 

interaction structure.

The broad goal of this research project is to examine the potential of restored landfill 

sites to support flower-visiting insect assemblages; this will be shown through the 

following chapters answering the research questions as shown below.

1. What are the floristic characteristics of restored landfill sites?

This focuses on the insect pollinated flowering plants, their abundance, richness and the 

difference in species composition between the restored and reference sites. The sites 

will be surveyed over the whole blooming season, allowing determination of the 

phenological development. Answering this question will specify the floral resources 

available for the flower-visiting insects.

2. How successful is landfill site restoration for flower-visiting insects and w hat 

effects do habitat quality variables have?

This question will focus on those flower-visiting insects found feeding on the restored 

landfill sites, their abundance, species richness, and the difference in species

17
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composition compared to reference sites. Answering this will indicate the potential 

conservation value of the restored landfill sites for flower-visiting insects.

3. How is the assemblage of flower visitors and plants structured? Is it different 

on restored sites compared to reference sites?

The structure of the plant-insect interactions illustrates the functioning of the restored 

habitats. This may show the success of restoration and the robustness of the newly 

created habitat.

4. Can these results be used to understand the broader factors relating to the 

potential of restored landfill sites to support flower-visiting insects within the 

landscape? What recommendations can be made for landfill site operators with 

regards to restoration practice?

This question will give an indication as to the management of the restored landfill sites 

within the landscape context, how restoration processes have enabled the pollination 

assemblage and future practices which restoration practitioners can use to encourage 

plants beneficial for flower-visiting insects.

18
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General Methods

“Reason, observation, and experience; the holy trinity of science.”

Robert Green Ingersoll (American Statesman. 1833-1899)

“That's the whole problem with science. You've got a bunch of empiricists try ing 

to describe things of unimaginable wonder.”

Bill Watterson (b. 1958), "Calvin and Hobbes"

Introduction

This chapter includes the general methods used in this thesis and a critical appraisal of 

them. Specific collection and analysis methods are covered within the separate research 

question chapters. The data for this study were from original fieldwork collection.

Selection of Study sites

Restored Landfill Sites

The research has been conducted on sites in the East Midlands of the UK, in the 

counties of Northamptonshire, Bedfordshire, Warwickshire and Buckinghamshire. All 

of the sites are within 50 km of Northampton. Originally, a total of 42 landfill sites with 

licenses to dispose of waste were identified. These sites were then surveyed for 

suitability of use in this project. The initial survey described the sites in terms of 

accessibility, size, age and disposal type. The aim was to select sites of similar 

characteristics to limit the number of variables having to be considered, whilst 

remaining representative of restored landfill sites as a whole. Following this, nine sites 

where chosen (Figure 2.01 and Table 2.01). The restored landfill sites had a minimum 

distance of 6 km between them. The mean foraging distance for flower-visiting insects 

is below 4km, and as such the sites can be considered as independent samples (Osborne 

et al., 1999; Gathmann and Tscharntke, 2002; Greenleaf et al., 2007; Osborne et al„ 
2008b).
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Chapter 2 -  General Methods

Nine landfill sites were surveyed in the first year (2007) of the study accompanied by 

paired reference sites. Nine sites were selected as this was considered an appropriate 

sample size, allowing surveying each season within the blooming period. The 

following year (2008), four landfill sites accompanied by paired reference sites were 

surveyed, although this was reduced to three due to logistical issues (Brixworth Landfill 

site / Pitsford SSSI, Sidegate Land Landfill site / Ditchford LNR, Wootton Landfill site 

/ Barnes Meadow LNR). The four sites were randomly selected from the nine sites 

from the previous year, and were therefore representative of them. The reduced number 

of sites was used in the second year to build up a more comprehensive flower visitor 

catalogue.

Reference sites

Once the restored landfill sites had been selected, appropriate comparison reference 

sites were chosen. Reference sites were used to enable species baseline comparisons. 

The reference sites were selected as the closest site of recognised nature value, being 

designated as either Local Nature Reserves (LNR) or Sites of Special Scientific Interest 

(SSSI). (NB. In cases where sites have been designated for non-ecology reasons it is 

recognised that they would still be managed in an ecologically sensitive manner.) Site 

designations and locations were identified using the Natural England map tool (Natural 

England, 2006). Local nature reserves can be used as a comparison to measure the 

success of restoration, and that invertebrate communities may be accurate determinants 

of ecological function (Handel et al., 1994).

The rationale for selecting nearby designated conservation sites as reference sites was 

that such sites provide a potential ‘end-point’ or ‘target’ in terms of ecological 

restoration. The reference sites would be close enough to the landfill sites so they would 

experience similar local climates, have the same regional plant and insect species pool, 

and be found in similar landscape contexts (Figure 2.01). Reference sites, were more 

appropriate than control sites given that there were no environmental effects from the 

landfill sites themselves. Traditional methods of using control sites are limited; using a 

reference sites approach instead allows the restored sites to be compared to the means
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from all the reference sites. In laboratory experiments the use o f ‘controls' with all 

variables monitored or manipulated is possible (Reynoldson et al., 1997). In field 

experiments all variables cannot be controlled. The reference sites will therefore be 

exposed to the same species pools and landscape contexts as the restored landfill sites.

Site selection criteria

From previous research and knowledge of the character of landfill and reference sites 

available, the following selection criteria were determined. This design thus aims to

control undue variation in plant and flower-visiting insect abundance and diversity. This 

is to ensure truer comparisons are made, and so representative landfill sites are chosen.
'

Restored landfill site selection criteria:

• Restored area should be at least 50% of the whole site.

This is to avoid undue influence of the restored habitat from ongoing landfill site

operations. Also reduce health and safety issues.

• Minimum size of 0.5 ha.

To ensure sites are typical full scale landfill sites.

• Have been designated as restored for at least 4 years.

So that flowering plants have become established onsite and so flower-visiting insects 

may be present.

• Be within 50km of Northampton.

So all sites are within the same regional landscape and for logistical travel reasons.

• No significant detrimental factors observed.

To ensure sites being surveyed are not atypical for their floristic characteristics and 

flower-visitor assemblages.
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Reference site selection criteria:

• Minimum size of 0.5 ha.

To ensure sites are of a similar size to the restored landfill sites.

• Closest area of designated land matching the set criteria.

To ensure both the restored landfill and reference sites have the same landscape context.

• Site must not be undergoing any specific pollinating insect conservation 

measures.

To allow for a fair realistic comparison.

• Similar vegetation type to that of the restored sites i.e. grassland.

To ensure no large scale differences in the plants surveyed or their associated flower- 

visitors.

Whilst the sizes of the paired restored landfill and reference sites will be different, the 

equal area of surveying, described below, aims to remove the island-bio-geographic 

effect on species richness. Surveying each site proportionally to their area was 

considered but rejected as it would make equal effort sampling difficult to achieve.

The research design for this study enables a direct assessment of the restored sites in 

comparison to their reference sites. This has been achieved through pairs of restored and 

reference sites having the same landscape context, removing the conflicting effects of 

the landscape context and habitat quality. This has been confirmed through research 

indicating no significant differences within the landscape context, between pairs of 

sites, or between types of site (Rahman, 2009). In addition, there were no substantial 

areas of comparable nature sites found within the measured radius of the landscape 

context (up to 1000m from the centre of each site). There was also no difference 

between the landscape context of different sites, Northamptonshire and the surrounding 

region being quite homogeneous in its rural land use, dominated by mixed farming.
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Field work

Timing of fieldwork

The fieldwork season ran from March to October as this corresponds to the main 

flowering period in central England (Fitter et al., 1995). Flowering times in the British 

Isles usually start in early spring and continue until late autumn. The original plan was 

for all sites to be each surveyed three times during the fieldwork season (Table 2.02).

This was to cover the early, mid and late flowering species. However during the 2007 

field season, summer rain affected the rate of field work, and so whilst all the sites 

where surveyed twice, only two pairs were surveyed three times. For 2008, given the 

reduced subset the intention was to sample sites with greater intensity. The research 

design involved a balance between the number of sites studied (sample size) and the 

detail in which each site can be surveyed. In order to establish broad generalities about

sites it is often advantageous to sample a larger number of sites in the first year of the 

study and then use these results, focusing on fewer sites to address specific questions, in 

the second year. This was achieved, although in early spring one of the reference sites 

was sampled only once; however the effect of this should be minimal as there were very 

few flowers this early and hence there would have been little flower visitor activity 

then, and a mid-spring survey was conducted later.

The sites were randomly sampled in pairs, so the same sites were not always sampled 

first or last. There were however, constraints placed upon this random selection, since it 

was desired that the restored landfill sites and their reference sites will be sampled on 

consecutive days to reduce temporal bias. In addition, due to restricted access, the 

restored landfill sites could not be surveyed at weekends and required two days notice 

prior to fieldwork. These constraints were built into the sampling programme and 

fieldwork was undertaken whenever the weather conditions permitted.
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Chapter 2 -  General Methods

Floral surveys

A standardised belt transect was used in the surveying of insect pollinated plants in 

flower. A random systematic approach was taken: the approximate centre of the sites 

were located and marked, a direction was chosen using randomised bearing tables, and 

used if the size or shape of the sites permitted. If it did not then a new direction was 

used from the bearing table. A 100m x 2m transect was laid out with its centre at the 

marked point. All flowering plants were identified to species level and number of 

flowering units recorded. One floral unit was defined as; a head (e.g. Trifolium repens 

(Figure 2.02)), an umbel (e.g. Daucus carota) or a capitulum ( e.g. Centaurea 

scahiosa). On this issue, Dafni et al. (2005) state that as a rule of thumb, inflorescences 

should be described as pollination units if the distance between individual flowers is 

less than the size of the individual flowers. The belt transect method is an efficient way 

to survey a large area (Dafni et al., 2005). This method is a standard approach to plant 

surveys and has been used in previous studies (Dicks et al., 2002; Forup and Memmott, 

2005a).

Figure 2.02 Example of the floral unit of White clover (Trifolium repens).
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Identification was made using a standard British field guide to flowering plants, using 

the nomenclature of Stace and Kent (Stace, 1991; Kent, 1992; Rose and O'Reilly, 2006). 

Any plants which could not be identified in the field were collected and labelled for 

identification and pressing (Dafni et al., 2005). The floral surveys each sampled 200m2 

and were repeated twice per fieldwork day (i.e. sampled 200m x 2m per site per day). 

From herein ‘flowering plants’ refers to insect pollinated plants which are in flower.

Critique of this method highlights that transects were not fully random in their selection, 

i.e. they were always from the centre of each of the sites; this may have achieved a 

systematic error within the data, but as this technique was conducted on all of the sites, 

any bias should be minimal and equal sampling effort was applied to all of the sites. 

Secondly, the plant species found solely at the edge may be missed, or under 

represented, however from personal observations across the whole site this is not 

believed to be the case.

Floral resources

The floral cover method used in this study to represent floral resources, combines floral 

abundance with inflorescence size. The positive relationship between nectar production 

and inflorescence size and frequency is well established (Harder and Cruzan, 1990;

Holl, 1995; Pacini et al., 2003). Inflorescence frequency has been used as indicative of 

sugar abundance (Sharp et al., 1974; Kremen, 1992; Munguira and Thomas, 1992;

Forup and Memmott, 2005b; Forup et al., 2008), and corolla size is less susceptible to 

plant vigour and hence site specificity than nectar secretion rates (Harder and Cruzan, 

1990). Floral cover is sufficiently robust to allow comparisons across sites and has been 

used in previous pollination restoration studies (Meyer et al., 2009) and relating to 

pollinating insect resources (Steffan-Dewenter and Tschamtke, 2001; Potts et al., 2006; 

Vulliamy et al., 2006; Clough et al., 2007; Holzschuh et al., 2007; Ebeling et al., 2008; 

Meyer et al., 2009). Estimation of floral nectar production per plant species was not 

undertaken due to constraints of research resources available and sample size (nearly 

100 plant species altogether). Nectar also has great variation between individuals of any 

given plant species, both within and between sites and also with temperature, humidity.
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solar radiation, age, position of the plant, success of fertilization etc. (Corbet, 1978; 

Corbet et al., 1979; Tepedino and Stanton, 1982; Pleasants and Chaplin, 1983; Lanza et 

al., 1995; Pacini et al., 2003).

Mean cross-sectional surface area of the floral unit was calculated for each flowering 

plant species and then multiplied by their frequencies, to obtain a measure of floral 

cover. Floral units were used, i.e., umbels and inflorescence rather than single flowers. 

The sizes of the floral units was determined through Field sampling, and checked for 

consistency using field identification guides (Rose and O'Reilly, 2006), data from 

botanical journals e.g. Alliariapetiolata (Cruden et al., 1996), Cirsium eriophorwn 

(Tofts, 1999), and Knuth's handbook on flower pollination (Knuth, 1906-1909) (for 

flower sizes -  see Appendix 1). Only open flowers likely to produce nectar or pollen 

were recorded. Significant differences were determined for the seasonal mean floral 

cover as cm2 of floral bloom per m2 of transect and total floral cover per site as m2 of 

floral bloom per site.

Flower visitor insect surveys

Flower-visiting insect surveys were undertaken three times between 9am and 4pm on 

days which were warm and sunny with little or no wind, as outlined in the Butterfly 

Monitoring Scheme (Pollard and Yates, 1993) and similar to those used in previous 

pollination studies (e.g. Banaszak, 1980; Kearns and Inouye, 1993; Dicks et al., 2002; 

Goverde et al., 2002; Dafni et al., 2005; Forup and Memmott, 2005b; Kleijn and van 

Langevelde, 2006; Potts et al., 2006; Nielsen and Bascompte, 2007).

In 2007, flower visitors were surveyed along the transect line as defined in the floral 

survey section (Figure 2.03). The transect line was left undisturbed for 20 minutes 

following the initial entomophilous plant survey to allow the flower visitors to return. 

The 100m transect was then surveyed at a rate of approximately three metres per 

minute, giving enough time for observation and capture. The following year, 2008, the
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sampling followed a systematic pattern following a spiral from the approximate centre 

of the site, at a standard pace of 10 metres / minute. This was similar to the survey 

method used by Nielsen and Bascompte (2007) and determined to be effective for 

ecological surveys (Kalikhman, 2007). The spiral method employed allows for 

proportional sampling from all plant species in flower. Given a 2m wide transect, in 

each transect an area of approximately 600m2 was surveyed. This method allowed for a 

larger area to be surveyed owing to the relatively low pollinator density, and so greater 

data accumulation. Transect methods have been used many times as a way to sample 

flower visitors over a large area where they may be relatively low in abundance 

(Banaszak, 1980; Fussell and Corbet, 1992; Lagerlof et al., 1992; Steffan-Dewenter and 

Tschamtke, 2001; Dicks et al., 2002; Forup and Memmott, 2005b; Greenleaf and 

Kremen, 2006; Potts et al., 2006; Nielsen and Bascompte, 2007; Forup et al., 2008).

Surveys lasted 30 minutes and all flower visiting insects seen to be feeding legitimately

(i.e. not nectar robbing) and large enough to touch anthers and stigmas were captured

from along a 2 metre wide belt and within 2 metres in front of the surveyor. All flower

visitors were considered as ‘pollinators’ irrespective of their ‘quality’ (i.e. their

effectiveness at transferring conspecific pollen during each visit). Any time spent in

transferring captured insects to jars was deducted from the total time to achieve a

constant sampling effort. No distinction was made between different types of feeding

behaviour i.e. pollen versus nectar. The first species of plant which the insect was seen

visiting was the one recorded. The pollinator survey was conducted on the transects at

three different times (morning, midday and afternoon) to capture those insects active at 
different times.

The captured insects were then transferred individually into labelled plastic jars. After a 

survey was completed, those insects that could be identified in the field were recorded 

and released. Those insects that could not be identified were represented by voucher 

specimens taken for later identification. The samples were then identified using 

standard keys and reference collections for the Hymenoptera and Syphidae.
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The transect method to survey flower-visiting insects has been used often, but it does 

have some issues related to it. The common assumption is that all flower visitors 

captured are potential pollinators (Kevan and Baker, 1983). The likelihood of the insect 

being a possible pollinator is increased since only those seen to be on or near the 

flower’s anthers or stigmas were captured. This does not completely rectify the problem 

however since the insect needs to be carrying conspecific and viable pollen.

The technique relies on the observer to first spot the insect and then to capture it. 

Inevitably some insects will be missed by the observer, and the action of capturing with 

a net may scare off other insects further ahead. Although it is impossible to determine 

exactly the percentage of flower visitors missed, with experience levels of >90% 

capture are achieved, with the slow rate of transect work.

An alternative method was to select random squares (e.g. 5m x 5m) then observe flower 

visitors and record for 10 minutes e.g. (Sjodin, 2007). However, this gives a slower rate 

of observation, which would not be as good on low density of flowers, and where it is 

likely to miss rarer plant species. This alternative method does rely on the ability of the 

observer to recognise pollinators down to species level which would take considerable 

training and is actually impossible in the field for many cryptic taxa.
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Habitat quality characteristics

This study will focus on habitat quality in terms of the importance of floral resource 

diversity, and the importance of other physical environmental factors for pollinating 

insect habitat. The local environmental variables attributing to habitat quality assessed 

included; area, vegetation height and density, bare earth and sand soil, microstructures, 

south facing slopes, hedgerows and shrubs, flowering plant and plant richness, flower 

abundance and the soil physical and chemical properties. For further details see Chapter 

4 methods section.

Landscape context

Community studies often focus on habitat fragments in isolation, surrounded by a ‘sea'

of non-habitat, and ignore the importance of the surrounding landscape matrix (Ricketts,

2001). Landscape context influences pollinator diversity and abundance, and different

pollinators respond at different ranges (Steffan-Dewenter et al., 2002). However, the

effects are mixed and not consistent for species or groups of flower-visiting insects. For

example, no straightforward relationship has been found for landscape context and

bumblebee richness or abundance (Steffan-Dewenter et al., 2002; Westphal et al.,

2003; Kleijn and van Langevelde, 2006). For butterflies the dominant factor is habitat

size and no significant relationship with habitat isolation has been found (Krauss et al.,

2003). Numerous studies examine the relative effects of habitat and landscape context

on flower-visiting insects (Thomas et al., 2001; Backman and Tiainen, 2002; Hatfield

and LeBuhn, 2007; Sjodin et al., 2008), and show that landscape context does play a

part in determining the species of flower-visiting insects and their abundance on habitat 
sites.

As mentioned previously, the research design for this study enables a more direct 

assessment of the restored sites in comparison to their reference sites. This has been 

achieved through pairs of restored and reference sites having the same landscape 

context, removing the conflicting effects of the landscape context and habitat quality. 

This has been confirmed through research indicating no significant difference within the
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landscape context, within pairs of sites, or between types of site (Rahman, 2009). The 

effect of habitat quality is now possible to examine alone.

Statistical methods
Statistical methods have been discussed within the separate chapters. Where statistics 

are not presented within the text they are presented within figure legends.

Summary

The methods described above are typical to those used within flower-visiting studies in 

the landscape. They proved effective at gathering data for this thesis and there is no 

recognised significant bias to the data. The sample sizes were appropriate to be large 

enough for statistical analysis and considering the time frame and resources of this PhD 

study.
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Figure 2.03 The author undertaking fieldwork on Cranford landfill site, 2007.
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The floristic characteristics of restored landfill sites

“Where flowers bloom so does hope.”

Claudia ‘Lady Bird' Johnson, Public Roads: Where Flowers Bloom (1912-2007)

Summary

This chapter examines whether the revegetation of restored landfill sites is comparable 

to reference sites with regards to the insect pollinated flowering plant community. This 

has been assessed through direct comparison between restored landfill sites and 

reference sites using standard belt transect surveys to record plants in flower. These 

surveys were repeated throughout the flowering season to record the phenological 

development. Sites were also examined for the effects of soil characteristics and 

revegetation method.

There were one quarter of plant species found uniquely on restored landfill and 

reference sites but one half were found on both. There was no significant difference for 

the frequency with which species of plant were present or the number of species within 

a plant family on the restored landfill sites and reference sites. No difference was found 

between the restored landfill sites and the reference sites for the annual richness of 

plants in flower or abundance. Variation was found across the seasons and the restored 

landfill sites had lower species richness and floral abundance in the spring but higher in 

the autumn than the reference sites. The restored landfill sites that were sown had the 

same richness of plants in flower and floral abundance as those restored sites which 

were naturally revegetated. Examining soil characteristics showed differences between 

the restored landfill sites and the reference sites but no correlation with richness of 

plants in flower. The overall result shows that the landfill sites are being restored to a 

state comparable to that of the reference sites with regards to the insect pollinated 

flowering plant community.
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Introduction

The importance of restoring areas of land to viable ecological sites is high due to 

anthropogenic causes of landscape degradation including habitat loss and agricultural 

intensification (Allen-Wardell et al., 1998). Landfill sites may be a valuable reserve of 

restorable land but there are certain factors which may affect the success of the 

restoration process and the species found on landfill sites. Landfill sites are typically 

restored using soils imported onto the site, which may be used as they are or mixed with 

improvers to meet the regulatory requirements of nutrient richness and homogeneity 

(Simmons, 1999; Watson and Hack, 2000). The soils are laid down using heavy plant 

machinery and then seeded or allowed to naturally colonise. The revegetated sites are 

then managed in a way to minimise the fire risk, with a summer mowing to remove 

excess vegetation. The end use of the sites is typically aimed at meeting planning 

requirements and not for conservation benefit (Simmons, 1999; Watson and Hack, 

2000). There have been a number of studies investigating the potential of woodland 

establishment on old landfill sites (Ettala, 1988; Moffat and Houston, 1991; Robinson 

and Handel, 1993; Holley and Phillips, 1996; Rawlinson et al., 2004; Hutchings et al., 

2006), but no research has been done relating to the insect pollinated flowering plants 

found on modem restored landfill sites in the UK.

Habitat restoration methods

The choice of which habitat type to create when restoring a post-industrial site should

take into account a number of factors: the proposed end use, cost, ecological targets,

land policy and environmental factors (Bell et al., 1997; Dobson et al., 1997; Basri,

1998; Hobbs and Harris, 2001; Falk et al., 2006). Possible end uses of restored sites

may include public amenity space, wildlife habitat creation or agricultural use 
(Simmons, 1999).

Environmental factors which determine restoration vegetation choice include climate 

condition, slope and soil conditions and type (Chan et al., 1997). It is difficult or
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impossible in the long-term to grow vegetation that does not suit the prevailing soil 

conditions (Goodman, 1974). The most common problem with regards to soils and 

attaining a species-rich sward is fertility levels that are too high (Gilbert and Anderson, 

1998).

Grassland restoration: seed mixes vs. natural colonisation

Grassland habitat creation is focused on here as this is most relevant vegetation type to 

this study, being the most prevalent landfill restoration vegetation type. There are three 

approaches to newly establishing flower-rich grassland: sowing a seed mix onto a newly 

tilled site, encouraging the diversification of an ecologically dull grass sward, or 

encouraging natural colonisation. The very limited grassland types now created on post-

industrial sites in no way reflects the diversity of grasslands found historically in the 

UK (Gilbert and Anderson, 1998).

Off-the-shelf wild flower grassland mixes are available, with long catalogue lists of 

native species, and suites of species available to emulate NVC communities (Gilbert 

and Anderson, 1998). However, the cost of sowing a wildflower mix compares poorly 

with a basic grazing mixture and costs inevitably underlie decisions made by landfill 

operators (Table 3.01). Sowing wildflower grassland can be ten times cheaper than 

woodland creation but nearly 20 times more expensive than other grass types (Table

3.01). The cheaper options of seed mix, such as those used in landfill restoration, lack in 

floral resource species (Table 3.01).
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Natural colonisation

The natural colonisation of former industrial sites such as landfills relies on the 

recruitment of plant species from nearby sources. Vegetation colonisation may be 

through seed dispersal or tissue propagules. The question of whether there are enough 

sources of plant seeds or propagules within the local environment and of what species is 

important; prior to agricultural intensification, there would have been a greater source 

from local species rich grassland; however such sources have now declined. Local 

sources of vegetation could include field boundaries, field set-aside strips, areas ol 

natural or semi-natural vegetation, and gardens within an urban/semi-urban 

environment. Sources of plant species may also come from the seed bank within the 

soil, which may have been sourced on-site or brought in. If the soils were local they 

may contain locally adapted species but if foreign, they probably will not. This leads to 

the increased likelihood of early colonisers now being predominantly agricultural pests 

or feral crop species and those of disturbed land, such as docks and thistles, rather than 

the desired grassland species. There is also the possibility of non-native invasive species 

taking over a site.

The most promising sites for natural colonisation are those with nutrient poor soils 

(Gilbert and Anderson, 1998). Landfill sites would potentially be suitable for this, as 

nutrient poor soils are easier and cheaper to obtain for restoration than nutrient rich 

ones. Often compost and soil ‘improvers’ are added to landfill top soils to meet 

environmental targets (Simmons, 1999; Watson and Hack, 2000). There is a cost benefit 

of using cheaper nutrient poor soils, and when this is combined with the cheapest 

revegetation option, then significant savings and so incentive is available. One possible 

hindrance could be that whilst re-colonisation is awaited then soil run off could occur, 

however with most opportunist species this would be minimal (Gilbert and Anderson, 

1998). Another option sometimes used in trying to establish flower meadows is using 

non-aggressive annual grasses as a ‘nursery’ crop (Streever et al., 2000). The advantage 

of nutrient poor soils is that they provide a variety of niches for species to live in, 

without being outcompeted by more vigorously growing grass species. It has been 

found that patterns of plant richness in relation to nutrient levels generally follow a 

hump-backed-curve; species richness being low at low nutrient levels, increasing to a
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peak at intermediate levels, and declines more gradually with further increasing nutrient 

levels (Pausas and Austin, 2001).

Planting trees on restored landfill sites has been proposed (Ettala, 1988; Moffat and 

Houston, 1991; Crook, 1992; Robinson and Handel, 1993; Holley and Phillips, 1996; 

Hutchings et al., 2006). Tree planting on completed landfill sites is a viable alternative 

to grassland. However, fears remain of tree roots penetrating the impermeable cap and 

releasing landfill gases and leachate. This would also allow the ingress of water as well 

as oxygen beneath the surface potentially producing an explosive mix. Establishment 

problems were highlighted regarding the water-logging and drought conditions 

commonly occurring on restored sites (Moffat and Houston, 1991; Rawlinson et al., 

2004; Hutchings et al., 2006). Woodland establishment on old-style landfill sites in 

North West England has seen to be effective, but environmental constraints were seen 

from soil depth and soil compaction (Rawlinson et al., 2004). The landfill operators 

however have shown little interest in the research and continued with grassland 

restoration.

On high quality soils, natural revegetation may not be as effective, particularly when 

there is an inadequate supply of native species locally. High fertility soils will colonise 

quickly from on-site seed bank and pioneer species, competitive growth will occur with 

weaker annual species being quickly eliminated, and a few species will dominate the 

site (Bayfield, 1995). Lower plant diversity is therefore likely. This may be desirable 

where a grazing end use is planned, with grasses dominating, but will be of lesser 

ecological value.

Post-creation remediation methods

Post-creation remediation is entered into to enrich an ecologically dull site, such as 

those on fertile soils. The remediation treatments required to convert fertile soil to a 

nutrient poor one may include nutrient stripping by crops or topsoil removal (Gilbert 

and Anderson, 1998). Topsoil removal could be potentially viable since it can be used 

elsewhere on-site; however, such treatments may be prohibitively expensive or labour
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intensive. Furthermore, topsoil on landfill sites may be an integral part ol the engineered 

capping and structures such as gas and leachate wells would have already been 

integrated. On artificial laid soils, such as those on landfill sites, the topsoil would need 

to removed down to nearly the subsoil layer, this would be a substantial soil removal; 

for example a depth of 50cm being removed, would total 5000m' / ha.

Flowering plants and floral resource provision

Flowers are diverse in their resource provision and reward pollinators through many 

different ways, typically through nectar and pollen rewards. Nectar is a very complex 

solution containing sucrose, fructose and glucose (Percival, 1961), some amino acids 

which insects cannot synthesise (Gardener and Gillman, 2002), lipids, vitamins and 

minerals. Other, perhaps rarer and more specialised resource provision by flowers, 

include attraction through scents, as in some orchids manufacturing bee sex 

pheromones, oil rewards, and some flowers mimic for visual stimulation (Buchmann 

and Nabhan, 1996).

The floral resources that entomophilous plants provide are crucial for supporting 

pollinators. Without floral resource provision within a habitat, flower visitors would be 

absent and grasses would dominate. Therefore, for the successful restoration of species 

rich plant and flower visitor assemblages on habitats the extent of floral resources is 

important.

Whilst it is true that most terrestrial restorations begin with seeding or transplanting, 

ultimately a restoration’s long term ecological success relies on plant-animal 

interactions. To sustain most plant populations, reproduction is essential to replace 

individuals after their demise. Seed production is critical for regeneration of most plant 

populations and is essential if natural ecosystem dynamics are to occur on restored 

habitats. Most plant species depend on animal pollination for their reproduction and 

may disappear if their pollinators are not present (Powell and Powell, 1987; Steffan- 

Dewenter and Tscharntke, 1999). Insect-mediated pollination in turn contributes to the 

production of fruits and seeds that support diverse food webs (Bawa, 1990). On restored
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habitats, greater abundance and richness of plants in flower has been linked to greater 

abundance and richness of pollinating insects (Mortimer et al., 1998; Backman and 

Tiainen, 2002; Pywell et ah, 2005; Hegland and Boeke, 2006; Franzen and Nilsson, 

2008; Hopwood, 2008). Consequently both pollinating insects and flowering plants are 

interdependent, they rely on each other for either reproduction or resource provision and 

support numerous other organisms within habitats.

Aims

The aim of this chapter is to consider whether restored landfill sites have been 

revegetated in a similar way to reference sites for their insect pollinated flowering plant 

community. Flowering plant species richness and floral abundance will also be 

examined with regards to the effect of soil characteristics. The following questions will 

be addressed:

How does the richness of plants in flower and floral abundance (see Chapter 2) 

compare between restored landfill sites and reference nature sites? How does the 

richness of plants in flower and floral abundance compare between landfill sites 

which have been sown and those which have been naturally revegetated?

The expectation is that reference sites will have greater richness of plants in flower and 

floral abundance than the restored landfill sites. The restored landfill sites are newly 

created on artificial soils which may inhibit species richness. In addition, the soils are 

often compacted with heavy machinery. The sites may be sown with species poor seed 

mixes predominantly of ryegrass (Lolium) and clover (Trifolium). In contrast, the 

reference sites have been managed for the best possible ecological benefit by wildlife 

managers and have natural ecosystem dynamics occurring.
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What is the effect of soil characteristics on richness of plants in flower on restored 

landfill sites?

It is expected that restored landfill sites and reference sites will have differences 

between them in soil characteristics including; bulk density, moisture, organic matter 

and stone content. It has previously been shown that richness of insect pollinated plants 

may decrease with increasing soil quality (Pausas and Austin, 2001). Therefore it is 

expected there will be a correlation between the richness of plants in flower and the soil 

characteristics measured.

How do restored landfill sites compare with the reference sites for the provision of 

resources for flower-visiting insects?

Flowering plant resources (principally nectar and pollen) are important to the 

pollinating insects found on the landfill sites as they provide the food for adults and 

larvae. Restored landfill sites will be considered for both their mean floral cover and 

also in relation to their impact upon the landscape by their total resource provision i.e. 

floral cover density x size of the restored sites. Floral cover has been used rather than 

total nectar and pollen resource availability as it is less weather and site specific, further 

rationale for this is discussed later in the Methods section.
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Methods

Study region and study sites
The study was conducted in the East Midlands of the UK, in the counties of 

Northamptonshire, Bedfordshire, Warwickshire and Buckinghamshire. All of the sites 

are within 50 km of Northampton (see Chapter 2 - Figure 2.01). Nine landfill sites were 

surveyed in the first year (2007) of the study accompanied by paired reference sites. The 

following year (2008), four landfill sites accompanied by paired reference sites were 

initially surveyed, although this was reduced to three in the second field season due to

logistical issues. For further details on-site selection criteria, see Chapter 2 -  Methods

Fieldwork timing

Fieldwork surveys were conducted from March to October, 2007 and 2008, as this 

corresponds to the main flowering period in central England and hence the flower 

visitor activity. Local weather conditions made uniform distribution of sampling days 

impossible. For distribution of survey days see Chapter 2 - Table 2.02.

Floral surveys

Standardised plant surveys were used (Dicks et al., 2002; Forup and Memmott, 2005; 

Potts et al., 2006). A random systematic approach was taken: the approximate centre of 

the sites were located and marked, a direction was chosen using randomised bearing 

tables, and used if the size or shape of the sites permitted. If it did not then a new 

random direction was used. A 100m x 2m transect was laid out with its centre at the 

marked point. All flowering plants were identified to species level and number of 

flowering units recorded. One floral unit was defined as a head (e.g. Trifolium 

pratense), an umbel (e.g. Daucus carota) or a capitulum (e.g. Centaurea scabiosa). 

Identification was made using a standard British flower field guide (Rose and O'Reilly, 

2006). Two floral transects were surveyed per fieldwork day, with the data being 

combined and treated as a single dataset. At the intersection of the two transects, floral 

units were only counted on one transect to avoid double counting. From here in 

‘flowering plants’ refers to insect pollinated plants which were in flower during these 

surveys.
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Soil Analysis

Soil characteristics were recorded, namely: texture, bulk density, moisture, pH, organic 

and stone content (Table 3.02). All soil samples were collected in March 2009; pairs of 

sites were collected on the same day to enable true comparisons to be made. Five 

samples were randomly taken on each site from a depth of 10cm. These characters were 

assessed as they indicate soil quality, and so influence the plant community. Standard 

soil testing protocols were used (Anderson and Ingram, 1993; Rowell, 1994).

Soil texture was determined using a standard soil texture chart (Rowell, 1994) on fresh 

samples. Bulk density was determined using the weight of a fixed volume of sample, 

giving g cm'3. This measure can give a crude measure of soil compaction, although it 

does not take type of soil into account. Moisture content was determined through drying 

of the sample for 24hrs in an oven at 105°C; the difference in weight was then used to 

determine percentage moisture (Rowell, 1994). The dried soil samples were then placed 

into a furnace at 500°C for 4 hours and re-weighed to give percentage organic content 

(Rowell, 1994). The stone content was determined through washing a known weight of 

soil through a 2mm sieve and then drying the resultant material.

Table 3.02 Soil characteristics and analysis methods.
Soil Test Rationale Methods (Rowell, 1994)
Texture Soil type. Observation and grain chart.

Bulk Density Indication of compaction and 
hence soil quality.

Density via weighing known 
volume of soil.

Moisture Content Consistency measure between 
sites.

Difference in weight following 
24 hours at 105°C

Organic Content Indicative of structure and age 
and so soil quality.

Difference in weight following 
4 hours at 500"C

Stone Content Structure and homogeneity and 
so quality of soil.

Washing a known weight of 
soil through a 2mm sieve. Dry 
weight of stones.

pH Indicating chemistry of the soil 
and may affect plant community.

Soil sample agitated with de-
ionised water and then tested 
using a calibrated probe.
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Data Analysis

The data were tested for normal distributions using one-sample Kolmogorov-Smimov 

tests. Levene’s test was used to determine whether variances were significantly 

homogenous, and, if heterogeneous, the significance levels were adjusted accordingly. 

For testing differences between the types of sites within the pairing, paired samples t- 

tests and Wilcoxon signed rank tests were used to compare parametric and non- 

parametric data, respectively. For tests of differences in three independent samples, one-

way ANOVAs or Kruskal-Wallis tests were used for parametric and non-transfonnable 

non-parametric data, respectively; post-hoc tests using paired samples t-tests were then 

used. For testing of difference in presence and frequency of species between types of 

sites paired t-tests and Wilcoxon signed rank tests were used to compare parametric and 

non-parametric data, respectively. Significance of correlations was determined using 

Pearson’s correlations for parametric data and Spearman’s rank correlations for non- 

parametric data. SPSS version 11.5 statistical software was used (SPSS, 2003). 

Abbreviations have been used: restored landfill and reference comparison sites may be 

referred to as ‘landfill’ and ‘reference’ respectively. Significant results: p<0.05.

How does richness of plants in flower and floral abundance compare between 

restored landfill sites and comparison reference sites? How does richness of plants 

in flower and floral abundance compare between restored landfill sites which have 

been sown and those which have naturally revegetated?

To allow comparison between site types and show phenological development through 

the year the data were collated and then averaged for each of the seasons, giving 

flowering plant characteristics per site type in spring, summer and autumn. The first day 

of summer was taken to be the start of June and the first day of autumn the start of 

September. The restored landfill site data were compared for those sites which were 

sown and those naturally revegetated. Shannon diversity was analysed and the results 

are presented in Appendix 2. These were not included in the main thesis as the findings 

mirrored the species richness results. Restored landfill sites which were seeded and
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those naturally revegetated were identified from information supplied by the landfill 

operators.

Insect pollinated flowering plant species composition and floral abundance between 

types of sites are represented using non-metric multidimensional scaling (NMDS). 

Intervals in the data were measured using Euclidean distance. Euclidean distance was 

used rather than Bray-Curtis as it gives a greater distortion and hence visual spread to 

the data, which is an advantage when the sites being compared are expected to be very 

similar (Kessell and Whittaker, 1976). Unlike other ordination techniques NMDS does 

not make assumptions as to or about the distribution of the variables (Maarel, 2005). 

NMDS instead uses rank distances for ordination, and so this gives a visual 

representation with those sites having similar composition closer together (Legendre 

and Legendre, 1998; Maarel, 2005; Ollerton et al., 2009). For further information 

regarding use of NMDS see Maarel (2005).

What effect do soil characteristics have on species richness of plants in flower on 

restored landfdl sites?

The soil characteristics means were compared between the restored landfill sites and the 

reference sites. Relationships between richness of plants in flower and soil 

characteristics were analysed. The richness of plants in flower was the cumulative total 

for the sites over the each of the years separately. To avoid pseudo-replication the 

flowering plant data were correlated against the means of the soil samples taken for 

each of the sites.

How do restored landfill sites compare with the reference sites for the provision of 

resources for flower-visiting insects?

Mean cross-sectional surface area of the floral unit was estimated for each flowering 

plant species and then multiplied by their frequencies, to obtain an estimate of floral 

cover. Floral units were used, i.e. umbels and inflorescence rather than single flowers. 

The sizes of the floral units was determined through field sampling, and ensured for
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consistency using field identification guides (Rose and O'Reilly, 2006), data from 

botanical journals e.g. Al/iaria petiolata (Cruden et al., 1996), Cirsium eriophorum 

(Tofts, 1999) and Knuth’s handbook on flower pollination (Knuth, 1906-1909) (for 

flower sizes -  see Appendix 1). Only open flowers likely to produce nectar or pollen 

were recorded. Comparisons were made for the seasonal mean floral cover as cirf per 

m: and total floral cover per site n r  between the restored landfill and reference sites.
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Results

Over the duration of this study, an area of 25,000m2 was surveyed for floral 

characteristics and approximately 138,000 floral units were counted from 98 plant 

species. On the restored landfill sites there were 63 species of flowering plant found in 

total and 19 exclusively found on the restored sites; on the reference sites there were 74 

and 30 respectively. Sixty five species were common to both restored landfill and 

reference sites. There was no effect of site sizes on the flowering plant richness (2007 

Pearson's correlation plant richness and size; restored landfill sites: r = 0.21, p=0.58, 

reference sites: r = -0.49, p=0.21).

The three most florally abundant plant species for each site have been identified (Table 

3.03). The most common abundant species for the restored landfill sites, is Trifolium 

dubium; and for reference sites Ranunculus acris and Galium verum. T. dubium (Lesser 

Trefoil) is the smallest clover and very commonly found on grasslands in the British 

Isles (Rose and O'Reilly, 2006). R. acris (Meadow Buttercup) and G. verum (Ladies 

Bedstraw) are also both commonly found in grasslands throughout the British Isles 

(Rose and O'Reilly, 2006).
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Table 3.03 The most florally abundant plant species on restored landfill and reference sites 2007.

Type Site Most florally abundant plant species

1st 2nd 3rd

Restored Bletchley Lotus g laber Trifolium dubium C ardam ine flexuosa

Brixworth Trifolium dubium Galium aparine Senecio  erucifolius

Brogborough P icris echioides Picris h ieracioides Trifolium  dubium

Cranford Trifolium dubium Lotus g laber Picris echioides

Harlestone Trifolium repens Cirsium  vulgare P icris hieracioides

Kettering Picris echioides Car dam  ine fle xu o sa Picris hieracioides

Kilsby G eranium  dissection Taraxacum  officinale *

Sidegate Lane Trifolium dubium G eranium  dissection R anunculus repens

Wootton Trifolium repens Picris echioides Senecio  ja co b a ea

Reference Barnes Meadows A nthriscus sy  Ives iris Trifolium pra tense Trifolium  repens

Blue Lagoon Vicia cracca M elilotus officinalis Lathyrus pra tensis

Ditchford Ranunculus acris A nthriscus sylvestris Trifolium  repens

Draycote Lotus corniculatus O rchis m orio R anunculus bulbosus

Glebe Meadows Trifolium dubium Ranunculus bulbosus R anunculus acris

Pitsford Ranunculus acris Stellaria  gram inea Lotus corniculatus

River Ise Meadows G alium  verum St e l lari a  gram inea Trifolium  repens

Scrub Fields C entaurea nigra Trifolium cam pestre Trifolium  pra tense

Twywell G alium  verum Trifolium dubium Lotus corniculatus

* only two species of plants in flower were found on Kilsby site.
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There was significant similarity between the restored landfill and reference sites’ 

species richness of the families of the flowering plants in 2007 and 2008 (Table 3.04 & 

Figure 3.01). Asteraceae was the most common family of plant and was found on both 

kinds of sites in both years. Asteraceae, also known as Compositae or commonly the 

Daisy family, is the world’s largest family of flowering plants, and from the most 

common plant species found in this study contains: Senecio spp., Cirsium spp., 

Centaurea spp., and Picris spp. (Table 3.03) (Rose and O'Reilly, 2006). The species 

richness of families is also representative of their regional and national abundance 

(Figure 3.01).

The flowering plant species were analysed for frequency and presence by site. There 

was no significant difference between the species distribution on the two types of site in 

2007 and 2008 (Figure 3.02) (Wilcoxon signed rank test (Two-tailed); 2007: z = -0.58, 

p = 0.56, 2008: z = -1.021, p = 0.307). The NMDS ordination plot of the species 

richness and abundance, shows that the majority of sites overlap, clumping together 

(Figure 3.03). This method is sensitive to showing outliers and the distance between 

points shows the relative similarity (McCune and Grace, 2002; Ollerton et al., 2009).

The NMDS S-stress value below 0.1 (S=0.028) is small and therefore shows that the 

data similarity is truly represented by the 2 dimensions (McCune and Grace, 2002). This 

again illustrates the similarity in floral characteristic on restored landfill and reference 

sites. The few outlying sites result when a single species of high floral abundance is 

found almost uniquely on that site. For example, Glebe Meadow reference site (E) was 

abundant with Ranunculus bulbosus which was only found on one other site, Kettering 

restored landfill site (6) was abundant with Cardamineflexuosa found on one other 

restored landfill, and Pitsford reference site (F) was abundant with Ranunculus acris. Of 

real interest is how floristically similar 12 of the 1 8 restored landfill and reference sites
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Table 3.04 Species richness of families of flowering plants on restored landfill and reference sites 

for 2007 and 2008. RL = Restored landfill sites, RF = Reference sites. Plant families are ordered by 

species abundance on restored landfill sites in 2007.

2007 2008

Family

Asteraceae

Fabaceae

Ranunculaceae

Boraginaceae

Rosaceae

Caryophyllaceae

Scrophulariaceae

Geraniaceae

Orchidaceae

Brassicaceae

Lamiaceae

Apiaceae

Rubiaceae

Onagraceae

Clusiaceae

Dipsacaceae

Gentianaceae

Liliaceae

Linaceae

Polygonaceae

Primulaceae

Convolvulaceae

Plantaginaceae

Violaceae

RL

"To
RF RL

~

10

RF

"T?
13

Total species richness 74
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Rsq = 0.8833

a)
Species richness of flowering plant families on reference sites

Rsq = 0.8301

b )
Species richness of flowering plant families on reference sites

Figure 3.01 Species richness of flowering plant families found on restored landfill and reference 

sites for: a) 2007, and b) 2008, Dashed line =1:1, solid line = line of best fit. Spearman’s rank 

correlation (Two-tailed); 2007: r = 0.623, p = 0.001, 2008 : r = 0.650, p = 0.001. Each data point is a 

family (See Table 3.04). ‘Sunflowers’ indicate multi-points, each petal represents an additional data

point.
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Rsq = 01236

a)
Frequency ot plant species on reference sites

Rsq = 0 2789

b)
Frequency of plant species on reference sites

Figure 3.02 Frequency of flowering plant species present on restored landfill and reference sites a) 

2007 b) 2008 . Dashed line =1:1, solid line = line of best fit. Each data point is one plant species. 

'Sunflowers' indicate multi-points, each petal represents an additional data point.
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Chapter 3 -  Floristic characteristics

How does richness of plants in flower and floral abundance compare between 

restored landfill sites and reference sites? How do landfill sites which have been 

sown compare to those which have naturally revegetated?

Richness of plants in flower

There was no significant effect of site type on the annual 2007 and 2008 mean total 

species richness of plants in flower per site (Figures 3.04). There was a significant 

seasonal effect on the 2007 mean species richness of plants in flower for restored 

landfill and reference sites (Figure 3.05a). The restored landfill sites were significantly 

lower than the reference sites in mean flower species richness for spring but not for 

summer and autumn (Figure 3.05a). There was a significant seasonal effect on the 

reference sites’ mean richness of plants in flower for 2008, but not for the restored 

landfill sites (Figure 3.05b). The autumn mean species richness of plants in flower was 

significantly higher for the restored landfill sites.
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Figure 3.04 Mean total species richness of plants in flower for restored landfill sites and reference 

sites (±95% Confidence Limits). N=Sample sizes, a) 2007 Paired samples t-test (two-tailed) t=-0.94, 

df=8, p=0.37, b) 2008 Paired samples t-test (two-tailed) t=0.20, df=2, p=0.86
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Figure 3.05 Mean seasonal species richness of plants in flower for restored landfill sites and 

reference sites (±95% Confidence Limits). N=sample sizes. * = medians, a) 2007 One-way ANOVA; 

Landfill sites across seasons F2.i6=0.40 p=0.01, Reference sites across seasons F2.i4=5.68 p=0.02. 

Paired Samples t-test (two-tailed) Spring Landfill vs. Reference t= -0.34 df=3 p=0.75, Summer 

Landfill vs. Reference t=0.45 df=5 p=0.68, Autumn Landfill vs. Reference na b) 2008 One-way 

ANOVA; Landfill sites across seasons: F2i8=2.76, p=0.14, Reference sites across seasons: F2 8=l 1.04, 

p=0.01. Paired Samples t-test (two-tailed); Spring Landfill vs. Reference: t= -1.51, df=2, p=0.27, 

Summer Landfill vs. Reference t=0.43, df=2, p=0.70. Wilcoxon test (two-tailed): Autumn Landfill 

vs. Reference Z=-1.34 p=0.18.
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Seasonal floral abundance

There was a significant seasonal effect on the 2007 mean floral abundance per m per 

site for restored landfill sites but not for the reference sites (Figure 3.06a). There was no 

significant difference between the floral abundance per m" for the restored landfill and 

reference sites in any season (Figure 3.06a). There was no significant seasonal effect on 

the mean floral abundance per n r for either the restored landfill or reference sites in 

2008 (Figure 3.06b). There was no significant difference between the floral abundance 

per m: for the restored landfill and reference sites in any season (Figure 3.06b)

For individual plant species the five most abundant ones have been identified for the 

restored landfill and reference sites in 2007 and 2008 (Table 3.05). The most abundant 

species for 2007 is Trifolium dubium for both types of sites. Of note is that it is at a 

higher mean floral abundance per survey on the reference sites. For 2007, there are no 

other species of plant shared in the five most abundant between restored landfill and 

reference sites. For 2008, the only shared abundant species between both sites is Lotus 

corniculatus, which is more than twice as florally abundant on the reference than on the 

restored landfill sites.

There is a notable species and abundance difference in the most florally abundant 

species between 2007 and 2008 (Table 3.05). As there was no change in sampling time 

or method, this therefore potentially relates to the identity of sub-set of sites for 2008. 

The three sites randomly chosen for more intensive assessment in the second year had 

different species most florally abundant than the nine sites from the first year. The floral 

abundance was also lower in 2008, which was likely related to Sidegate Lane restored 

landfill (surveyed both years) having a low floral abundance.
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Figure 3.06 Mean seasonal floral abundance per m‘ per site for landfill sites and reference sites 

(±95% Confidence Limits). N= sample sizes, a) 2007 One-way ANOVA: Landfill sites across 

seasons F217=6.12, p=0.01, Reference sites across seasons F2,ig=1.91, p=0.18. Paired samples t-test 

(two-tailed) Spring Landfill vs. Reference t= -92 df=4 p=0.41, Summer Landfill vs. Reference t=0.76 

df=5 p=0.48, Autumn Landfill vs. Reference t= -0.35 df=l p=0.79 b) 2008 One-way ANOVA; 

Landfill sites across seasons: F2 8=2.00, p=0.22, Reference sites across seasons: F2 8=1.72, p=0.26. 

Paired samples t-test (two-tailed); Spring Landfill vs. Reference: t= -1.14, df=2, p=0.37, Summer 

Landfill vs. Reference t=-1.27, df=2, p=0.33. Autumn Landfill vs. Reference t= 2.00 df=2 p=0.18
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Table 3.05 Most abundant plant species on restored landfill and reference sites. Mean floral 
abundance per survey: the mean number of floral units per 200m2 survey of a particular plant 
species for all sites.

Year Site type

2007 Restored landfill

Reference

Plant species Floral Frequency

abundance on sites

Trifolium dubium 3 3 7 . 6 6  o f  9

Pier is echioides 1 5 3 .8 8 o f  9

Trifolium repens 133 .1 6  o f  9

Pier is hieracioides 6 7 . 6 8 o f  9

Cardamine flexuosa 6 6 . 2 2 o f  9

Trifolium dubium 4 8 3 . 3 7  o f  9

Ranunculus bulbosus 1 6 2 .0 5 o f  9

Lotus corniculatus 1 4 8 .2 7 o f  9

Ranunculus acris 1 3 8 .5 8 o f  9

Galium verum 1 3 5 .5 2 o f  9

Trifolium repens 1 2 0 .5 3 o f  3

Lotus corniculatus 9 8 . 6 1 o f  3

Cirsium arvense 6 0 . 4 2  o f  3

Trifolium dubium 5 2 . 8 3 o f  3

Ranunculus repens 3 2 . 7 3 o f  3

Ranunculus acris 3 7 6 . 5 3 o f  3

Lotus corniculatus 2 5 3 . 5 2 o f  3

St ell aria gram in ea 1 3 5 .6 1 o f  3

Galium verum 1 2 1 .4 1 o f  3

Rhinanthus minor 1 1 4 .2 1 o f  3

2008 Restored landfill

Reference

6 4
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How does the richness of plants in flower and floral abundance compare between 

those restored landfill sites which have been sown and those naturally revegetated?

For the mean total species richness of insect pollinated flowering plants there was no 

difference between the naturally revegetated and sown sites for 2007 (Figure 3.07). For 

the mean seasonal floral abundance per m2 per site on sown and naturally revegetated 

landfill sites for 2007, there was no significant effect of the revegetation method for any 

season (Figure 3.08).

The sown and naturally revegetated restored landfill sites were assessed for flowering 

plant species and abundance using NMDS ordination (Figure 3.03). Six of the nine sites 

are closely clustered. There are three outliers, two naturally revegetated and one sown. 

Of the natural outlier sites, Cranford had abundant Lotus g/aber (Narrow-leaved birds- 

foot trefoil) found little elsewhere, and Kettering, as stated previously, was abundant 

with Cardamineflexuosa found on one other restored landfill. The sown outlier site, 

Sidegate lane, was abundant with Geranium dissectum (Cut-leaved-cranes bill).

40 1

30'

20 ' 

10'

0 ______________
N = 4 5

Sow n Natural

Revegetation method

Figure 3.07 Mean total species richness of plants in flower on sown and naturally revegetated 

landfill sites in 2007 (±95% Confidence Limits). N= sample sizes. One-way ANOVA: F, 8 <0.001 p= 

0.99.
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Chapter 3 -  Floristic characteristics

What effect do soil characteristics have on the species richness of plants in flower 

found on restored landfill sites?

Soil samples were collected from each of the restored landfill and reference sites in 

March 2009 and analysed for bulk density and organic, moisture and stone content.

Comparing restored landflll and reference soil characteristics.

For the sites soil texture and pH there was no difference. For the pH: restored landflll 

sites: mean=7.25, min =5.89, max=8.64, reference sites: mean=7.19, mm =5.71, 

max.=8.83; Mann-Whitney test of antilog pH: U=980.50, p=0.80. The majority of soils 

were clay silt loams. There were significant differences between the restored landflll 

and the reference sites in the other soil characteristics. The restored landflll sites had 

greater mean bulk density and stone content (Figures 3.09 & 3.12) and lower mean 

moisture and organic content than the reference sites (Figures 3.10 & 3.11).

The soil analysis shows that the restored landfill sites have poorer quality of soils being 

more compact, drier, containing less organic material and more stone.

N = 9 9
Restored Landfill Reference

Type of site

Figure 3.09 Mean bulk density of soils per sample (g cm'3) for restored landfill and reference sites 

(±95% Confidence Limits). N=Sample sizes. Paired samples t-test (two-tailed); Landfill vs. 

Reference: t=5.65, df=8, p<0.001.
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Figure 3.10 Mean moisture content per sample (%) for restored landfill and reference sites (±95% 

Confidence Limits). N=Sample sizes. Paired samples t-test (two-tailed); Landfill vs. Reference: t=- 

3.99, df=8, p=0.004.

0
Oo

10

8

y 7c0O)
o
0
0

4, _  
N =

Restored Landfill

9
Reference

Type of site

^igure 3.11 Mean organic content (%) for restored landfill and reference sites (±95% Confidence 

Limits). N=Sample sizes. Paired samples t-test (two-tailed); Landfill vs. Reference: t=-5.146, df=8, 

p=0.001.
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12

1 0 -

0-

~w--------------------------------------- ■---------------------------------------
9 9

Restored Landfill Reference

Type of site

Figure 3.12 Mean stone content per sample for restored landfill sites and reference sites. N=Sample 

sizes. Solid bar -  medians, O -  outliers, * - extremes. Paired samples t-test (two-tailed); Landfill vs. 

Reference: t=4.30, df=8, p=0.003.
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Comparing richness of plants in flower with soil characteristics

There were almost no significant relationships found between the richness of plants in 

flower and the soil characteristics for the restored landfill and reference sites (Table 

3.07). Soil texture and pH were not analysed as there was no difference between the two 

types of sites. The one significant correlation found was that of stone content and 

richness of plants in flower on reference sites. Data for 2008 was not tested as the 

sample size was too small. There were no non-linear relationships between the soil 

variables and richness of plants in flower apparent for the data.

Table 3.07 Spearman’s rank correlation between annual richness of plants in flower and soil 

characteristics for 2007. (two-tailed, r = correlation coefficient, sample size n=9).

Site ty pe Soil variable Correlation (r) Probability

Restored landfill Bulk density 0.44 0.24

Moisture -0.42 0.26

Organic -0.39 0.30

Stone 0.12 0.76

Reference Bulk density -0.15 0.70

Moisture -0.53 0.14

Organic 0.13 0.73

Stone 0.81 0.008
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How do restored landfill sites compare with the reference sites for the provision of 

resources for flower-visiting insects?

2 2The restored landfill sites were assessed for their average floral cover (crrf per n r) and 

their total area of floral cover on-site. At their flowering peak in 2007, the nine restored 

landfill sites surveyed, with a mean size of 12.8 ha., had a mean floral cover of 6.6 cm"

per m2 and a combined total floral cover of 643 m2. This compared to the nine reference
2 2sites, with a mean size of 6.3 ha., having a mean floral cover of 10.1 cm" per m" and a

combined total floral cover of 342 m , see also Table 3.08. 

Table 3.08 Peak mean and total floral cover in 2007 a) restored landfill sites, b) reference sites.

Type Site Floral cover Size (ha.) Total floral cover

(cm2 per m2) (m!)

Restored Kettering 22.07 10.80 238.33

Harlestone 14.31 6.60 94.46

Wootton 7.10 14.57 103.38

Sidegate Lane 5.12 4.13 21.13

Brogborough 4.68 26.11 122.28

Cranford 2.81 0.58 1.63

Brixworth 2.44 11.25 27.45

Bletchley 1.02 34.00 34.77

Kilsby 0.01 7.19 0.05

Reference Scrub Fields 25.27 3.00 75.80

Blue Lagoon 15.73 1.05 16.52

Glebe Meadows 15.72 4.12 64.78

Pitsford 12.6 0.79 9.96

Draycote 7.90 2.25 17.78

Twywell 6.84 8.08 55.26

River Ise Meadows 3.65 21.36 77.88
K m p c  P Q n n u / c 1 S 7 A  1 V A  'n AJ V l t d U U W a 1 / H .  1 o

Ditchford 1.43 12.19 17.49
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Seasonal floral cover on restored landfill and reference sites.

For 2007 there was a significant seasonal effect on the floral cover (i.e. cnf of floral 

bloom per m2 of transect) for restored landfill sites but not for reference sites (Figure 

3.13a). There was no significant difference between the floral cover of the restored 

landfill and reference sites for any season (Figure 3.13a). For 2008 there was no 

significant seasonal effect on the mean floral cover for either the restored landfill or for 

the reference sites (Figure 3.13b). There was no significant difference between the floral 

cover of the restored landfill and reference sites for any season (Figure 3.13b).

Seasonal total floral cover on restored landfill and reference sites.

For 2007 there was a significant seasonal effect on the total floral cover (i.e. n r  of floral 

bloom per site) for restored landfill sites but not for reference sites (Figure 3.14a). There 

was no significant difference between the total floral cover of the restored landfill and 

reference sites for any season (Figure 3.14a). For 2008 there was no significant seasonal 

effect on the mean total floral cover for either the restored landfill or for the reference 

sites (Figure 3.14b). There was no significant difference between the total floral cover 

of the restored landfill and reference sites for any season (Figure 3.14b).

The mean annual totals were calculated for restored landfill and reference sites, this 

being the sum total of the mean seasonal values. For 2007, the reference sites had a 

greater accumulation, whilst in 2008 this was reversed (Figure 3.15).
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Figure 3.13 Mean floral cover per season for restored landfill and reference sites (cm2 per m2). 

N=sample sizes. * - Medians a) 2007 One-way ANOVA; Restored landfill sites across seasons 

F2,i7=3.84, p=0.05. Reference sites across seasons F2<i8=1.49, p=0.26. Paired samples t-test (two- 

tailed) Spring Landfill vs. Reference t= -1.07 df=4 p=0.34, Summer Landfill vs. Reference t=0.29 

df=5 p=0.79, Autumn Landfill vs. Reference t= 0.66 df=l p=0.63. b) 2008 One-way ANOVA;

1Restored landfill sites across seasons F2>8=2.77, p=0.14. Reference sites across seasons F2,«= 

p=0.25. Paired samples t-test (two-tailed) Spring Landfill vs. Reference t= -1.23 df=2 p=0.34, 

Summer Landfill vs. Reference t=-1.01 df=2 p=0.42. Wilcoxon test (two-tailed): Autumn Landfill 

vs. Reference Z=-1.34 p=0.18.
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Figure 3.14 Mean seasonal total floral cover per site for restored landfill and reference sites (m2). 

N=sample sizes. * - Medians a) 2007, Restored landfill sites across seasons F2>17=1.88, p=0.19. 

Reference sites across seasons F2-18=2.88, p=0.09. Paired samples t-test (two-tailed) Spring Landfill 

vs. Reference t= 0.09 df=4 p=0.94, Summer Landfill vs. Reference t=LI7 df=5 p=0.30, Autumn 

Landfill vs. Reference t= 3.64 df=l p=0.17. b) 2008 One-way ANOVA; Restored landfill sites across 

seasons F28=3.09, p=0.12. Reference sites across seasons F2 8=1.71, p=0.26. Paired samples t-test 

(two-tailed) Spring Landfill vs. Reference t= -0.88 df=2 p=0.47, Summer Landfill vs. Reference 

t=0.36df=2 p=0.75. Wilcoxon test (two-tailed): Autumn Landfill vs. Reference Z=-1.34 p=0.18.
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Discussion

The aim of this chapter was first to consider whether restored landfill sites have been 

revegetated comparably with reference nature sites for their insect pollinated flowering 

plants and secondly to examine the resources available for flower-visiting insects.

The key finding for this chapter has been how floristically similar the restored landfill 

and reference sites are. The NMDS analysis shows that the majority of sites clump 

together regarding their flowering plant species and floral abundance (Figure 3.03). 

There is also great similarity regarding the plant families and their species richness 

(Table 3.04 and Figure 3.01). The most common and abundant species found on the 

restored landfill and reference sites are common grassland species (Tables 3.03 & 3.04).

It is significant that within this study approximately one quarter of plants are found 

exclusively on restored landfill sites, one quarter exclusively reference sites and one 

half shared on both (Figure 3.02). This shows that within the landscape and 

conservation context different types of sites, both older reference and newly restored 

sites are important for the preservation and conservation of plant species. The different 

types of sites are supporting and hence conserving different species of plants. It is 

unlikely that the species of insect pollinated plants will not be supported elsewhere 

within the landscape as they have dispersed to the sites. However, the more non- 

agricultural plants and floral resources there are within the landscape, the more 

resources there will be for associated herbivores, frugivores and flower-visitors. This 

may also illustrate the importance of perturbed habitats within the landscape. 

Historically these would have been more common, when the land was less tamed, and 

wild rivers were allowed to largely engineer the landscape, this availability of bare earth 

encouraged the growth of opportunistic plants (Kleem, 1996). Although bare earth is 

commonly turned over in the agricultural processes, opportunistic species are readily 

removed with herbicides on typical farm practice (Freemark and Boutin, 1995). These 

pioneer species may be important for the variety of animals that gain benefit from them 

such as seed eaters or herbivores.
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How does richness of plants in flower and floral abundance compare between 

restored landfill sites and reference sites? How does richness of plants in flower 

and floral abundance compare between sown and naturally revegetated landfill

sites?

The restored landfill sites and reference nature sites are similar in terms of richness of 

plants in flower and floral abundance when analysed for their annual means (Figures 

3.04 & 3.06). This is surprising since there are perceived unfavourable conditions 

associated with restored landfill sites such as compacted, poorly laid soils and planted, 

grass-rich swards (Ettala et al., 1988; Wong, 1988; Davis and Coppeard, 1989;

Lehmann and Rebele, 2002). Therefore, to find a relatively rich flowering plant 

community other ecological processes may be occurring. The restored landfill sites with 

their relatively young age and management regime of summer mowing may be 

maintained in a state of early succession, where there is generally a greater richness of 

pioneer plant species (Denslow, 1980). Conversely on the more established, older 

reference nature sites, later in successional stage, the vegetation will have fewer plant 

species, as there is little or no opportunism or perturbation to the system. However 

succession theory predicts highest species richness in mid-successional stages of 

"intermediate disturbance" (Connell, 1978; Brown and Southwood, 1987), therefore 

there is no significant difference between the two types of site.

The policies brought in to regulate the restoration and aftercare use of landfills have had 

the unforeseen effect of creating well vegetated, relatively florally diverse restored sites 

(Table 3.08). The seed mixes where used on those restored sites which are sown are 

cheap and grow readily on the soils, but may experience difficult environmental 

conditions such as drought in the summer, and water-logging in the winter (Gilbert and 

Anderson, 1998; Watson and Hack, 2000). Previously, research into plant diversity on 

landfill sites in the UK from the late 1980’s and early 90's, have found relatively low 

species richness (Wong, 1988; Ireland, 1991). Reasons for this are attributed to the poor 

restoration standards and containment measures, where methane emissions through the 

soil affect plant growth. The current restoration practice on modern landfill sites and
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hence on those within this study has no issues of gas leakage, being contained within an 

engineered cap, and removed for fuelling electricity generation.

Restored landfill sites are relatively homogenous environments, having had graded soils 

and may be sown, so a lower diversity would be expected. The ryegrass seed mixes 

used by landfill restoration may actually act as a ‘nurse-crop’. They provide early green 

cover which helps suppress weeds whilst the slower growing perennials establish 

(Hutchings et al., 2006). Over time these initial species will be eventually excluded by 

the perennials; however the nurse crop will itself slow the establishment (Mitchley et 

al., 1996). In comparing the naturally revegetated and sown restored landfill sites there 

was no difference in the floral abundance and plant richness in 2007 (Figures 3.07 & 

3.08). It does seem that natural revegetation of restored sites would be a cost-effective 

and efficient method for revegetating the sites. Empirical studies need to be undertaken 

to assess the specific benefits from both methods of revegetation.

When assessed seasonally for floral cover, there was the expected shift with an increase 

in the summer peak. There is however a noticeable difference between site types, with 

the reference sites having increased richness and abundance in the spring, and the 

restored landfill sites increased richness and abundance in the autumn (Figures 3.05, 

3.06, 3.13 & 3.14). Reasons for this may be the management methods adopted on the 

sites as the reference sites are often mown in the early autumn. This could have 

important value with regards to abundance of floral resources within the landscape. The 

restored landfill sites maybe ‘filling in' a hole in the floral resources on the landscape 

scale, particularly in our post-industrialised agricultural landscape (Figure 3.16). 

Sequential flowering on restored sites and across landscapes may maximise seed set of 

plant species and sustain populations of generalist pollinators (Waser and Real, 1979). 

Positive aspects of this for flower-visiting insects will be discussed in Chapter 4.
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Figure 3.16 Schematic of floral resource provision in the landscape from restored landfill sites and 

reference nature sites. Solid line -  floral resource available of restored landfill sites. Dashed line -  

floral resources available on reference nature sites.

What effect do soil characteristics have on species richness of plants in flower on 

restored landfill sites?

The fact that there was no underlying relationship between the soil characteristics and 

flowering plant richness, as expected, was surprising (Table 3.07). Within this study the 

soil quality was assessed, and restored landfills sites were shown to be poorer having 

greater compaction, drier, lower humus and stonier soil (Figures 3.09-3.12). That the 

restored landfill sites have similar floral characteristics to the reference sites even 

though they have poorer quality soil is interesting. It has been found that patterns of 

plant richness in relation to nutrient levels generally follow a hump-backed-curve; 

species richness being low at low nutrient levels, increasing to a peak an intermediate 

levels, and declines more gradually with further increasing nutrient levels (Pausas and 

Austin, 2001). The soil quality measured here may be following a similar trend. This
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may indicate that the restored sites had reached the stage of gradual decline post-peak 

richness of the relationship curve (Figure 3.17).

Figure 3.17 Theoretical curve of relationship between plant species richness and soil quality. A -  

possible location of landfill sites, B -  possible location of reference sites.

The use of poorer quality soils within landfill restoration may increase richness of insect 

pollinated flowering plants, since they will not be out competed by grass species. The 

most promising sites for natural colonisation are those with poor soils (Gilbert and 

Anderson, 1998). Restoration methods which favour poor soils may generally enhance 

flowering plant diversity, an effect that has been shown for different taxa at the habitat 

level (Murdoch et al., 1972; Potts et al., 2003; Tylianakis et al., 2005). The Environment 

Agency promotes the use of higher quality soils as they envisage an agricultural future 

use (Environment Agency, 2004), however poorer quality soils are actually better for 

the flowering plant assemblage. Landfill site operators would also benefit from this as 

poorer soils are easier and cheaper to obtain for restoration than nutrient rich ones. Of 

clear issue is the need for more research with relation to the ecological benefit of 

different types of soils which could be used in landfill restoration. This aspect was not 

taken further as it was only intended to play a small measure within this study, and time 

and resources were limited.
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How successful are restored landfill sites for the provision of resources for flower- 

visiting insects?

The restored landfill sites are providing similar floral resources as the reference sites 

(Figure 3.15 and Tables 3.08 & 3.09). Calculating the overall resources provided by the 

restored suites was difficult, due to being a continually variable figure, but their peak 

rate may be indicative of this. At their flowering peak in 2007, the nine restored landfill 

sites surveyed, had a mean floral cover of 6.6 cm' per m2 and a combined total floral 

cover of 643 m2. This compared to the nine reference sites, having a mean floral cover 

of 10.1 cm2 per m2and a combined total floral cover of 342 m2. Although the restored 

landfill sites had a lower peak mean floral cover, their larger size meant that on a 

landscape scale they were providing nearly twice as much as the reference sites. The 

floral cover mean of 6.6 cm" per n r is lower than that found in other grassland research, 

studies of grasslands in Germany ranged from 5-20.5% (500-2050 cm' per m ) floral 

cover (Meyer et al., 2009). Reasons for this however may be attributed to their 

interpretation of the method, as it is not clear if they have used flower or flowering plant 

cover. There was a seasonal difference observed with a greater floral cover for the 

restored landfill sites than the reference sites in the autumn (Figures 3.13 & 3.14). This 

again is indicating the important value of restored landfill sites within the landscape as 

described previously (Figure 3.16).

In conclusion, the restored landfill sites inadvertently provide natural floral resources, 

even when this has not been their intended restoration outcome. They support a species 

rich and florally abundant plant community as do the reference nature sites. Their floral 

resources help enrich the ecological landscape, particularly when other resources have 

diminished. The landfill sites are cut in the summer to reduce the associated fire risk 

and left alone later into the year, providing resources when they maybe absent 

elsewhere when nature sites are cut or grazed. The area of land under landfill use in the 

UK means that their restoration has the potential to significantly benefit native 

flowering plants and their supported wildlife.
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Results summary

In conclusion, the results of this part of the study can be summarised as follows:-

• Approximately one quarter of species unique to both restored landfill sites and 

reference sites, and one half found on both types.

• No differences were found in plant richness and floral abundance between 

restored landfill sites and reference sites.

• Seasonal variation in the floral richness and abundance was apparent. In the 

spring restored landfill sites had lower species richness and floral abundance. In

the autumn they had higher species richness and floral abundance.

• No difference was found in floral characteristics relating to revegetation method, 

either seeded or naturally revegetated landfill sites.

• There was a significant difference found in soil properties between restored 

landfill sites and reference sites, but no correlation with species richness on the 

restored sites.

• No difference was found in the cumulative floral cover between restored landfill 

and reference site.
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Chapter 4 -  Flower-visiting insects

A comparison of flower-visiting insects on restored landfill 
and reference sites.

"When one tugs at a single thing in nature, he finds it attached to the rest of the 

world."

John Muir (1838-1914), Naturalist, preservationist and founder of the Sierra Club

"A hypothesis or theory is clear, decisive, and positive, but it is believed by no one 

but the man who created it. Experimental findings, on the other hand, are messy, 

inexact things, which are believed by everyone except the man who did that work."

Harlow Shapley (1885- 1972)

Summary

Flower-visiting insects have seen a decline in suitable habitat in the UK (Osborne and 

Corbet, 1994), and restored landfill sites may be a valuable habitat for supporting flower 

visiting insects. This chapter describes the plant-flower visitor community found on 

restored landfill sites in relation to the success of restoration. Plants in flower and their 

flower-visiting insects were compared on nine pairs of restored landfill and reference 

nature sites in the first year and three pairs of sites in the second year. The sites were 

surveyed through spring, summer and autumn to sample the complete flowering 

phenology. Flower-visiting insects were surveyed using belt transects; each site was 

surveyed three times during each fieldwork day to sample for early, mid and late 

resource gathering.

A total of nearly 1000 insects were collected over the two field seasons. Approximately 

one quarter of species were unique to restored landfill sites, one quarter to reference 

sites and one half were shared on both types of sites. The restored landfill and reference 

sites had similar flower-visiting insects with regards to abundance and species richness. 

A positive relationship was found between flower visitor abundance and seasonal floral 

cover, and richness of flowering plants and flower visitors, for both restored landfill and 

reference sites. The habitat quality analysis showed that a few flower-visiting insect 

specific features, such as bare earth and suitable holes, had an effect on the flower
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visitor richness and abundance but that the most significant effect came from the 

flowering plant species richness. Overall, the restored landfill sites were similar to the 

reference sites in supporting an abundant and rich assemblage of flower-visiting insects.

Introduction

The conservation of flower-visiting insects is important given their current decline 

(Williams, 1982; Allen-Wardell et al., 1998; Goulson et al., 2002; Goulson et al., 2005; 

Biesmeijer et al., 2006; Stout, 2007; Colla and Packer, 2008; Gallai et al., 2009; Potts et 

al., 2009). Species of flower-visiting insects are important both in their own right, but 

also for the ecosystem services they provide (for further information relating the state of 

flower-visiting insects, their conservation and decline see Chapter 1). It is desirable that 

for successful ecological restoration, all biological services must be reinstated. 

Restoration will only be successful when the functional processes and interactions are 

re-established. This is developed and assessed in Chapter 5, relating to the interaction 

webs on the sites. Restored landfill sites may be a valuable resource of land for aiding 

the conservation effort for flower-visiting insects. The restoration of landfill sites is not 

currently targeted towards wildlife habitats but incidentally may be supporting flower- 

visiting insects (for further information on the restoration of landfill sites see 

Chapter 1).

Chapter 3 showed that the restored landfill sites were similar in their floristic 

characteristics to the reference sites, in their species richness and floral abundance. The 

restored landfill and reference sites are both grassland habitats; which are known to 

support rich communities of flower-visiting insects (Steffan-Dewenter and Tscharntke, 

2002; Ebeling et al., 2008; Franzen and Nilsson, 2008; Noordijk et al., 2009; Potts et al., 

2009). Flower-rich grasslands provide floral resources whose association with flower- 

visiting insects has been demonstrated (Smart et al., 2000; Carvell, 2002; Potts et al., 

2003a). The floral resources available on the restored sites have been assessed (Chapter 

3), and this study now examines the success of landfill restoration for supporting 

flower-visiting insects. ‘Restoration success’ in this context refers to the restored
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landfill sites having a similar level of species richness and abundance of individuals to 

the reference sites.

Flower-visiting insects have habitat requirements that must be met before populations 

will become established in restored communities. For example, bees require both nectar 

and pollen food resources, nesting sites and nesting materials (Westrich, 1996; Kearns 

et al., 1998). This study will focus on habitat quality in terms of floral resources, and 

other physical environmental factors (e.g. nesting sites and material, south facing 

slopes, vegetation structure etc). ‘Floral resources’ refers to the both the floral 

abundance and richness of insect pollinated plants in flower (See Chapter 3).

Aim

The aim of this chapter is to determine how successful restored landfill sites are in 

supporting flower-visiting insects, with regards to individual species and groups. This 

aim will be addressed in the following research questions:

What species and groups of flower-visiting insects are found on restored landfdl 

sites? How does the flower visitor abundance and species richness compare 

between restored landfill and reference nature sites?

As it has been shown in Chapter 3, the restored landfill sites and reference sites are 

similar in terms of their floral characteristics. The expectation would be that the restored 

sites may have a lower flower visitor species richness and abundance than the reference 

sites. This relates to the dispersal and colonisation abilities of the insects, and some 

species of flower-visiting insect may not have colonised the restored landfill sites yet. 

The restored sites which are older therefore may have a greater subset of insect species, 

due to those insects with poorer dispersal abilities have had longer to colonise from the 

landscape's species pool. Therefore regarding flower visitor species richness, it is 

expected that there will be fewer flower-visiting insect species on the restored sites, and 

it is predicted that those older sites may have the greatest species richness. It would be
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expected that those sites with the greatest floral abundance will also have the greatest 

flower-visiting insect abundance.

How does floral resource use compare between landfill and reference sites?

The relationship between flower visitors and floral resources will be further examined. 

The ‘floral resource use’ in this context refers to the tightness of this relationship. 

Positive relationships have been found between the richness of flowering plants and 

abundance of floral resources and the diversity of their flower visitors (Lagerlof et al., 

1992; Steffan-Dewenter and Tscharntke, 1999; Backman and Tiainen, 2002; Carvell, 

2002; Steffan-Dewenter et al., 2002; Klein et al., 2003; Potts et al., 2003a; Westphal et 

al., 2003; Potts et al., 2004; Maccherini et al., 2009). A weaker relationship between the 

flower visitors and floral resources on restored landfill sites may mean that the flower 

visitors are using the surrounding landscape to a greater extent.

How do habitat quality features determine the flower visitor assemblage? How do 

these features compare between restored landfill sites and reference sites?

This question will be addressed by comparing the habitat quality features between 

restored landfill sites and reference sites, and correlating them against flower visitor 

richness, abundance and how they correlate with different groups of insects.

The restored landfill sites are newly created, relatively homogeneous environments 

which may lack habitat quality features which benefit flower visitor species and groups, 

such as dead vegetation and suitable abandoned rodent holes. In contrast, reference 

sites have been managed for their ecological benefit, and have relatively natural 

ecosystem dynamics occurring. It has been shown that high plant or structural resource 

diversity can correlate with high insect diversity (Murdoch et al., 1972; Fitter, 1982; 

Benton et al., 2003; Lundholm and Larson, 2003; Potts et al., 2003a; Baer et al., 2005; 

McMaster, 2005). The expectation would therefore be that those sites determined to 

have poor habitat features have consequently have poorer flower visitor assemblages,
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and that different flower-visiting insect groups may react differently to the habitat 

quality variables.

Methods

Study region and study sites

The study was conducted in the East Midlands of the UK, in the counties of 

Northamptonshire, Bedfordshire, Warwickshire and Buckinghamshire. All of the sites 

were within 50 km of Northampton. Nine landfill and paired reference sites were 

surveyed in 2007 (See Chapter 2 - Table 2.01). In 2008, four landfill and paired 

reference sites accompanied by paired reference sites were initially surveyed, although 

this was reduced to three due to logistical issues. For further details on site selection, 

see Chapter 2 -  Methods.

Fieldwork timing

Fieldwork surveys were conducted from March to October 2007 and 2008, as this 

corresponds to the main flowering period in central England and hence the flower 

visitor activity. Local weather conditions made uniform distribution of sampling days 

impossible. For distribution of survey days see Chapter 2 - Table 2.02.

Flower visitor surveys

Flower visitor surveys were undertaken three times between 9am and 4pm on days 

which were warm and sunny with little or no wind, as outlined in the Butterfly 

Monitoring Scheme (Pollard and Yates, 1993) and similar to those used in previous 

pollination studies (e.g. Goverde et al., 2002; Kleijn and van Langevelde, 2006; Potts et 

al., 2006; Nielsen and Bascompte, 2007). Surveys each lasted 30 minutes and all tlower 

visiting insects seen to be feeding legitimately (i.e. not nectar robbing) and large enough 

to touch anthers and stigmas were captured.
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In the first year of study, 2007, plants in flower and flower visitors were surveyed using 

belt transects. This method has often been used in this type of research, being the most 

useful in estimating the number of insects across a range of sites (Banaszak, 1980; 

Kearns and Inouye, 1993; Dicks et al., 2002; Dafni et ah, 2005; Forup and Memmott, 

2005). The plants in flower, as recorded in the floral surveys, refer to those plants which 

are insect pollinated i.e. not grasses or other wind pollinated species. Flower visitors 

were surveyed along the transect line as defined in the floral survey section (See 

Chapter 3 - Methods). The transect was left undisturbed for 20 minutes following the 

initial entomophilous plant survey to allow the flower visitors to return. The 100m x 2m 

transect was surv eyed at a rate of approximately 3 metres per minute for 30 minutes. 

Insects were captured using a butterfly net and placed into individually labelled 

specimen jars. After the survey was completed, those insects that could be identified in 

the field were recorded and released. Any time spent in transferring captured insects to 

jars was deducted from the total time to achieve a constant sampling effort. No 

distinction was made between different types of feeding behaviour i.e. pollen versus 

nectar as it is not always easy to distinguish between them in such surveys. The first 

species of plant which the insect was seen visiting was the one recorded. The flower 

visitor survey was conducted on transects at three different times (the morning, within 

one hour of midday and the afternoon) to sample those insects active at different times.

Those insects that could not be identified in the field were collected as voucher 

specimens for later identification. The specimens were identified using specific guides 

and/or keys: hoverflies (Stubbs and Falk, 2000), bumblebees (Prys-Jones and Corbet, 

1991), beetles (C'hinery, 2005), flies (Colyerand Hammond, 1951; Erzinclioglu, 1996), 

bees (Michener, 2007), wasps (Zahradnik and Severa, 2000) and butterflies (Tomlinson 

and Still, 2002). The identification was verified by reference to collections and natural 

history special interest groups e.g. Northamptonshire Natural History Society Diptera 

study group.

In 2008 the surveying followed a spiral from a randomly determined point on the 

restored landfill sites, at a standard pace of 10 metres per minute for 30 minutes. This 

was similar to the survey method used by Nielsen and Bascompte (2007) and
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determined to be effective for ecological surveys (Kalikhman, 2007). Given a two metre 

wide transect, an area of approximately 600m2 was sampled in each survey. This 

method allowed for a greater area to be surveyed, which was required due to the 

relatively low flower-visiting insect density.

Habitat quality features

The local environmental variables contributing to habitat quality were assessed namely: 

area, and vegetation structure; suitable nesting sites including: bare earth, sandy soil, 

microstructures, south facing slopes, and hedgerows and shrubs; and floral resources 

relating to flowering plant richness and floral abundance [Table 4.01 and Figures 4.01 

a)-l)]. The search for general characteristics which may be used to define the habitat 

quality for flower-visiting insects is confounded by the fact they are relatively species 

specific. However, they do give a measurable variable given that most flower-visiting 

insect species' life histories and specific plant requirements are not known. The ordinal 

scale (1-5) used here to assess habitat variables is: 1 having few or a low abundance, 

whilst 5 having many or high abundance. This scale is appropriate and useful given that 

all observations were made by one observer and therefore data is fair across all sites. 

This method ot recording habitat variables has been used in previous studies (Sjodin et 

al., 2008).

V egetation height and density

A rising plate meter was used to estimate the vegetation height and density (Earle and 

McGowan, 1979; Sharrow, 1984). The sward canopy height and forage bulk were 

measured using a metre stick inserted in the centre of the plate. Canopy height was 

determined by lowering the disc until the upper most leaves were in contact with the 

plate. The forage bulk was measured by dropping the disc from the top of the metre 

stick onto the vegetation and then reading off from the measure.
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Complete on-site plant species surveys

Plant species were recorded from within 20 x lirf quadrats laid regularly along two 

100m transects perpendicular to each other, crossing at the approximate centre of the 

site. All plants were identified to species level. Further details of plant surveys are 

available in Rahman (2009).

Other measured variables methods and rationale are discussed in Table 4.01.
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Data analysis

The data were tested for normal distributions using one-sample Kolmogorov-Smimov 

tests. Levene's test was used to determine whether variances were significantly 

homogenous, and, if heterogeneous, the significance levels were adjusted accordingly. 

For testing differences between the types of sites within the pairing, paired samples t- 

tests and Wilcoxon signed rank tests were used to compare parametric and non- 

parametric data, respectively. For tests of differences in three independent samples, one-

way ANOVAs or Kruskal-Wallis tests were used for parametric and non-transformable 

non-parametric data, respectively; post-hoc tests using paired samples t-tests were then 

used. For testing of difference in presence and frequency of species between types of 

sites matched t-tests and Wilcoxon signed rank tests were used to compare parametric 

and non-parametric data, respectively. Correlation analysis has been undertaken using 

Pearson's correlation for parametric data and Spearman's rank correlation for non- 

parametric data. SPSS version 11.5 statistical software was used (SPSS, 2003). 

Abbreviations have been used: restored landfill and reference comparison sites may be 

referred to as ‘landfill’ and ‘reference* respectively. Significant results: p< 0.05.

What species and groups of flower-visiting insects are found on restored landfill 

sites? How does the flower visitor abundance and species richness compare 

between restored landfill and reference sites?

Flower visitor species comparison

The presence and site frequency of all of the flower visitor insect species was 

determined for restored landfill and reference sites. Scatter plots were generated to 

illustrate the relationships between species present and site types. Species abundance 

and frequencies were ranked with relation to the reference sites to allow individual 

comparisons. Through assessing the data for both years judgment can be made towards 

which groups of flower visitors may be better suited to restored landfill or reference 

sites. This does relate to species within the groups having similar life history traits.
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which although questionable, could give an indication as to which sites have the most 

suitable habitat features for those groups of flower visitors. The frequency presence of 

groups was shown, which refers to the number of restored and reference sites the groups 

were found on.

Species composition and abundance between types of sites were represented using non-

metric multidimensional scaling (NMDS). Intervals in the data were measured using 

Euclidean distance. Euclidean distance was used rather than Bray-Curtis as it gives a 

greater distortion and hence visual spread to the data, which is an advantage when the 

sites being compared are expected to be very similar (Kessell and Whittaker, 1976). 

Unlike other ordination techniques NMDS does not make assumptions as to or about 

the distribution of the variables (Maarel, 2005). NMDS instead uses rank distances for 

ordination, and so this gives a visual representation with those sites having similar 

composition closer together (Legendre and Legendre, 1998; Maarel, 2005; Ollerton et 

al., 2009). For further information regarding use of NMDS see Maarel (2005).

Assessments were made for differences in the abundance and species richness of flower 

visitors between restored landfill and reference sites, the significance of the seasonal 

effect, and between the site types within-season. There was no effect of habitat size on 

the flowering plant richness or floral abundance as tests showed no significant 

correlations (Pearson's correlation; restored landfill sites 2007: site size & plant 

richness r = 0.44, p=0.72, site size & floral abundance r= -0.12 p=0.34, reference sites: 

site size & plant richness r = -0.16, p=0.25, site size & floral abundance r= -0.15

p=0.26).

How does floral resource use compare between landfill and reference sites?

The blooming area or floral cover method used in this study combines floral abundance 

with inflorescence size (See Chapter 3). A positive relationship between nectar 

production and inflorescence size and number has previously been established (Harder 

and Cruzan, 1990; Holl, 1995; Pacini et al., 2003). Inflorescence number has been used
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as an indicator of sugar content (Sharp et al., 1974; Kremen, 1992; Munguira and 

Thomas, 1992; Forup and Memmott, 2005; Forup et al., 2008), and corolla size is less 

susceptible to plant vigour and hence site specificity than nectar secretion rates (Harder 

and Cruzan, 1990). Blooming area is sufficiently robust to allow comparisons across 

sites and has been used in previous pollination restoration studies (Steffan-Dewenter 

and Tschamtke, 2001; Carvell et al., 2004; Potts et al., 2006; Vulliamy et al., 2006; 

Clough et al., 2007; Holzschuh et al., 2007; Ebeling et al., 2008; Meyer et al., 2009).

The floral transect data for each site are presented as the mean within a season and 

compared against each of the flower visitor surveys undertaken in the same season. This 

is not pseudo-replication as the mean of the seasonal data represents the on-site floral 

resource at the time of the flower visitor transects, and was required owing to flower 

visitor surveys being taken across the whole site and not just contained within the floral 

transect area. Firstly, flower visitor abundance was compared with total mean on-site 

seasonal floral cover, and secondly, flower visitor species richness was compared with 

species richness of plants in flower. Richness of plants in flower refers to those species 

which are insect-pollinated, i.e. not grasses.

How do habitat quality features determine the flower visitor assemblage? How do 

these features compare between restored landfill sites and reference sites?

Correlations between flower-visiting insect richness and abundance against habitat 

quality features were done separately for restored landfill and reference sites. Only 2007 

data were used as the 2008 sample was too small for this statistical analysis. Species 

richness lor the separate groups of flower-visiting insects were correlated against the 

habitat quality features, for both restored landfill sites and reference nature sites.

Pearson's correlation was acceptable to use with the variable data, since although it is

ordinal data, equal spacing of intervals is assumed. Bonferroni correction was used and

those with a probability value below 0.005 were deemed as significant. This reduces

type I errors but does increase type II errors, and so less stringent probabilities will also 
be examined.
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Results

A total of 201 flower visitor surveys were performed, 129 in the first year on 18 sites 

and 72 in the second year on 6 sites. Over the two field seasons there were 942 flower- 

visiting insect samples taken, 317 the first year and 625 the second. This increase was 

due to the revised sampling method used. In the first year, the restored landfill sites 

yielded 156 individuals from 30 species of flower-visiting insects; the reference sites 

yielded 161 individuals from 37 species of flower-visiting insects. In the second year, 

the restored landfill sites yielded 405 individuals from 41 insect species and the 

reference sites yielded 220 individuals from 40 insect species. For the distribution of 

species between taxonomic groups see Table 4.02 & Figure 4.02. The groups are the 

main categories used in pollination studies and allow for comparison; no conclusions 

can be drawn from this for “functionality” of groups sensu Fenster et al. (2004); see also 

Ollerton et al. (2007). Species richness of groups of flower-visiting insects found on 

restored landfill and reference sites were analysed for significant difference using 

Fisher's exact test. No group species richness was significantly different between sites 

(Table 4.02).

Table 4.02 Species richness for groups of flower-visiting insects recorded on restored landfill and 

reference sites for 2007 and 2008. RL = Restored landfill, RF = Reference. Bees = all non-

bumblebee bees, Bumblebees = Bombus and Psithyrus, and Butterflies = all butterflies and moths, 

Hies = all non-syrphidae, Other = all other flower-visiting insects. P= probability of significance 

using Fishers exact test.

30 37 41 40
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The result from the Fisher’s exact test analysis is surprising, given that some groups 

clearly have greater species richness in both years on one type of site. This lack of 

difference between site types for species richness of groups may therefore be a facet of 

the statistical test given the small frequencies used. The groups which have the same 

trend for both years between sites are more hoverfly species on the restored landfill 

sites, and more flies and butterflies species on the reference sites. The species 

distribution of butterflies has been further explored below (Table 4.03).

The species distribution of butterflies has been determined and their larval host species 

(Table 4.03). Whilst they share five species found on both types of site, uniquely two 

species are found on restored landfills and three on the reference sites. They generally 

share the same type of larval hosts on both types of site.

Table 4.03 Butterfly species present on restored landfill and reference sites for both years and their 

larval host species (Host species from Chinery 2005).

Site type Butterfly species Larval host plants

Restored landfill Aglais urticae* Stinging nettle

Maniola jurtina Fine grasses

Ochlodes sylvanus Various grasses

Pieris brassicae Brassicas and nasturtiums

Polyommatus icarus * Trefoil and clover

Pyronia tithonus Various grasses

Zygaena filipenulae Birds-foot trefoil

Reference Coenonympha pamphilus * Fine grasses

Maniola jurtina Fine grasses

Melanargia galathea * Red-fescue grass

Ochlodes sylvanus Various grasses

Panemeria tenebrata * Mouse-ears

Pieris brassicae Brassicas and nasturtiums

Pyronia tithonus Various grasses

Zygaena filipenulae Birds-foot trefoil

* Species found uniquely on type of site.
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Figure 4.02 a) and b) shows the species richness of flower visitor groups on the restored 

landfill and reference sites for 2007 and 2008, respectively. Hoverflies were found with 

greater species richness on restored sites, whilst butterflies and flies had greater species 

richness on reference sites. Other groups were less consistent; bees had greater richness 

on the reference sites in 2007, but a greater richness on restored landfills in 2008. It is 

unclear whether these shifts are related to an increased sampling effort, the reduced sub-

set of sites or just random variation. Beetles and bumblebees remain relatively equally 

rich on both types of sites in both years. With the exception of the flies, all groups of 

flower-visiting insects increase in richness with the increased sampling of 2008.

Figures 4.02 c) and d) shows the abundance of individuals within the flower visitor 

groups. With the exception of bees, those groups which were found with the greatest 

abundance in 2007 also had the greatest abundance in 2008. The flower-visiting insect 

groups approximately split into two clusters, the bumblebees, hoverflies and flies with 

the greatest abundance and the butterflies, beetles and other groups with the lowest 

abundance. Only two groups were consistent in both years, with hoverflies and beetles 

most abundant on the restored landfill sites. Interestingly, all groups were more 

abundant on the restored landfill sites in 2008.

Figures 4.02 e) and f) shows the frequency with which groups were found on the 

restored landfill and reference sites, i.e. the number of sites on which a particular taxon 

occurred. For 2007, with the exception of butterflies all groups have a similar frequency 

on both types of sites. For 2008, bees and flies were found less on the restored sites, 

whilst all other groups are found with the same frequency on both kinds of site.

102



12

sr>

<7

10'

3.

6

4 .

2'

♦ x

e

8 10

■ Bumblebees

12

16

14

12

10

8

Chapter 4 -  Flower-visiting insects

■ Bumblebees 

•  Beebes 

7 Bees
6 8 10 12 14 16 18

Species nchness on reference sites Species richness on reference sites

a)

60

V)

20

</>2 io«t

10 20 30 40 50

Bumblebees

Beetles

c/>

(V

120

~  100

80

60

40

2 20.
V Bees

20 40 60 60 100 120

Flower-visitor abundance on reference sites Flower-visitor abundance on reference sites

e)

10

8 >• +

e

Group

6  B^terffces

■ B^rbiefcees 

•  Beetles

7  Bees
6 8 10

Frequency on reference sites

n

Frequency on reference sites
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Comparison of the flower-visiting species found on restored landfill and reference 

sites

NMDS ordination shows the similarity between the sites for 2007 (Figure 4.03). Eight 

of the nine restored landfill sites were placed closely within the plot, indicating they 

share many of their flower visitor species. The reference sites have greater variance in 

their spread, indicating they are less similar to one another. The NMDS S-stress value 

below 0.2 (S=0.142) is low and therefore shows that the data is represented truly by the 

two dimensional representation (McCune and Grace, 2002). Examples for the outliers 

include: Scrub Fields (FI), the highest abundance of Apis mellifera, and the unique 

presence of Helophus pendulus; Kettering (6), the highest abundance of Meligethes 

aeneus and the unique presence of Muscina prolapsa; and Barnes Meadow with the 

highest abundance of Bombuspascuorum. Flowever, the most significant finding from 

this ordination analysis is the large overlap between the restored landfill and reference 

sites.

The most abundant flower-visiting insect species for each site have been identified 

(Table 4.04). The most common abundant species for the restored landfill sites across 

both years, are the bumblebees, B. terrestris/lucorum and B. lapidarious. The other 

common species are flies and hoverflies. The most common abundant species for the 

reference sites across both years, are the bumblebees, B. pascuorum, B. 

terrestris/lucorum and B. lapidarious and the fly Calliopum spp. (Dipterta \ 

Lauxaniidae). Both the restored landfill and reference sites therefore share a number of 

their most abundant species.
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Table 4.04 Most abundant flower-visiting insect species on restored landfill and reference sites. 

Abundance: total number recorded for all sites of that type. Site frequency: the number of sites 

present on.

Year Site type Insect species Abundance Site frequency

2007 Restored landfill Apis mellifera 34 6 of 9

Callippum  spp. 19 6 of 9

Bombus terrestris/lucorwn 12 6 of 9

Bombus pascuorum 10 5 of 9

Bombus lapidarius 10 4 of 9

Reference Apis mellifera 33 5 of 9

Bombus pascuorum 26 6 of 9

Calliopum  spp. 17 5 of 9

Bombus lapidarius 15 8 of 9

Bombus terrestris/lucorum 6 4 of 9

2008 Restored landfill Calliopum  spp. 77 2 of 3

Bomb us terrestris/lucoru m 49 3 of 3

Bombus lapidarious 43 3 of 3

Episyrphus balteatus 33 2 of 3

Oedemera nobilis 27 3 of 3
Reference Bombus lapidarious 26 3 of 3

Bombus pascuorum 25 3 of 3

Calliopum  spp. 24 3 of 3

B om bus ter res Iris/l ucorum 17 3 of 3

Macropis europaea 16 3 of 3
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For the flower visitor species distribution between site type for 2007, there was no 

significant difference between the species distributions on the two types of site: (Figure 

4.04) (Wilcoxon signed rank test; Restored landfill (Median = 1), Reference (Median =

1), z = -0.24, r = -0.03, p = 0.81). Of the species observed, there were 13 species present 

on restored landfill sites, but not reference sites; 20 species present on reference sites 

and not restored landfill sites; and 17 found on both. For the flower visitor species 

distribution for 2008, similarly there was no significant difference between the species 

distributions on the two types of site (Figure 4.05) (Wilcoxon signed rank test; Restored 

landfill (Median = 1), Reference (Median = 1), z = -0.02, r  <-0.01, p = 0.98). For the 

analysis of species presence, there were 14 species present on restored landfill sites, but
■■■■I # ■HApii 

not reference sites, 13 species present on reference sites and not restored landfill sites, 

and 27 found on both.

The flower visitor species were assessed for abundance, frequency and presence on the 

types of site for 2007 (Figure 4.06). Thirteen of the 50 species were present on more 

restored landfill sites than reference sites; 20 of the 50 species were present on more 

reference sites than restored landfill sites; and 17 of the species were present on the 

same number of each type of site (Appendix 3). For 2008, Eighteen of the 53 species 

were present on more restored landfill sites than reference sites; 23 of the 53 species 

were present on more reference sites than restored landfill sites; and 12 of the species 

were present on the same number of each type of site (Figure 4.07) (Appendix 4).
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R s q  = 0  4339

Frequency on reference sites

Figure 4.04 Frequency of flower visitor species present on restored landfill and reference sites 2007. 

Each point represents a species. Dashed line =1:1, solid line = line of best fit. 13 species of flower 

visitor were above, 20 below and 17 on the line. ‘Sunflowers’= multiple points, each petal represents 

an additional data point.

R sq  = 0 1 6 3 3

Frequency on reference sites

figure 4.05 Frequency of flower visitor species present on restored landfill and reference sites 2008. 

Each point represents a species Dashed line =1:1, solid line = line of best fit. 18 species of flower

visitor were above, 23 below and 12 on the line. ‘Sunflowers^ multiple points, each petal represents 

an additional data point.
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Figure 4.06 Total flower visitor abundance and frequency on restored landfill and reference sites 

2007 a) Total abundance b) Frequency on sites (Ranked according to reference site abundance). 

Species identities are listed in Appendix 3.
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Figure 4.07 Total flower visitor abundance and frequency on restored landfill and reference sites
2008 a) Total abundance b) frequency on sites (Ranked according to reference site abundance). 
Species identities are listed in Appendix 4.
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How does the flower visitor abundance and species richness compare between 
restored landfill and reference sites?

Flower visitor abundance

For the flower visitor abundance in 2007, there was no difference in the overall mean 

abundance of individuals recorded per survey on landfill sites and reference sites 

(Figure 4.08a). There was also no significant difference when the data were analysed 

seasonally (Figure 4.09a). For 2008 there was no difference in the overall mean 

abundance of individuals recorded per survey on landfill sites and reference sites 

(Figure 4.08b). There was also no significant difference when the data were analysed 

seasonally (Figure 4.09b).

Flower visitor species richness

For both 2007 and 2008, there was no significant difference between the total flower-

visiting insect species richness per site for restored landfill and reference sites (Figure

4.10), suggesting that both site types are supporting equally diverse flower-visiting 

insect faunas.

Flower visitor richness per survey on the landfill sites and reference sites was not

significantly different for either 2007 or 2008 (Figure 4.11). The data were again

assessed for seasonal variation and there was no significant difference between the site

types within any season of both years (Figure 4.12), mirroring the abundance findings 

(above).
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Chapter 4 -  Flower-visiting insects

How does floral resource use compare between landfill and reference sites with

regards to flower visitors and total on-site floral cover and richness of flowering 
plants?

Flower visitor abundance and mean seasonal floral cover

For the flower visitor abundance per survey and the mean seasonal floral cover, there 

was a significant positive relationship for both landfill and reference sites in 2007 and 

2008. For 2007, the reference sites have a tighter correlation than do the restored 

reference sites (Figure 4.13a); for 2008 this was reversed (Figure 4.13b). The flower 

visitor abundance figures were higher for 2008 owing to the revised survey method 

being used. The same floral surveying method was used in both years, however. 2007

saw the sampling ol more sites with lower sampling frequency, whilst in 2008 there 

were fewer sites sampled at higher sampling frequency.

Flower visitor species richness and richness of flowering plants

For the flower visitor species richness per survey and the mean seasonal richness of 

flowering plants, there was a significant positive relationship for both restored landfill 

and reference sites in 2007 and 2008 (Figure 4.14). For 2007 and 2008 the reference 

sites have tighter correlation than the restored landfill sites.
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Type of Site

x Reference 
Rsq = 0.6728

Landfill 

Rsq = 0.2477

a)

Type of Site

x Reference 
Rsq = 0.3475

Landfill 
Rsq = 0 3542

Mean seasonal floral cover cm'* per mb)
i

Figure 4.13 Flower visitor abundance per survey correlated with mean seasonal floral cover (cm2 

per m2). a) 2007 (Flower visitor survey = 30 minutes & 200m2). Landfill sites n = 44, Reference site 

n = 37. Spearman's rank correlation (Two-tailed) Landfill sites r = 0.61, p < 0.001; Reference sites r 

= 0.83, p < 0.001. b) 2008 (Flower visitor survey = 30 minutes & 600 m2) Landfill sites n = 36, 

Reference site n = 30. Spearman's rank correlation (Two-tailed) Landfill sites r = 0.70, p < 0.001; 

Reference sites r = 0.82, p < 0.001.
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Mean seasonal flowering plant richness per 200m'

Type of Site

x Reference 
Rsq = 0.5702

Landfill 

Rsq = 0.1790

a)

b)
Mean seasonal flowering plant richness per 200m/

Type of Site

x Reference 
Rsq = 0.5016

Landfill 
Rsq = 0.4649

Figure 4.14 Flower visitor species richness per survey correlated with on-site seasonal richness of 

flowering plants, a) 2007 (Flower visitor survey = 30 minutes & 200 m2) Landfill sites n = 44, 

Reference site n = 38. Spearman's rank correlation (two-tailed) Landfill sites r = 0.44, p < 0.01; 

Reference sites r = 0.72, p < 0.001. b) 2008 (Flower visitor survey = 30 minutes & 600 m2) Landfill 

sites n = 36, Reference site n = 30. Spearman's rank correlation (two-tailed) Landfill sites r = 0.81, p 

< 0.001; Reference sites r = 0.82, p < 0 .001.
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How do habitat quality features determine the flower visitor assemblage? How do 

these features compare between restored landfill sites and reference nature sites?

Correlations were carried out for the flower visitor richness and abundance on restored

landfill and reference sites, and habitat quality features and are shown in Table 4.04.

The le\el of significant correlation has been adjusted using a Bonferroni correction to

p<0.005. With normal correlation significance (p<0.05) in multiple tests, 1 in 20 would

be expected to be significant, therefore with 11x7 tests, by random chance would see

about 4 significant correlations due to chance alone. Therefore both highly significant

(p<0.005) and significant (p<0.05) results have been described. For restored landfill

sites the only highly significant positive correlation was between flowering plant and

flower visitor richness (Table 4.05). Less significant positive correlations were found

for both flower visitor richness and abundance, and availability of suitable bare earth

and microstructures (Table 4.05). For the reference sites, the only highly significant

correlation was negatively with the age of the sites (Table 4.05). Less significant

positive correlations were found for flower visitor abundance with flowering plant

richness and flower visitor richness; and negatively correlated with dead vegetation 
(Table 4.05).

For correlation between flower visitor groups and habitat quality variables on restored 

landfill sites, highly significant negative correlations were found for bees and the age of 

the sites, beetles and peak floral cover, and positively for bumblebees and bare earth 

(Table 4.06). There were other less significant positive correlations for habitat variables 

and insect groups namely; flowering plant richness with bees and hoverflies; max 

vegetation height with beetles and bumblebees; bare earth with hoverflies; features with 

bumblebees and hoverflies; and south facing slopes with bumblebees. For the 

correlations on reference sites there was only one highly significant positive correlation 

- between size of site and beetles (Table 4.07). I here are other less significant negative 

correlations for habitat variables and insect groups namely; size of site with bees; bare 

earth with Other insects; and dead vegetation and south facing slopes with flies.
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Discussion

Fifty species of flower visitor were recorded in 2007 and 53 in 2008, all of which were 

common species (See Appendix 4). Comparison with previous studies is difficult given 

the different sites and different methods employed but it is a useful indication of the

(Table 4.08). The results for 2007 and 2008 are relatively low compared to the other 

studies shown. However, given the spread of the results they can be seen as similar to 

other studies from England (Figure 4.10 & Table 4.08). With relevance to the 

conservation potential of the restored landfill sites it should also be noted that the 

species richness significantly increased when the species present across all sites was 

determined; for 2007: restored landfill sites = 30, reference sites = 37; for 2008: restored 

landfill sites = 41, reference sites = 40. It should however be re-iterated that this is 

predominantly a comparative study between the restored landfill and the reference sites 

rather than an attempt to assess the total number of species. The important issue is that 

equal effort of sampling has been used on all sites.

Table 4.08 Examples of species richness for community surv eys of insect flower visitors.

supported on the reference sites than the restored landfill sites (Figure 4.04). In 2008 

however, following more intensive sampling on fewer sites, the restored landfill sites 

were found to support slightly more (Figure 4.05). Within the groups there were

relative species richness of flower-visiting insects on the restored and reference sites

Grassland 
Waste ground 
Restored hay meadows 
Restored Heathland 
Old Heathland 
Old hay meadows 
Restored landfill sites 2008 
Reference sites 2008 
Restored landfill sites 2007

Cass, New Zealand 
Denmark 
SW England 
Devon, England 
Devon, England 
SW England 
East Midlands UK 
East Midlands UK 
East Midlands UK

139.0 41.0 (Primack, 1983)
82.0 26.0 (Olensen, unpub.)*
40.5* 27.0* (Forup and Memmott, 2005)
36.5* 6.8* (Forup et al., 2008)
35.6* 5.3* (Forup et al., 2008)
30.5* 21.0* (Forup and Memmott, 2005)
21.0* 18.0* (This thesis)
21.0* 17.3* (This thesis)

8.3* 16.8* (This thesis)
Reference sites 2007 East Midlands UK_______ 8.3* 19.1* (This thesis)
* ■ Mean per site given.n cited in Jordano (1987); cited in Olesen and Jordano (2002)

Examining the distribution of groups and total number of species between the restored 

landfill and reference sites (Table 4.02), it is seen that in 2007 there were more species
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varying numbers of species between the two types of sites (Table 4.02 and Figure 4.02). 

For example, in 2007 there were six species of butterflies found on the reference sites, 

but only one on the restored landfill sites. In 2008, there were six species of bees on the

wererestored landfill sites but only two on the reference sites. In both years hoverflies 

present in greater abundance and richness on the restored landfill sites. Hoverflies have 

been found to be positively correlated with resource heterogeneity such as species 

richness of flowering plants (Meyer et al., 2009), and the earlier successional state of 

the restored landfill sites may provide this (see Chapter 3).

Predictions for the similarity of species richness of different groups on the restored 

landfill and reference sites relate to their dispersal ability and habitat specific 

requirements. Those groups with greater dispersal abilities and less specific habitat 

requirements would show an increased similarity between the two sites. This has been 

shown for the bumblebee group, with little difference between the species richness on 

the two types of site (Table 4.02). Bumblebees are not generally habitat specialists 

(Goulson, 2003a). Bumblebee foraging ranges and hence dispersal ability are at least 

several hundred metres and even several kilometres from their nests (Dramstad, 1996; 

Osborne et al., 1999; Goulson and Stout, 2001; Kreyer et al., 2004; Knight et al., 2005; 

Westphal et al., 2006; Osborne et al., 2008); so it would be expected they disperse 

easily across the landscape and colonise or utilise new habitat sites readily. Those 

groups with poorer dispersal abilities and more specific habitat requirements would be 

expected to see a greater difference between the two types of site. This idiosyncratic 

result between different groups has been seen for butterflies. This difference in species 

richness between sites may be attributed to site-specific requirements of particular 

species, butterflies often requiring larval-specific host plants (See Table 4.03) and their 

dispersal distances are relatively poor, 100-200m (Krauss et al., 2003; Cant et al., 2005) 

There were also differences for the species richness of the fly group (Diptera, non- 

Syrphidae), with more species present on the reference than the landfill sites. However, 

there is little information available regarding their dispersal abilities and habitat 

requirements, which highlights that further research is required for this over-looked 

group of flower-visiting insects.
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There clearly may be specific habitat requirements for some species, for example 

oligolectic bees, but further work is required to investigate this in detail. This has not 

been attempted within this study in detail owing to limited time and resources available. 

Overall, the species richness of flower-visiting insect assemblage was no different for 

the restored landfill or reference sites (Figures 4.10 & 4.11).

With regards to species distributions between the site types, there was approximately 

one quarter of species unique to restored landfill sites and reference sites and one half of 

species present on both (Figures 4.06 & 4.07). This is similar to the situation for plants 

(Chapter 3). The ordination analysis shows a high level of overlap between the types of 

sites, with a few outliers, as described previously (Figure 4.03). However, when the data 

were assessed for the frequency of occurrence on sites, species were more likely to be 

present on a greater number of reference sites than landfill site (Figures 4.06 & 4.05). 

The restored landfill sites are newly created habitats and so species have to disperse to 

the sites from the surrounding landscape or from nearby areas of semi-natural 

vegetation.

The expectation was that the restored landfill sites would have lower flower visitor 

abundance and species richness than the reference sites; however there was no 

difference for annual means (Figures 4.08 & 4.10). It appears that the restored landfill 

sites were supporting a comparable flower-visiting insect assemblage. Possible reasons 

for this may be that in early succession, as found on the restored landfill sites, there is 

generally a greater richness of plant pioneer species (Denslow, 1980) and consequently 

a greater richness and abundance of flower visitors (Potts et al., 2003b). However, 

succession theory predicts that highest species richness in mid-successional stages of 

“intermediate disturbance” (Connell, 1978; Brown and Southwood, 1987), therefore 

there may be no difference between the two types of site.

The findings for this study are similar to previous research comparing restored and 

reference sites (Table 4.08). On restored versus established hay meadows, for example, 

few flower-visiting insect species were shared among the sites, but the species richness 

and abundance were the same between the old and new sites (Forup and Memmott,
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2005). On four pairs of restored and ancient heathlands, the restored sites had fewer 

insect species than their pairs in 2001, but more species in 2004 (Forup et al., 2008). 

However, it should be noted that in both of these studies the restored sites were directly 

targeted at recreating the same vegetation structure as that of the reference sites, hay 

meadows and heathlands respectively. This is clearly not the case in the present study.

Does this show that the restored landfill sites are as good as the reference nature sites at 

supporting pollinating flower-visiting insects? Yes, the annual and peak summer 

activity was equally matched (Figures 4.09, 4.10, & 4.12). They had the same mean 

species richness per site, peak seasonal richness and abundance. It appears unlikely that 

the restored landfill sites are acting as sinks for flower-visiting insect populations, 

although without evidence of nesting on-site, it is unclear as to how the assemblage is 

utilising them. Those groups of flower-visiting insects supported well, in terms of 

individual abundance and species richness, on restored landfill sites are similar to those 

on the reference sites and includes bumblebees, hoverflies and flies (Tables 4.02 & 4.04 

and Figure 4.02). These groups may be generally more abundant throughout the local 

agricultural landscape. The most abundant species of flower visitor, present on the 

majority of sites were common, abundant species such as Apis mellifera, Bombus 

terrestris/lucomm, Bombus pascuorum, Bombus lapidarius and Calliopum spp. (Table 

4.04) (Goulson et al., 2005).

This presence of common and abundant species shared between types of sites may be 

indicative of the “homogenisation" of pollinating flower visitor insects found in 

England. Those species of insect which are common and able to adapt to the intensive 

agricultural landscape may be increasingly more common throughout the rural 

landscape. Conversely, those species which are rare and doing poorly within the 

landscape may be becoming rarer or extinct. Reasons for this would need further 

research to determine, but the general parallel homogenisation of the landscape, with 

national agricultural practices and grown crops, is likely to play a significant role. This 

phenomenon has been recorded recently for woodland plant species (Keith et al., 2009). 

They found that woodland sites were losing their individual characteristics, and that 

although the number of species has remained the same, there was a significant loss in

127



Chapter 4 -  Flower-visiting insects

diversity. This biotic homogenisation clearly has large implications for the conservation 

of biodiversity. It can easily be missed when relatively small scale studies are looked at 

in isolation and more work is required to examine species presence and abundance on 
habitats across the landscape and nationally.

Populations of flower-visiting insects may be using the restored landfill sites as 

stepping stones between more suitable habitats, or even as meta-habitats themselves. 

The connectivity between habitat sites has the possibility of mitigating the problems of 

fragmentation and size ol habitats, by enabling the flow of individuals through the 

landscape (Beier and Noss, 1998; Falcy and Estades, 2007). Supporting population 

reserves of flower-visiting pollinating insects has anthropogenic advantages in the 

services they provide for agricultural and native plants. In a study assessing the design 

of agricultural landscapes for pollination service provision, small habitats interspersed 

throughout the landscape have been found to be optimal (Brosi et al., 2008), and the use 

of native habitats within the landscape has been found beneficial for the conservation of 

flower-visiting insects (e.g. Franzen and Nilsson, 2008; Ricketts et al., 2008). It has 

been argued previously that large areas of suitable habitat are required for species 

conservation, however, if flower-visitor species are able to readily travel between 

patches then this may not be necessarily the case (Goulson, 2003a). The importance of 

having numerous sites has been shown within this study, the restored sites supported a 

mean of 8-20 species per site, but across them all 30-40 species in total (Table 4.08). 

Research has indicated that native flower visitors may provide all of the pollination 

services required if there is 40% of the landscape as natural habitat; but even a more 

realistic 10% can provide a significant proportion of pollination services (Kremen et al., 

2004). Across the Midlands and the UK there are a significant number of landfill sites 

which could be restored to meet this target (Chapter 6 - Figure 6.01).
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interaction structures, where no link is present this refers to a species found on the comparison-

figure 5.02 Flower-insect visitor interaction structure in 2008 a) Wootton restored landfill site, b) 

Barnes Meadow reference site (Same plant and insect species identities were used for both

sites, refer to Appendix 8 for species lists).
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(Table 4.06). There were other less significant positive correlations for habitat variables 

and insect groups namely; flowering plant richness with bees and hoverflies; max 

vegetation height with beetles and bumblebees; bare earth with hoverflies; features with 

bumblebees and hoverflies; and south facing slopes with bumblebees. For the 

correlations on reference sites there was only one highly significant positive correlation 

between size of site and beetles (Table 4.07). There are other less significant negative 

correlations for habitat variables and insect groups namely; size of site with bees; bare 

earth with other insects; dead vegetation with flies; and south facing slopes with flies. 

Reasons tor the observed relationship for bees may relate to their preferential floral 

resource species being present on younger sites. The relationship between bumblebees 

and the presence of bare earth is not clear as they do not typically nest in the earth, but 

may use empty small mammal holes, or in vegetation. The restored landfill sites do 

undergo some subsidence as the waste compresses and degrades, so opening cracks 

suitable for bumblebee nesting in the surface topsoil. The only significant relationship 

for the reference sites was negatively for beetles and the size of sites.

The causal reasons for the significant correlations have not been assessed here and 

further work is required to determine them; with a new research design, giving more 

sites and/or less variables. Different species are clearly idiosyncratic with their habitat 

requirements. For flower-visiting insects, their dispersal abilities clearly mean that 

habitat sites have fuzzy boundaries and they are not restricted to only using those 

resources from on-site. Instead they are using the surrounding habitat-stew, from which 

to supply their resource needs, be it, food, nesting or mating. The restored landfill sites 

are indeed themselves part of this habitat-stew. Given that both the restored landfill and 

reference sites both show similar levels of correlation between the flower visitor 

abundance with floral cover, and flower visitor species richness and flowering plant 

richness; it can be argued that they are being used by the flower visitor population in a 

similar way (Figures 4.13 & 4.14).
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In conclusion, the restored landfill sites are supporting as rich and abundant flower 

\isitor fauna as the reference sites. The same groups of insects are found on both types 

of sites, and there is significant overlap in species and abundance between the two types 

of site. Some groups of insects, namely hoverflies, are more species rich and abundant 

on the restored landfill sites than on the references sites, whilst others, namely 

butterflies, are less species rich and abundant than on the reference sites. The most 

abundant species are common ones and found on both types of sites. The restored 

landfill site restoration can clearly be seen as successful regarding the flower-visiting 

insects supported, given that the majority of reference sites were managed nature 

reserves. These sites have the potential to play a significant role in the conservation 

effort for the common flower visiting insects now in decline.
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Results summary

In conclusion, the results of this part of the study can be summarised as follows:-

• No difference was found between the restored landfill and reference sites mean 

flower-visiting insects’ species richness or abundance.

• No difference was found between the restored landfill and reference sites 

flower-visiting insects’ species frequency on sites.

• There was no significant difference found between the flower visitor abundance 

or species richness per site lor restored landfill and reference sites in any season.

• Hoverflies were the most species rich group of flower-visiting insects found on 

the restored landfill sites, and also the richest group on the reference sites.

• Hoverflies, bumblebees and flies were the groups with the greatest flower visitor 

abundance on the restored landfill sites, and also the most abundant groups on 
the reference sites.

• The most abundant species of flower visitor found on the majority of reference 

sites in both years were: Bombus terrestris /  lucorum, Bombus pascuorum, 

Bombus lapidarius and Calliopum spp.

• Restored landfill and reference sites had similar relationships between their

flower-visiting insect’s richness and abundance and floral abundance and 
richness.

• The only habitat quality variable which flower visitor richness significantly 

correlated with was flowering plant richness.
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Figure 4.15 Bombus lucorum feeding on a Spear thistle on Harlestone restored landfill site.
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The flower-insect interaction web on restored landfill sites

“The real voyage of discovery consists not in seeking new landscapes but in having 
new eyes.”

Marcel Proust (1871 - 1922)

“I have yet to see any problem, however complicated, which, when you looked at it 
the right way, did not become still more complicated.”
Paul Alderson (b. 1926)

Summary

This chapter describes the plant-flower-visitor interaction structure found on restored 

landfill sites in relation to their success in supporting assemblages of plants and flower 

visitors. The plant-flower-insect interactions were compared on nine paired sites of 

restored landfill sites and reference nature sites using standard belt transect methods.

The bipartite interaction webs were analysed for uniqueness of interactions, core 
species, connectance and nestedness.

The restored landfill and reference site pairs shared few species within their interaction 

matrices and fewer actual species-species interactions. There were also few core species 

shared between the sites. There was no difference between connectance on the restored 

landfill sites and the reference sites, though the connectance levels were generally 

higher than most published network studies for assemblages of plants and pollinators. 

There was no difference in the generalisation levels of plants and insects between site 

types and the plants were more generalised than the flower-visiting insects. Nestedness 

within the restored landfill sites was similar to that of the reference sites, but generally 

lower than published data sets.

The flower visitor interactions were analysed by their network attributes in order to 

verify structural and functional variation between restored landfill sites and reference
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sites of similar habitat conditions. The advantage of this functional approach in the

evaluation of community structural attributes within restoration outcomes is that

although the species differ, the underlying ecological process occurring on-site is 
apparent.

Introduction

Terrestrial restoration projects typically focus on the dominant plant species of the 

target community in the hope that natural processes will subsequently develop and 

move the community towards complete restoration (Palmer et al., 1997). It is difficult to 

define an exact target community for the restoration process, owing to ecologists rarely 

possessing complete biological records of the structure of an ecological community or 

even the region's complete species diversity. There has therefore been a move towards 

recognizing that most ecosystems are dynamic and hence restoration goals and 

assessments cannot be based on static attributes (Hobbs and Harris, 2001). Moreover, it 

is even harder to evaluate afterwards whether the restoration has been successful. In 

planning and evaluating restoration projects a purely structural focus is inadequate, as it 

does not show ecosystem functioning on the habitat: an alternative way which does, is 

to consider species interactions (Ehrenfeld and Toth, 1997).

The study of biological interactions in relation to restoration of habitats has 

concentrated on processes such as herbivory (e.g. Opperman and Merenlender, 2000; 

Sweeney et al., 2002; Ruhren and Handel, 2003), predation (e.g. Grimm and Backx, 

1990; Olsson et al., 2002; Hartung and Brawn, 2005) and seed dispersal (e.g. Orth et al., 

1994; Wunderle, 1997; Donath et al., 2003). Studies of the mutualistic interactions of 

assemblages of plants and pollinators include restored hay meadows (Forup and 

Memmott, 2005b), grassland (Maccherini et al., 2009), fragmented dry forests (Aizen 

and Feinsinger, 1994), prairies (Reed, 1995) and heathlands (Forup et al., 2008). Plant- 

pollinator interactions can play an important role in habitat restoration (Handel et al., 

1994; Montalvo et al., 1997; Forup and Memmott, 2005b; Cortina et al., 2006; Falk et 

al., 2006). Once a vegetation community is restored then it is often assumed that species
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interactions such as pollination will be automatically reinstated. The use of species
interaction webs allows the pollination systems of pristine and restored habitats to be
compared, avoiding obvious discrepancies such as differing plant communities 
(Memmott, 1999).

Restoration of damaged ecosystems or the creation of new ones usually emphasise, and 
are measured in relation to, structural aspects of biodiversity such as species richness 
and abundance (Ruiz-Jaen and Mitchell Aide, 2005). Problems with using this approach 
are that there are often no records as to the target species; or different species are 
present on the relerence site being used. An alternative approach is to emphasize 
functional aspects such as interactions between species, and ecological networks 
provide a powerful way of assessing the outcome of restoration programmes (Forup et 
al*» 2008)- The recovery of biological interactions in restored habitats is critical for their 
long-term functioning (Ruiz-Jaen and Mitchell Aide, 2005), processes such as nutrient 
cycling or herbivory are important to assess as they indicate the functionality of a 
habitat. However, ecological processes are not measured as frequently as diversity and 
vegetation structure (Ruiz-Jaen and Mitchell Aide, 2005). Comparing the pollination 
linkages found on the restored sites and reference sites can test whether ecological 
restoration has been successful (Montalvo et al., 1997; Palmer et al., 1997; Neal. 1998). 
The assessment of interaction structure within a plant-flower visitor assemblage allows 
a snapshot of the functioning of an ecosystem, and this research has recently come to 
the fore (Forup and Memmott, 2005b; Fontaine et al., 2006a; Nielsen and Bascompte, 
2007; Santamana and Rodnguez-Girones, 2007; Forup et al., 2008; Dupont et al., 2009; 
Kaiser-Bunbury et al., 2009). When interaction webs are analysed in terms of 
connectedness and nestedness they may show the relative robustness of the system 
(Dunne et al., 2002). Assemblages of plants and pollinators are complex and dynamic 
(Waser et al., 1996), and assessing them in this functional approach is a useful measure 
in examining the wider ecological system.

Mutualistic associations between species in a community can be viewed as interaction 
networks, webs and matrices, all of which show that these types of relationships are
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highly plastic in space and time (Fortuna and Bascompte, 2006; Bascompte and 
Jordano, 2007; Alarcon et al., 2008; Fontaine et al., 2008; Petanidou et al., 2008), and 
may be robust to disturbance (Dunne et al., 2002; Potts et al., 2003b; Fontaine et al., 
2006b; Vulliamy et al., 2006). For example, in multi-year studies of assemblages of 
plants and pollinators in Mediterranean habitats in Greece (Petanidou et al., 2008) and 
California (Alarcon et al., 2008), there were differences in both species composition and 
patterns of interaction from year to year, but network properties such as connectedness 
and nestedness remained constant. Patterns in pollination interactions can be analysed 
with a linked food web approach or in a nested complex system approach (Lewinsohn et 
al., 2006, Forup et al., 2008). Studies involving total communities of interacting plants 
and flower visitors are much rarer than those looking at single plants or involving guilds 
of plants or pollinators (Waser et al., 1996; Olesen and Jordano, 2002). An observation 
which has emerged from viewing interactions as nested assemblages of species is that 
there is often a central core of generalist species that interact with each other, and in so 
doing support more specialised species (Bascompte et al., 2003; Dupont et al., 2003; 
Ollerton et al., 2003; Olesen et al., 2007). If pollination biologists really want to 
understand how communities are structured and functioning, then all flower visitors 
must be included. Examining the entire pollination interaction web within a community 
avoids potential bias when only a constrained taxonomic section is examined. Web 
interaction studies have the advantage of being able to compare restored with reference 
sites, and also ol allowing comprehensive field studies within a short time frame.

The long-term persistence of species within a habitat is more likely when restored or 
created habitats are managed for both their plants and pollinators (Dixon, 2009). It has 
been suggested that restoration may be much more successful if due attention is applied 
to pollinators in the early stages (Neal, 1998). The direct effects of pollination within a 
restored habitat may be quite apparent e.g. seed set. The indirect effects may be less 
apparent, for example, gene How and genetic diversity, but none the less essential for 
the long-term success of restoration (Montalvo et al., 1997). Restored landfill sites may 
be valuable habitats for supporting flower visitors but pollinator interactions are also 
important as indicators o f ‘successful' restoration. This chapter attempts to answer this 
second issue, of determining the success of restoration on landfill sites, using field data
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to examine connectance and nestedness properties. Success in this context refers to the
restored landfill sites having a similar extent of interaction linkages and nestedness as 
do reference sites.

Aims

The aim of this chapter is to determine how successful restored landfill sites have been 
in recreating the plant-flower visitor species interactions and structure found in natural 
habitats. The flower-insect interaction structure was compared for the restored landfill 
sites and the reference sites in relation to connectance and nestedness properties.

Connectance is the total number of realised linkages as a ratio of the total number 
possible within an interaction matrix. It is an inherent value useful in determining the 
functioning within a mutualistic assemblage of plants and pollinators, being a scale 
independent measure of the generalisation of a network (Jordano, 1987; Olesen and 
Jordano, 2002). The degree of connectance of a system co-varies with species richness, 
similarly to that of other food webs (Jordano, 1987). The expectation would be that the 
reference nature sites will have a stronger interaction pattern and hence connectance in 
terms of realised links between plants and flower visitors. Reasons for this may relate to 
being older habitats (Forup and Memmott, 2005b; Forup et al., 2008). Lower 
connectance values predicted for restored landfill sites, would suggest these habitats
were in a greater state of fluctuation than the reference sites, possibly due to the 
restoration management (Jordano et al., 2003).

Nestedness is common in mutualistic networks such as assemblages of plants and 
pollinators (Bascompte et ah, 2003; Dupont et ah, 2003; Ollerton et ah, 2003). A 
description and definition of nestedness is given later in the data analysis section of this 
chapter. In these networks, specialist plants or pollinators interact preferentially with 
generalist plants or pollinators (Bascompte and Jordano, 2007), and the generalist plants 
and pollinators will also interact with each other (Waser et ah, 1996).

139



Chapter 5 -  Flower-insect interactions

Studies of ecological networks can be prone to sampling effects as they involve entire 
species assemblages, some of which are less common or harder to sample. However it 
has been shown that nestedness analysis is less prone to bias from sampling effort than 
other forms of network analysis; Nielsen & Bascompte (2007) showed that the average 
absolute nestedness value does not change with sampling effort after an initial minimum 
amount of sampling. The value of the nestedness approach to interaction studies, 
compared for example to connectance analysis, is therefore that the stability of the 
absolute value occurs at a lower sampling effort (Nielsen and Bascompte, 2007). Within 
this study both nestedness and connectance are compared. Nestedness is a feature of 
binary or presence /absence matrices and is of particular relevance for studies focusing 
on the patterns of species occurrence among a set of locations and the pattern of 
interacting species within ecological networks (Almeida-Neto et al., 2007).

Determination of nestedness is important as it is a test of system robustness (tolerance 
to species extinctions). Studies on interaction webs have predicted robustness against 
extinctions at higher degrees of nestedness (Memmott et al., 2004; Burgos et al., 2007; 
Almeida-Neto et al., 2008). In nested interaction webs, the second most generalised 
pollinator interacts with a subset of the most generalised, and the third with a subset of 
the second and so on (Memmott et al., 2004). Nestedness also gains robustness from 
specialist flower visitors associating with generalist plants and vice versa, and so the 
loss of a plant or flower visitor species results in a linear loss of their connected species, 
as other generalised subset of connections remain (Memmott et al., 2004). However, 
interaction webs may not be robust to the simultaneous removal of the most generalised 
plants and flower visitor species (Memmott et al., 2004), and robustness may rely upon 
those species with fewer connections having a greater probability of extinction (Burgos 
et al., 2007). This study is taking an alternative perspective on the robustness and 
nestedness relationship as restoration relates to the return of species and hence the 
development of robustness within an interaction web. The expectation would be that 
longer established communities may have greater nestedness given that they may 
support greater abundance and richness of species. This would lead to greater 
interaction richness between plants and flower-visiting insects and hence show 
increased nestedness.
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Methods

Study region and study sites
The study was conducted in the East Midlands of the UK, in the counties of 
Northamptonshire. Bedfordshire. Warwickshire and Buckinghamshire. All of the sites 
are within 30 miles of Northampton. Nine landfill sites were sun eyed in the first year 
(2007) of the study accompanied by paired reference sites (See Chapter 2 - Table 2.01). 
The following year (2008), a random sub-set of three landfill sites accompanied by 
paired reference sites were surveyed. For further details on-site selection, see Chapter 2.

Fieldwork timing
Fieldwork suneys were conducted from March to October 2007 and 2008. as this 
corresponds to the main flowering period in central England and hence to flower visitor 
activity. Sites were sampled in random order with their paired references on consecutive 
days where possible. For distribution of survey days see Chapter 2-Table 2.02.

Flower visitor surveys
%

Flower visitor surveys were undertaken three times between 9am and 4pm on days
which were warm and sunny with little or no wind, as outlined in the Butterfly
Monitoring Scheme (Pollard and Yates, 1993) and similar to those used in previous
pollination studies e.g. Goverde et al„ 2002; Kleijn and van Langevelde. 2006; Potts et
al., 2006; Nielsen and Bascompte. 2007 . Sun eys each lasted 30 minutes and all flower
visiting insects seen to be feeding legitimately (i.e. not nectar robbing) and large enough
to touch anthers and stigmas were captured. For further details on methods see Chapters 
2 & 4.
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Data Analysis%J

The data were tested for normal distributions using one-sample Kolmogorov-Smimov
tests. Levene s test was used to determine whether variances were significantly
homogenous, and the significance levels were adjusted accordingly if heterogeneous.
For testing differences between the types of sites within the pairing, paired samples t-
tests and Wilcoxon signed rank tests were used to compare parametric and non-
parametric data, respectively. SPSS statistical software version 11.5 was used (SPSS.
2003). Abbreviations have been used: restored landfill and reference comparison-sites
may be referred to as ‘landfill and 'reference' respectively. Significant results: p< 
0.05.

Assessment of interaction structure

Interaction structures for flower visitors were drawn using Pajek software (Batagelj and 
Mrvar, 1998). Interaction matrices were assessed for interaction overlap and 
uniqueness between pairs of restored landfill and reference sites for 2007 and 2008.

Core species of plants and insects were identified. The core plant and insect species are 
defined here as those which are from the top 25% of species with the most interactions, 
and interacting with at least 25% of their bipartite species. These core plant and insect 
species typically interact with each other within an interaction web. Core species are 
different from keystone species in that they are important at facilitating functioning 
within an interaction web, but their individual loss is not critical to the web. Other 
species may take their place, and species may fluctuate from being core species or not.
It is rather the relative importance of the species at a particular time. Removal 
experiments have determined with the loss of one core plant species, flower visitors 
readily move on to an alternative (Tarrant and Ollerton, Unpublished data).
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Connectance analysis

Interaction studies on assemblages of plants and pollinators have examined the
functioning of the habitat as the number of realised potential links between plants and 
their flower-visiting insect species (Forup and Memmott, 2005b).

Connectance is: C = I/M

Where I is the total number of realised interactions in the network, and M is the number
of potential interactions in the network (number of plant species in flower x number of
flower-visiting insect species) (Jordano, 1987). To remove the potential effect of those
sites with more species having a higher value the interaction abundance is divided by 
the matrix size (Jordano, 1987; Forup et al., 2008).

N.B. For the calculation of connectance ‘plant species in flower’ refers to those plant
species from within the interactions. For 2007 the interaction data collected for the year
was collated to produce a single interaction web representing the plant-flower-insect
interactions over the whole flowering season. For 2008, both seasonal and annually 
collated data were assessed.

Generalisation analysis

Generalisation within insect pollinated flowering plants and flower-visiting insects were 
determined using:

Connectancep  (Plant generalisation) = 1 / p
Connectance / (Insect generalisation) = I / i

Where: I = the total number of realised interactions in the network,/? = plant species
richness, / = insect species richness. The analysis of generalisation within a community,
gives an indication of the relative number of species of plants a flower visitor species
interacts with and the number of flower visitor species a plant species interacts with
(Forup and Memmott, 2005b). Analysis was made between connectancep  and i, and for 
site types.
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Nestedness analysis

The aims of nestedness metrics are to assess the extent a matrix of presence and absence 
deviates from perfect nestedness. In bipartite pollination networks, the columns of the 
matrix represent the plant species and the rows the flower visitor species. Perfectly 
nested pollination networks are those where the specialist flower visitors will 
perfect subset of the plants visited by the generalist flower visitors, and the

use a
more

specialist plants are visited by a perfect subset of the insects visiting more generalist 
plants (Petanidou et a l, 2008). Firstly, a metric is used to quantify the pattern of 
nestedness; secondly comparisons are made with appropriate null models to assess the 
significance of the metric nestedness value, and then inference is made as to the 
possible reason for the pattern of nestedness (Ulrich et al., 2009).

ANINHADO software was used, being based on the earlier Nestedness Temperature 
Calculator software (Atmar and Patterson, 1995), which was criticised for 
overestimating nestedness significance as it uses an equal probability null model 
(Fischer and Lindenmayer, 2002). ANINHADO computes two metrics of nestedness, 
the recently-proposed NODF (Almeida-Neto et al., 2008) and the more commonly used 
matrix Temperature (T) (Atmar and Patterson, 1995). NODF (an acronym for 
Nestedness metric based on Overlap and Decreasing Fill (Almeida-Neto et al., 2008)) 
has been advocated as it has greater theoretical consistence (Almeida-Neto et al., 2008). 
This is because NODF quantifies whether poorer assemblages of species constitute 
subsets of progressively richer ones and whether less frequent species are found in 
subsets of the sites where the most widespread occur. In comparison, the more usual 
metric that is used, Temperature (T), is analogous to physical disorder; it quantifies 
nestedness as the deviation from a nested pattern due to unexpected absence and 
presences, respectively, in more and less “ hospitable” sites (Ulrich et al., 2009). 
However, it is unclear whether the Temperature metric should be used for interaction 
networks as there is no reason to weight presence and absence cells by their distance 
Irom the isocline, and NODF may therefore be more appropriate (Almeida-Neto et al., 
2008). However, T is useful to compare to studies published to date. Therefore in this 
study NODF values has been used for analysis of nestedness, and T values in
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Appendices 5 & 6, are available for comparison. The ANINHADO software also

determines separate NODF figures for columns and rows. Theses figures represent the

respective nestedness of plant and flower visiting insect species and are a representation 
of generalisation.

Null model tests potentially control for the influence of matrix size and shape, since the

simulated random matrices used are all the same size and shape as the empirical matrix

being tested (Gotelli and Graves, 1996). The significance of the nestedness temperatures

was determined against 1000 runs of the Ce & Er null models in ANINHADO to

compare the actual matrix with theoretical predictions (Atmar and Patterson, 1995;

Guimaraes and Guimaraes, 2006). The Er model randomly assigns presences to any cell

within the matrix. The Ce null model takes the percentage fill of the rows and the

columns into consideration when calculating the probability of the presence within an

individual cell. It is therefore the more biologically significant of the two models. The

NODF value of the null models represents the mean nestedness with a random

arrangement given the fixed values of matrix size and fill gained from the empirical

matrix being tested. The probability figures generated represent the probability that the

matrix would have this level of nestedness if it had been randomly generated as in the 
null models.

For 2007 the samples were combined into an annual interaction matrix for each of the 

sites; this was required due to the seasonal matrices being too small for analysis on their 

own, the drawback with this is that non-observable “forbidden” interactions would 

appear as zeros, instead of being absent from the matrix; i.e. a spring flowering plant 

could not interact with an autumn active flower visitor (Jordano et al., 2006). This led to 

the modification of the survey method in the following field season. For 2008, the data 

is separated to produce interaction matrices for different seasons.
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Results

A total of 100 hours were spent sampling flower visitor interactions, with 64 in the first

year on 18 sites and 36 in the second year on 6 sites. Therefore, on average each site

received 334 hours of surveying in the first year and 6 hours in the second. Over the two

field seasons there were 942 flower-visitor interactions recorded, 317 the first year and 
625 the second.

Analysis of interaction similarity

The specific interaction structures were assessed for similarity within the pairs of

restored landfill and reference sites for 2007 (Table 5.01). This showed an average of

only 1.2% ol specific species-species interactions were shared between pairs of sites,

whilst the pairs of sites shared means of 4.4% of plant species and 17.6% of flower-

visiting insect species (Table 5.01). For 2008, this showed an average of 3.1% of

specific species-species interactions were shared between pairs of sites, which is low

given that 22.4% of plant species and 29.8% of insect species are shared between sites 
(Table 5.02).

Core structure

The core plant and insect species are defined here as those which are from the top 25% 

of species with the most interactions, and interacting with at least 25% of their bipartite 

species. Species interacting with only one other species were rejected. The Brixworth- 

Pitsford pair, shared one core plant and two core insect species, but the Sidegate Lane- 

Ditchford and Wootton-Barnes meadow pairs shared neither core plant nor insect 

species (Table 5.03 & 5.04 and Figures 5.01-5.03). Strong correlation was found 

between a species abundance and the number of interaction connections present for 

plants and insects on both restored landfill and reference sites (Figure 5.04).
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Chapter 5 -  Flower-insect interactions

a)

b)

Hgure 5.01 Flower-insect visitor interaction structure in 2008 a) Brixworth restored landfill site, b) 

Pitsford reference site (Same plant and insect species identities were used for both interaction 

structures, where no link is present this refers to a species found on the comparison-sites, refer to 

Appendix 7 for species lists).



a)

b)

Chapter 5 -  Flower-insect interactions

Insect 4

Insect 5

Insect 7

Insect 8

Insect 9

Insect 10

Insect 11

Insect 12

Insect 13

Insect 14

Insect 15

Insect 20 Insect 16
lr" a 1 9  18

Figure 5.03 Flower-insect visitor interaction structure in 2008 a) Sidegate lane restored landfill site, 

b) Ditchford reference site (Same plant and insect species identities were used for both interaction 

structures, where no link is present this refers to a species found on the comparison-sites, refer to 
Appendix 9 for species lists).
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Chapter 5 -  Flower-insect interactions

Connectance

There was no difference in the mean annual connectance between the restored landfill 

and reference sites in 2007 or 2008 (Figures 5.05 a & b). There was greater variation 

observed for both years in the restored landfill data compared to the reference sites; Std. 

Dev. 2007: Restored landfills = 0.34, Reference = 0.10, Std. Dev. 2008: Restored 

landfills = 0.10, Reference = 0.01. For connectance on those sites surveyed both years, 

there was no difference between the two years for their mean connectance for either the 

restored landfill or reference sites (Figures 5.06 a & b). Each site was surveyed for an 

average o f 3Vi hours covering 700m2 in 2007 and 6 hours covering 3600m2 in 2008. 

Looking at the individual sites connectance, we see closely similar connectance values 

between years for most sites, with the exception o f Sidegate Lane (Figure 5.07). This 

can be attributed to sampling on Sidegate Lane restored landfill site only recording a 

single interaction in 2007.
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Chapter 5 -  Flower-insect interactions

landfill reference

a)
Type of Site

Type of Site
b)
Figure 5.05 Mean annual connectance (C) for restored landfill and reference sites (± 95% 

Confidence Limits) N=sample sizes, a) 2007 Paired samples t-test (two-tailed) t=1.55, df=8, p=0.16, 

b) 2008 Paired samples t-test (two-tailed) t=1.04, df=2, p=0.41.
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Figure 5.06 Mean annual connectance for sites sampled in both years. (± 95% Confidence l imits) 

N=sample sizes, a) Restored landfill Paired samples t-test (two-tailed) t=1.25, df=2, p=0.34, b) 

reference sites Paired samples t-test (two-tailed) t=l.66, df=2, p=0.24.
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0
oc
r o

o
0
c
c
O

O

1.2

1.0

8

.2

0.0

Year

□  2007

2008
Barnes Meadow Ditchford Sidegate

Brixw orth Rtsford Wootton

Site

Figure 5.07 Annual connectance for sites sampled in 2007 and 2008. Restored landfill sites: 

Brixworth, Sidegate and YVootton. Reference sites: Barnes Meadow, Ditchford and Pitsford. NB. 

For Sidegatc only one flower-insect interaction was recorded in 2007. Correlation of connectance 

values between years: Pearson's correlation (Two-tailed) r=0.96, p=0.002.
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Chapter 5 -  Flower-insect interactions

Generalisation of plants in flower and flower-visiting insects.

There was no difference for mean Connectance p  (a measure o f plant generalisation) or 

mean Connectance / (a measure o f insect generalisation) for either types o f site in 2007 

or 2008 (Table 5.05, Figures 5.08 a & b). On both types o f site in both years mean 

Connectance/?, was greater than that of Connectance /, showing that plant species 

interact with a greater number o f insect species, than do insect species with plant 

species. The mean o f the ratio between Connectance p  & /; for restored landfill sites 

2007 = 1.56, 2008 = 2.40; and reference sites 2007 = 1.55, 2008 = 2.87. This shows that 

the ratios are very similar for both restored landfill and reference sites. Also the 

increased sampling effort in 2008 causes a proportionally greater increase in the number 

o f insect species than plant species recorded in the interaction structure.



Chapter 5 -  Flower-insect interactions

I
A Connectance p

I
V Connectance i

landfill reference

a)
Type of Site

I
A Connectance p

I
Connectance i

landfill reference

Type of Site
b)
Figure 5.08 Mean Connectance for plants and insects on restored landfill and reference sites (± 

95% Confidence Limits) N=sample sizes. Connectancep  = plant generalisation, Connectance /' = 

insect generalisation, a) 2007 Between site types; Connectance p: Paired samples t-test (two-tailed) 

t=0.12, df=8, p=0.91, Connectance i: Paired samples t-test (two-tailed) t=0.20, df=8, p=0.85. b) 2008 

Between site types; Connectance p: Paired samples t-test (two-tailed) t= 1.44, df=2, p=0.29, 

Connectance i: Paired samples t-test (two-tailed) t=0.17, df=2, p=0.88.

160



Chapter 5 -  Flower-insect interactions

Table 5.05 Summary of Connectance values.

(S a m p le  s ize s  fo r  2007: n =  9; fo r  2008 : n =  3)

C o n n e c t a n c e Y e a r T y p e  o f  s it e C o n n e c t a n c e

v a r ia b le M e a n M in . M a x . S t .  D e v .

Connectance 2007 Restored landfill 0.40 0.14 1.00 0.34

Reference 0.26 0.15 0.44 0.10

2008 Restored landfill 0.22 0.13 0.33 0.10

Reference 0.17 0.16 0.18 0.01

Connectance p 2007 Restored landfill 2.02 1.00 3.13 0.74

Reference 1.96 1.33 2.67 0.41

2008 Restored landfill 3.71 2.00 4.88 1.52

Reference 3.53 3.29 4.00 0.41

Connectance, 2007 Restored landfill 1.28 1.00 1.64 0.21

Reference 1.27 1.00 1.50 0.16

2008 Restored landfill 1.52 1.00 1.94 0.48

Reference 1.27 1.09 1.57 0.26
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Chapter 5 -  Flower-insect interactions

Assessment of sampling completion.

An assessment of the extent of sampling completion was made, comparing the number 

of plant species found within the interaction matrix, with the number of plant species 

recorded in the floral surveys. For 2007, there was no significant relationship between 

the richness of flowering plants found in the interaction webs and the richness of 

flowering plant species found on-site (Figures 5.09): as a rough approximation one third 

of the plant species found on-site were found in the interaction matrices. The greater 

sampling in 2008 did give a tighter relationship, but this was only significant when both 

the restored landfill and reference site results were combined for correlation, with 

approximately one half of those plant species on-site were found in the interactions 

(Figure 5.10).

Given that both the restored landfill and reference sites had similar correlation between 

the plant species from within the interaction web and those from floral surveys; there 

are no perceived implications of this for the results gained for this study. The increased 

sampling effort in the second year did mean that a greater proportion of the interactions 

were recorded (Figure 5.10). The expectation is that that all insect pollinated plant 

species would receive flower-visitation.
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Type of Site

x reference 

Rsq = 0.2441

landfill

Rsq = 0.2694

Plant species richness from floral surveys

Figure 5.09 Richness of plants in flower from annual interaction webs and on-site annual richness 

of plants in flower for restored landfill and reference sites 2007. Pearson's correlation (Two- 

tailed); Restored landfill sites: (N=9) r = 0.52, p=0.15, reference sites: (N=9) r = 0.32, p=0.40.

CO
if)<D
C

o
if)
<x>o<1>
CL
if)

x

Type of Site

x reference 

■ landfill
20 25 30

Plant species richness from floral surveys

Figure 5.10 Richness of plants in flower from annual interaction webs and on-site annual richness 

of plants in flower for restored landfill and reference sites 2008. Spearman’s rank correlation 

(Two-tailed); Restored landfill sites (N=3) r = 0.98, p= 0.12, Reference sites (N=3). r = 0.80, p= 

0.42. Pearson’s correlation (Two-tailed) for all sites: (N=6) r=0.94, p < 0.01.



Chapter 5 -  Flower-insect interactions

Interaction matrix nestedness analysis

Examples of interaction matrices are given for Brixworth restored landfill and Pitsford 

reference sites as these sites were sampled both years and are a comparison pair (Figure 

5.11). The nestedness metrics of the individual sites are presented in Tables 5.06 and 

5.07, individual site nestedness was assessed for significance against two null models. 

The Ce and Er null models were run 1000 times in ANINHADO to find which 

interaction matrices were significantly nested (Tables 5.06 & 5.07) at p<0.05. For 2007, 

no matrix was significantly nested. For 2008, only Brixworth restored landfill; summer 

and annual combined matrices were significantly nested. The results gained for both 

restored landfill and reference sites are therefore similar.

For the degree of nestedness for the plants and insects, there was a close correlation to 

that of the overall nestedness (Tables 5.06 & 5.07). There was no significant difference 

between the NODF values for the insects or plants for either restored landfill sites 

(Paired samples t-test (two-tailed) t=-0.86, df=6, p=0.42) and reference sites (Paired 

samples t-test (two-tailed) t=0.88, df=8, p=0.40).

There was no significant correlation found between NODF values and matrix size 

(Figure 5.12). This therefore supports the evidence of the robustness of NODF to 

species richness (Nielsen and Bascompte, 2007).
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Chapter 5 -  Flower-insect interactions

a) b)

c) d)

Figure 5.11 Examples of interaction binary matrices, a) Brixworth restored landfill site 2007, b) 

Brixworth restored landfill site 2008, c) Pitsford reference site 2007, and d) Pitsford SSSI reference

site 2008. ■ indicates interaction recorded. Rows = insects, columns = plants. Numbers refer to 

interaction totals. Generated using Nestedness Calculator (Atmar and Patterson, 1995).
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Chapter 5 -  Flower-insect interactions

Figure 5.12 NODF annual values and matrix size for restored landfill and reference sites 2007. 

Pearson's correlation; Restored landfill sites: r=-0.58 p=0.18, Reference sites: r=-0.47, p=0.20.
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Discussion

Interaction structure

A significant issue with using reference sites as targets to ascertain the success of 

restoration is that these sites often have different species of flora and fauna. From 

Tables 5.01 & 5.02 and Figures 5.01-5.03, the number of species shared within the 

interaction matrices on average range from 4% - 22 % of plant species and 18% - 30% 

ot insect species. This gives weight to the argument for examining ecological processes 

and interactions to overcome these chief problems. In theory, flower-insect interactions 

are a comparable entity between restored and reference sites despite any variation in 

species structure. This is because they show the underlying ecological functioning of the 

sites. If plant-flower-insect interactions are occurring then the assumption is that 

pollination is occurring, and hence plant reproduction (Kevan and Baker, 1983). Plant 

reproductive output was not measured directly within this study given the limited 

resources; the use of bioassays for assessing pollination services in further work would 

be useful. Plant reproduction ensures the long term viability of a habitat, and supports 

other associated plant feeding animals including herbivores, frugivors and seed eaters. 

These supported organisms, in turn providing ecosystem services or food resources to 

other organisms. Arguably, pollination is the back bone ecosystem service allowing for 

the continuation of a habitat.

The restored landfill and reference sites were shown to have very low levels of 

interaction similarity. On average, only 1.2% - 3.1% of the plant-insect interactions 

were found on both pairs of sites (Tables 5.01 & 5.02). This is expected given the 

percentage of shared plants (e.g. plant spp. percentage shared x insect spp. percentage 

shared = expected percentage of shared interactions). Only those interactions between 

species present on both sites could therefore be recorded on both sites. For 2007, eight 

of the nine pairs of sites shared no specific interactions (1 able 5.02). For 2008, 

Brixworth- Pitsford shared 4.3% with 4.65% expected; Sidegate -  Ditchford shared 

3.4%, with 3.4% expected; only the Wootton- Barnes Meadow shared a surprisingly 

low number of interactions of 1.7% with 10.8% expected (Table 5.02). Two of the three
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pairs of sites therefore have relatively high levels of shared interaction from those 

specific interactions possible. This low percentage of species and interaction similarity 

also gives weight to the use of metrics such as connectance and nestedness to assess 

ecosystem pollination functioning and hence restoration success.

Core species

Core species were determined for the restored landfill and reference sites (Tables 5.03 

and 5.04). Most of the core floral resources were plant species with open flower types, 

e.g. Taraxacum officinale, Ranunculus spp. Cirsium arvensis and Picris spp. (Tables 

5.03 & 5.04 and Figure 5.18). This is expected as these plants can provide floral 

resources to a wide range of flower-visiting insect groups, without them requiring 

specific tongue morphology for feeding. If these open types of flower are encouraged 

within habitat restoration then they are likely to encourage a broad range of flower- 

visiting insects, providing them with abundant available floral food resources. It has 

been previously shown that within plant-flower visitor assemblages the interactions are 

typically asymmetric, where generalist plant species support the more specialised insect 

species and generalist insects visit the more specialised plant species (Waser et al., 

1996). It therefore may be that these generalist plant species on a site may support both 

the more common generalist and the rarer, more specialised flower-visiting insects.

For the core flower-visiting insect species, in 2007, the two commonest species were 

Apis mellifera, and Bombuspascuorum (Table 5.03). In 2008, the commonest species 

were Bombus lapidarius, Calliopum spp., Sphaerophria scripta and Ferdinandea 

ruficornis (Table 5.04). Core species of plants and flower visitors were not typically the 

same for the restored landfill and reference sites. For 2007, only one species of core 

plant was found shared on a pair of sites, Trifolium repens on Wootton and Barnes 

Meadow (Table 5.04). The core insect species were more commonly found on pairs of 

sites with Apis mellifera found on two pairs of sites, and Bombus pascuorum on one 

pair. For 2008, only on the Brixworth landfill -  Pitsford reference site pairing were 

there any core species shared between sites (Table 5.04). Here, both sites shared 

Taraxacum officinale as a core plant and Bombus lapidarius and Calliopum spp. as core
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flower-visiting insects. No core species were shared between the other pairs of sites in 
2008 (Table 5.04).

Of possibly more interest and value is whether sites have the same core species from 

one year to the next. This would show the relative importance of a particular species for 

the on-going ecosystem functioning of a site. For the six sites surveyed both years, four 

plants w ere found as core species in both years, one on each of four separate sites. Only 

two insect species were found in both years, one on each of two separate sites (Tables 

5.03 & 5.04). Although this is a very short term study to make inferences from, given 

that more plant species were found as core species in both years than were insect 

species, this may indicate plant species at the core of interaction webs are less 

susceptible to population instability. More work is needed to determine the stability of 

the core species over the longer term, and during times of habitat disturbance.

The relationship between species connectance “coreness” and abundance was assessed 

(Figure 5.04). This relationship was found for both plants and insects, there was a 

significant correlation between their abundance and the number of connections they had 

with insects and plants, respectively. Whether this is a mathematical or statistical 

artefact is not clear, as abundance is linked to the number of connecting species i.e. with 

four connections there must be at least an abundance of four individuals recorded.

Mean connectance

There was no difference in the mean connectance found on restored landfill sites or 

reference sites in either 2007 or 2008 (Figures 5.05 a & b and Table 5.05). This 

indicates a similar level of species interaction between plants and flower-visiting 

insects. The restored landfill and reference sites’ mean connectance values in 2007 and 

in 2008 can be compared to published values (Table 5.08).

The values for connectance on restored landfill sites from this study are quite high for 

2007, compared to the other examples of plant-flower-insect connectance shown. The 

mean value for connectance on restored landfill and references sites are lower in 2008.
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A similar relationship holds true for both years with restored landfill sites having greater 

connectance than the reference sites. Potential reasons for this relatively high level of 

connectance may be the low richness of plant species found within the interaction 

matrices on the sites. The negative correlation between connectivity and matrix size has 

been found previously, in a meta-analysis study (Spearmans rank correlation r=-0.92, 

p<0.001) (Olesen and Jordano, 2002).

The difference in connectance values observed between years is likely due to the 

specific connectance of those sites contributing to the subset of sites in 2008. The mean 

connectance values were determined for those restored landfill and reference sites 

which were sampled in both 2007 and 2008 (Figure 5.06). Both types of sites had the 

same mean connectance value in both years. This is interesting and shows that site 

connectance values may be constant for sites. For specific sites, there was significant 

correlation between values for both years (Figure 5.07). Also of interest is that the 

levels of connectance did not significantly change with an increase in sampling effort in 

the second year. This does raise further questions and areas of study relating to which 

site specific variables are therefore governing interaction web connectance, and whether 

this holds true over longer time.

Table 5.08 Examples of network connectance for plant-flower visitor insect systems,

System Location Conncctance Published

Restored landfill sites 2007 East Midlands UK 0.40*

Reference sites 2007 

Old Heathland

East Midlands UK 0.26*

Devon, England

Restored Heathland 

Reference sites 2008 

Waste ground 

Old hay meadows 

Grassland

Restored hay meadows 

Grassland-conifer forest

Devon, England

Denmark 

SW England

SW England 

Colorado - USA

Mediterranean shrubland. SW Spain

0.26

Restored landfill sites 2008 East Midlands UK 0.22*

0.19

East Midlands UK 0.17

0.12

0.08

Cass, New Zealand 0.06

0.05

0.04

0.01

(This thesis)

(This thesis)

(Forup et al., 2008)

(This thesis)

(Fomp et al., 2008)

(This thesis)

(Olensen, unpub.)'

(Fonip and Memmott, 2005b) 

(Primack, 1983)

(Forup and Memmott, 2005b) 

(Waser et al., 1996)

(Herrera, 1985)

* - Mean given. * cited in Jordano (1987); f cited in Olesen and Jordano (2002)
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Generalisation of flowering plants and flower-visiting insects

The levels ol generalisation ol plants and insects were similar for both restored landfill 

and reference sites in 2007 and 2008 (Figures 5.08 a & b and Table 5.05). The plants 

had greater levels of generalised visitation than the flower-visiting insects, which has 

often been found in other studies (Bosch et ah, 2009). One reason for this may be the 

greater number ol flower visitor species than plant species typically found within 

studies of flower visitor interactions. Pollination network studies are typically based on 

flower observations, where insects seen to visit flowers and potentially pollinate are 

recorded or captured. The abundance usually follows a skewed distribution with a few 

abundant species and many rarer species. It is possible that those flower-visiting insect 

species which have a naturally low density within a habitat or landscape will be 

perceived as specialists owing to their infrequent observation. There were many more 

individual inflorescences than individual flower visitors, and also there are fewer 

species of plants than insect species, and so given equal sampling effort there is a 

greater likelihood that plants will record more species of insect visitation.

That a higher number of specialist insect interactions are observed is at odds with the 

accepted idea that generalisation is the rule (Insect species connectivity with plant 

species, for both restored and reference sites 2008: Mean = 2.04, Median = 2.00)

(Figure 5.13). Possible reasons, on a local spatial or temporal scale, are that flower 

visitors may act as specialists visiting few plant species. Secondly is the aspect of 

incomplete sampling. A four year study showed a marked decrease in perceived 

specialists, when species-species interactions were collated over the longer time period 

(Petanidou et al., 2008).
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Std Dev = 1 25 

Mean = 2 

N = 327.00

Figure 5.13 Frequency of insect species connectivity with plant species, for both restored and 
reference sites 2008.

Ratio for plants and insect species within interaction structure

The relationship between the number of plant and insect species within the interaction 

matrices was assessed. There were approximately twice as many insect species as plant 

species. A similar significant positive correlation was found for both restored landfill 

and reference sites (Figure 5.14). This relationship is similar to that found for Olesen 

and Jordano (2002) data set (Figure 5.15). This ratio between the number of plant and 

animal species within assemblages needs further examination and research, determining 

if this is possibly vegetative biome related and whether restricted to flower visitor 

mutualistic interactions.
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Type of Site

*  reference 

Rsq = 0.4734

landfill

Rsq = 0.7355

Figure 5.14 Plant and insect species richness for interaction matrices on restored landfill and 
reference sites. Both 2007 and 2008 are shown. Pearson's correlation (Two-tailed): Restored 
landfill sites: r = 0.86, p<0.001, reference sites: r=0.69, p=0.01.

Rsq = 0.6702

Figure 5.15 Examples of plant and animal species richness for interaction matrices.
Data taken from Olesen and Jordano (2002). Pearson's correlation (Two-tailed): r=0.82, p<0.0001
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Assessment of sampling

In the assessment of sampling completion (Figures 5.09 & 5.10), there was no 

correlation between the number of plant species on-site and the number found within 

the interaction matrix. This may be indicative of incomplete sampling which may be 

missing the rarer interactions, as the expectation would be to see a significant 

correlation. Also in 2008, with increased sampling the proportion of plant species found 

within the interaction matrix from those on-site increased (Figure 5.10). However, as 

the incomplete sampling was present on both types of site, it will not significantly affect 

the comparison results. The richness of plants in flower used in calculating connectance 

did not necessarily include all of those present on-site and so values were correlated 

with the total floral richness found on-site. The relationship between the richness of 

flowering plants found within the interaction webs (this chapter) and the total number of 

flowering plant species on-site (Chapter 3) was assessed. The greater sampling in 2008 

did give a tighter relationship, but this was still not significant (restored sites: 2007: 

Pearson's correlation r=0.52, p=0.15, 2008: spearman’s correlation r= 0.98, p = 0.12). 

This is interesting as it was expected that sites with increased richness of plants in 

flower would have an increased number of flowering plants in their interaction web.

Further evidence of the disparity between the total richness of plants in flower and those 

found from within the interactions could represent the pollination services occurring on 

the habitat sites. The pollination services perceived here by flower-visitation rates, 

showed a similar relationship for both the restored landfill and reference sites. The 

proportion of the plants in flower found on the sites over the whole year was 

significantly more than the plant species richness found within the interaction matrix.

For 2007 this was approximately a factor of three, and in 2008 a factor of two. Reasons 

for this could be attributed to the increased sampling effort. Further research is required 

into how common this is within other assemblages of plants and flower visitors. For 

annual plants this could be detrimental, but for perennials less so if they are pollinated 

and set seed in the following years. For 2007, the species richness of plants was 

recorded along the same transect as those used for the flower visitor interactions, whilst

176



Chapter 5 -  Flower-insect interactions

in 2008, the flower visitor interaction survey was across more of the site and so may 

have been just a function of the patchiness of vegetation.

This is not to say that the sampling regime was inadequate, as the surveying was applied 

evenly across both types of sites and therefore allowed for restored landfill and 

reference comparison. Of consideration was that there was no significant difference in 

the connectance values for those sites that were surveyed in both years (Figures 5.06 a 

& b). Each site was surveyed for an average of 354 hours covering 700m2 in 2007 and 6 

hours covering 3600m- in 2008. This conversely, supports the suggestion that

connectance is less susceptible to sampling effort than species richness (Martinez et al., 
1999).

It has been described that connectance is robust to reductions in sampling effort 

(Vazquez and Aizen, 2006; Nielsen and Bascompte, 2007), however, it does remain to 

be seen whether there is a possible threshold to this relationship given extensive 

sampling (Figure 5.16). Following saturation sampling (the vertical dashed line), the 

speed of species accumulation may slow (A) and connectance may increase (B) rather 

than continue as expected (C). This would be due to the fill of the matrix increasing 

with increased sampling after the threshold saturation point. The saturation threshold 

point being where no new species are being recorded.
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Figure 5.16 I heoretical sampling with relation to Connectance, Interaction abundance, Matrix

species richness and Sampling effort. Solid line: Connectance, = matrix species richness,

-  interaction abundance. A -  slowing increase in species richness, B -  increasing connectance, C -  

continued rate of connectance. Vertical dashed line = sampling saturation threshold.

Nestedness of interaction structure

The restored landfill sites had a mean nestedness of approximately 20 degrees, most 

empirical matrices have a 40-70 degree of nestedness (Almeida-Neto et al., 2008) 

(Tables 5.06 & 5.07). Few of the sites were significantly nested when compared to null 

models, none in 2007 and only Brixworth in 2008 (Tables 5.06 & 5.07). The 

exponential / logarithmic relationship between matrix size and nestedness suggests that 

only species rich systems will be highly nested, and small systems will not generally be 

nested (Bascompte et al., 2003; Guimaraes et al., 2006) (Figure 5.11). Nestedness is 

effectively undetectable below a particular threshold of species richness, a problem in 

describing small networks (Guimaraes et al., 2005), although nestedness analysis is less
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sensitive to sampling effort than the number of species within the interaction structure 
(Nielsen and Bascompte, 2007).

Nestedness was therefore not significant for either restored landfill or reference sites, 

but is used here in comparing the two kinds of site. The aim for this research has been to 

determine whether the restored sites are functionally successfully restored, though 

comparison of their interaction structure with that found on reference sites. The 

maximum nestedness lor restored landfill sites was lower than that for the reference 

sites (Tables 5.06 & 5.07). Increased nestedness has been suggested to increase 

robustness and decrease the effects of species extinction due to habitat loss (Fortuna and 

Bascompte, 2006). This therefore may indicate that reference sites are less robust than 

the reference sites, and may possibly be prone to extinction cascades following the loss 

of a plant or insect species from the sites. However, given that neither sites are 

significantly nested when compared to null models, this is difficult to conclude.

Ulrich et al. (2009) and Vasquez et al. (2009) highlight four possible ways that 

interactions may develop a nested structure, namely: i) individual abundance and 

passive sampling, ii) phenotypic matching, iii) plant phenology or temporal sampling, 

and iv) phylogenetic relationships. This study gives support to two of these reasons for 

nestedness. As previously described, the relationship between species connectance and 

abundance was assessed (Figure 5.04). This found for both plants and insects, there was 

a significant correlation between their abundance and the number of connections they 

had with insects and plants, respectively. Secondly this study supports how temporal 

sampling e.g. seasonally, and then collation into annual matrix, would promote subsets 

of nested species within the larger group. An example of this is shown in Figure 5.17, 

the interactions recorded on Brixworth restored landfill sites are clearly delineated by 

the months in which they were recorded. The interaction structure is being affected 

temporally, given the limited plant species overlap between seasons. This highlights the 

value of sampling across the whole year as phenologicaly, insects and flowers may not 

overlap. This also highlights the need within flower visitor conservation to find core 

floral resource species for each season, particularly within species poor habitats.
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1 spring
2 summer
3 autumn

spring & summer

Figure 5.17 Interactions recorded over seasons for Brixworth restored landfill site 2008. X-axis A-S 

= plant species, Y-axis 1-31 = insect species. 1-4 seasons in which interaction were recorded. Border 

lines indicate area in w hich the majority of seasonal interactions occur. Phenological development 

can be imagined as running horizontally left to right.

In conclusion, the restored landfill sites have a similar interaction web as do the 

reference sites, regarding their mean connectance and nestedness. Pairs of restored 

landfill and reference sites share few species specific interactions, but this is inline with 

expectation given the proportion of species they share. The cores species found on the 

sites are generalists as expected and the more abundant species form more connections. 

Similar levels of plant and insect generalisation were found on both types of site, and 

plants interacted with more insect species than vice versa. Overall, the restored landfill 

sites can be determined as successfully restored given their similarity in interaction 

webs with the reference sites.
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Results summary

In conclusion, the results of this part of the study can be summarised as follows:-

• Few plant and insects species were shared between pairs of restored landfill and 

reference sites and fewer specific interactions.

• In this study core plant species tend to be open flowered.

• The core species were the most abundant within the interaction structures in the 
study.

• Between years, sites had more core plant species shared, than core insect 

species.

• No significant difference was found betw een the mean connectance of restored 

landfill sites and reference sites in either 2007 or 2008.

• No significant difference was found in the mean connectedness values for those 

sites sampled in both 2007 and 2008.

• Plant generalisation was found to be greater than the insect generalisation for 

both restored landfill and reference sites in both years.

• No significant difference was found between the restored landfill or reference 

sites plant generalisation or insect generalisation found in 2007 or 2008.

• No significant correlation was found between the number of plant species found 

on-site or within the interaction structure.

• Neither restored landfill or reference sites were not found to be significantly 

nested and there was no significant difference found in the nestedness NODF 

values found on restored landfill or reference sites.
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Figure 5.18 Core floral species with open flower types. Clockwise from top left: Taraxacum 

officinale, Cirsium arvensis, Ranunculus sp. and Picris sp.
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Conclusions and Recommendations

“There is nothing in which the birds differ more from man than the way in which 

they can build and yet leave a landscape as it was before.”
Robert Lynd (1879 - 1949)

“Careful. We don't want to learn from this.”

Bill Watterson (b. 1958), "Calvin and Hobbes"

In this thesis the main objectives were to examine flowering plant species richness, 

floral resource abundance, flower-visiting insect richness and abundance and their 

interaction structure on restored landfill sites and to compare them with reference 

wildlife sites. This enabled determination of the restored sites' potential to support 

pollinating insects and the use of species interactions to indicate functionally successful 

restoration. No other studies have examined the assemblage of plants and their flower- 

visiting insects on restored landfill sites. This concluding chapter will consolidate and 

summarise the findings from this research and discuss the progress this has made in our 

current understanding of the potential for restored landfill sites to provide floral 

resources, support flower-visiting insects and determine success through examining 

species interaction webs. Additionally, recommendations are made for landfill site 

operators regarding restoration practice, and the limitations of this research are 

highlighted as are areas for future research.

The thesis was structured with Chapter 1 introducing the topic for study and the 

rationale behind this research project; and Chapter 2 describing the basic methods used. 

The main results for each of the other chapters will now be summarised and their 

implications discussed.

The examination of the floristic characteristics of restored landfill sites has showed us 

that they are providing as rich and abundant floral resources as do the reference sites.
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There was no dilference in the plant richness and floral abundance between restored 

landfill sites and reference sites. Approximately one quarter of plant species recorded 

in flower were unique to both restored landfill sites and reference sites, and one half 

were found on both types. The expected seasonal variation was apparent with floral 

resources and flower visitor activity peaking in the summer. In the spring the restored 

landfill sites had lower species richness and floral abundance than the reference sites. In 

the autumn the restored sites had higher species richness and floral abundance than the 

reference sites.

It has been seen within this study that the naturally revegetated restored landfill sites are 

well vegetated, and have floral resources equal to those sites which were sown. The 

most promising sites for natural colonisation are those with poor soils. Landfill site 

operators would benefit from using poorer soils as they are easier and cheaper to obtain 

for restoration than nutrient rich ones; often compost and soil ‘improvers' are added to 

landfill top soils to meet environmental targets (Simmons, 1999; Watson and Hack, 

2000). There is a cost benefit of using cheaper, poor soils and allowing natural 

revegetation, allowing significant savings to be realised. One possible consideration is 

whilst revegetation is awaited, soil run-off could occur; however with most opportunist 

species run-off would be minimal (Gilbert and Anderson, 1998). Where this is still of 

concern, possibly on those steeper slopes or sites, then the use of a grass nurse-crop of 

an appropriate species would be advantageous.

The policies brought in to regulate the restoration and after-use of landfills have had the 

unforeseen effect of creating well vegetated, florally diverse restored sites. The seed 

mixes, where used on sown sites, are cheap and grow readily on the soils, even though 

they may undergo difficult environmental conditions such as drought in the summer and 

water-logging in the winter (Gilbert and Anderson, 1998; Watson and Hack, 2000).

The long term after-use on the landfill sites may affect their continued floral resource 

provision. The sites studied were only up to 15 years old, and more research work needs 

to be done as the sites age. After they have become non-hazardous as designated by the 

Environment Agency, they are likely to be utilised for either agricultural or amenity
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purposes. This may however take 30 years or more (Watson and Hack, 2000). This 

change in landuse has yet to occur so it may be possible to intervene and persuade the 

landfill operators and policy makers that in England we are lacking in undisturbed 

restored sites which could be managed for the best possible benefit for flower-visiting 

insects, in so doing benefiting the landscape's biodiversity and proving valuable 

conservation habitats and seed banks for native species.

The decline of population of flower-visiting pollinating insects has been seen and 

attributed to habitat loss and degradation across the world (Allen-Wardell et al., 1998; 

Corbet, 2000; Steflan-Dewenter et al., 2002). Much of the research highlighting the 

current crisis relates to the decline of bee species (Williams, 1982; Westrich, 1996; 

Carvell, 2002; Goulson, 2003a; Ghazoul, 2005; Goulson et al., 2005; Carvell et al., 

2006; McFrederick and LeBuhn, 2006; Inouye, 2007; Michener, 2007; Colla and 

Packer, 2008; Osborne et al., 2008a). However, their loss may be symptomatic of the 

loss of obscure none the less important pollinating insects which is going under 

reported; the available evidence suggests that many wild pollinators have declined 

dramatically in recent decades, in the UK, in Europe and globally (Buchmann and 

Nabhan, 1996; Kearns and Inouye, 1997; Corbet, 2000; Biesmeijer et al., 2006). The 

restoration of habitats which can support all flower-visiting insect groups is therefore of 

importance. For the comparison of flower-visiting insects both restored landfill and 

reference sites support rich and abundant flower visitor fauna. There was no difference 

between the restored landfill and reference sites mean flower-visiting insects’ species 

richness or abundance. The same groups of insects were found on both types of sites, 

and there was significant overlap in species and abundance between the two types of 

site. Hoverflies, bumblebees and flies were the groups with the greatest species 

abundance on the restored landfill sites. Some groups of insects, namely hoverflies were 

more species rich and abundant on the restored landfill sites than on the references sites, 

whilst butterflies had less species richness and abundance on the restored landfill sites 

than reference sites. The most abundant species were common ones found on both types
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Within the habitat restoration framework, not only should habitats be considered for 

their potential to support flower-visiting insects, but the flower-visiting insects should 

be encouraged to enable pollination of flowering plants (Dixon, 2009). It has been 

suggested that restoration may be much more successful if due attention is applied to 

pollinators in the early stages (Neal, 1998). The direct effects of pollination within a 

restored habitat may be quite apparent e.g. seed set. The indirect effects for example,

gene flow and genetic diversity, may be less apparent, but are none the less essential for 

the long-term success of restoration.

The restored landlill sites have the potential to play a significant role in the conservation 

effort for the common flower-visiting insects now in decline. Notable loss of pollinator 

habitats in the UK include the loss of unimproved flower-rich grasslands (formerly 

valued as pasture and for hay production) (Goulson, 2003b) and the removal of 

hedgerows (Hannon and Sisk, 2009). The loss of habitats and semi-natural vegetation 

causes the loss of food resources, suitable nesting sites and materials. Flower visitors 

not only rely on habitats to supply their food sources, but also other life cycle 

requirements including nesting sites and materials. The decline of flower-visiting insect 

species has also been matched by losses in general biodiversity with parallel declines in 

butterflies, birds and plants on British farmland (Smart et al., 2000; Thomas et ah,

2004).

The main issue with using reference sites as comparisons to ascertain the success of 

restoration processes is that they are different; this may be in space, soil type, but the 

principal problem is different vegetation structure. Research into the colonisation of 

new habitats has shown that new sites can vary in the species that become established 

from the available species pool, where ecological niches may be occupied by different 

species than on reference habitats (Simberloff and Wilson, 1969; Diamond, 1970; 

Schilthuizen, 2008). This is an issue in examining species with regards to restoration 

success, and highlights that functional and structural assessments are important. By 

examining an essential ecosystem service this has overcome these chief problems. The 

plant-flower-insect visitation web is comparable between restored and reference sites 

despite any variation in species structure. Ecological restoration and habitat creation is
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w idely practiced, however the scientific determination of its success has been slow to 

develop. Species interactions can provide a good target forjudging restoration success 

in comparison to species richness and abundance (Forup et al., 2008). The interaction 

network, characterises both functioning and species presence.

The restored landfill sites have a similar interaction web to the reference sites regarding 

their mean connectance and nestedness. The flower visitor interactions were analysed 

by their network attributes in order to verify structural and functional variation between 

restored landfill sites and reference nature sites of similar habitat type (See Chapter 5). 

There was no significant difference between the mean connectance of restored landfill 

sites and reference sites in either of the years in which fieldwork was undertaken. Pairs 

of restored landfill and reference sites shared few species-specific interactions, but this 

was in line with expectation given the proportion of species they share. The core species 

found on the sites were generalists as expected and the more abundant species form 

more connections. The core plant species visited by flower visitors were open flowered 

in morphology meaning that no specialist feeding morphology was required. Those 

species which were at the core of the interaction webs, forming the most connections, 

were also the most abundant. Similar levels of plant and insect generalisation were 

found on both types of site, and plants interacted with more insect species than vice 

versa. There was no significant difference in the nestedness found on restored landfill 

or reference sites. Overall, the restored landfill sites can be determined as successfully 

restored given their similarity in interaction web with the reference sites.

Restoration success

The Society for Ecological Restoration International - Science & Policy Working 

Group, provides a list of nine ecosystem attributes which can be used as a guide in 

measuring restoration success (SERI, 2004):

1. Similar diversity and community structure in comparison to reference sites;

2. Presence of indigenous species;

3. Presence of functional groups necessary for long-term stability;

4. Capacity of the physical environment to sustain ongoing populations;
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5. Normal functioning;

6. Integration within the landscape;

7. Elimination of potential threats;

8. Resilience to natural disturbance;

9. Self-sustainability.

In the assessment of restoration success, in addition to evaluating the above criteria on 

site, it is necessary to compare the ecosystem attributes to those from reference sites 

(SERI, 2004). References sites should occur in the same biological region, within close 

proximity, and experiencing similar climatic and natural disturbances (Hobbs and 

Harris, 2001; SERI, 2004).

In practical terms most studies assess one or more of just three parameters; species 

diversity, vegetation structure, and ecological processes (Rhoades et al., 1998; Ruiz- 

Jaen and Mitchell Aide, 2005). Species diversity is usually measured by recording 

richness and abundance of species at different trophic levels (Nichols and Nichols, 

2003). Vegetation structure is measured by determining the vegetation cover, biomass 

or vegetation profiles. Ecological processes such as nutrient cycling or species 

interactions are important as they indicate the functionality of a habitat. However, such 

processes are not considered as frequently as diversity and vegetation structure (Ruiz- 

Jaen and Mitchell Aide, 2005).

Successful restoration has often been seen in terms of species diversity rather than 

functioning processes. However, the simple presence of rare species, for example, is a 

blunt measure of success. True ecosystem function is seen in the species interactions, 

both mutualistic and antagonistic. Mutualism interactions are rarely considered in the 

restoration context; however they may be good indicators of a successfully functioning 

restored ecosystem. They show that species are present on the habitat sites and 

interacting and so demonstrating ecosystem functioning. The recovery of biological 

interactions in a restored habitat is critical for its long-term persistence (Ruiz-Jaen and 

Mitchell Aide, 2005). There has been a move towards recognizing that most 

ecosystems are dynamic and hence restoration goals and assessments cannot be based
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on static attributes (Hobbs and Harris, 2001). Therefore examining the species 

interactions is becoming recognized as of greater importance.

Within this thesis a species interactions approach has been applied to the question of 

restoration success. Within restoration ecology there needs to be a shift away from 

individual species, towards community interactions, and hence ecosystem functioning. 

The advantages of using flower-insect visiting interactions for determining restoration 

success, relates to this measure examining two trophic levels of organisms and also 

ecosystem functioning. The disadvantage is that it requires multiple measurements 

across the flowering seasons, which increase the time and so the cost of assessment.

Assessment of landfill site restoration success

The restored landfill sites considered in this study were assessed for successful 

restoration, in comparison to averaged results from the reference sites (Tables 6.01 & 

6.02). Consideration was made as to whether the restored landfill sites should be 

compared against the lowest reference site values, but it is the opinion of the author that 

this would be underselling the potential of the restoration. The reference sites were 

wildlife sites, but showed variation within their provision of floral resources and 

potential to support flower-visiting insects. Therefore the mean result of their overall 

potential was a better target than the lowest of their floral resources or richness and 

abundance of flower visitors supported. Comparison with the single best reference is an 

unrealistic proposal.

The criteria and points system which were determined for governing successful 

restoration within this thesis for the sites assessed are as follows:

• A category would be deemed successful for a restored landfill site if it was 

above the mean of the reference sites (Scored 3 points).

• Site variables could also be given an intermediate pass if the variable value was 

below but within one standard deviation of the mean (Scored 1 point).

• Any values greater than one standard deviation below the reference mean were 

automatically deemed to be unsuccessfully restored (Scored 0 points).
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• Greater importance was placed on flower-visiting insects rather than plants, as 

the locus for this study was the potential of the restored landfill sites for 

supporting pollinating insects. Therefore the scores for success for the variables

ol flower-visiting insects richness and abundance were weighted at one and a 
half times.

• Nestedness and connectance were examined independently against the mean 

from the reference sites.

• Sites can be deemed: successfully restored (scored > 16); currently unsuccessful, 

but not critical (scored 8 <16; or unsuccessful and remediation required (scored 

< 8).

Of the nine restored landfill sites surveyed in 2007, two were deemed as successfully 

restored, five were deemed unsuccessful but not critical, and two were deemed as 

unsuccessful and in need of remediation attention (Table 6.01). For 2008, two of the 

three sites surveyed were deemed successfully restored and the third unsuccessful 

(Table 6.02). Three restored landfill sites were surveyed in both 2007 and 2008, 

namely: Brixworth, Sidegate and Wootton. For 2008 the sites had greater surveying 

intensity than in the proceeding year. Two of the sites, Brixworth and Sidegate Lane, 

had the same result in both years, successful and unsuccessful respectively. Wootton 

was deemed as currently unsuccessful in 2007 and then as successful in 2008. This 

change in status is likely due to the increased sampling rather than a change in 

biodiversity or ecosystem functioning in such a short space of time. This change in 

categorisation for Wootton does highlight that caution should be applied in using this 

approach, although limited sampling will always exist to some extent.

The success of restored landfill sites to support pollinating insects may also be 

examined exclusively. Eight of the nine restored sites are below the reference site mean 

for richness of flower-visiting insects, whilst an equal number are above the reference 

site mean for flowering plant richness (Table 6.01).

The apparent successful return of flowering plants for the majority of sites may relate to 

early successional communities. Restored sites may quickly regain species richness of
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plants, but not ot the same species as those found on longer established reference sites.

The relatively unsuccessful return of flower-visiting insect richness may relate to insect

species dispersal abilities. Although insects have greater mobility as individuals than

plants, they still require both actual arrival and site specific requirements to become 
established.

Using both nestedness and connectance values in determining restoration success is 

useful. This is particularly true when interaction matrices are small. Where only a few 

interactions are recorded, this leads to a high connectance value, given the relatively 

higher fill ot the matrix. Nestedness is common in mutualistic systems but not always 

present in species poor systems (Guimaraes et al., 2006). Comparing the relative levels 

of both connectance and nestedness may be important. In the early stages there may be 

higher connectance and lower nestedness, whilst older more established systems 

conversely may have lower connectance and higher nestedness. This relates to the 

balance between species richness of plants and flower-visiting insects and the number 

of interactions. Those sites which have been newly colonised by plant species, will take 

a while for the development of floral resources. Once this has developed then sites will 

begin to be visited by flower-visiting insect species. With relatively low abundance of 

species on-site at the start of restoration, high levels of flower-insect connectance will 

be observed, but it is unlikely that the assemblages will be nested, rather insect species 

being sampled predominantly from separate plant species. The habitats then continue to 

develop and the number of species builds up, here a decrease in the level of connectance 

is seen, as each new sample often adds new species to the matrix. The habitats continue 

to develop and abundance of individuals within species will increase. It is only 

following a build up in the abundance of insects of individual species that samples of 

insects will be taken from numerous plant species. This will then increase the 

probability that an assemblage of plants and flower visitors is nested. This balance 

between connectance and nestedness could therefore be used to show the stage of 

ecological development of a restored habitat.
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Chapter 6 -  Conclusions and Recommendations

The criteria for determining whether restored landfill sites were successful at supporting 

specific groups ot flower-visiting insects was whether more sites supported above the 

reference mean than below (given buffering for 1 St. Dev.). Any values greater than one 

standard deviation below the reference mean were deemed to be unsuccessfully 

restored. For groups of flower-visiting insects, the restored landfill sites can be deemed:

successfully restored; currently unsuccessful, but not critical; or unsuccessful and 
remediation required.

Overall, taking the results from both 2007 and 2008 into consideration, those groups of 

flower-visiting insects for which restored landfill are successful are Bumblebees, Flies 

and Hoverflies (Tables 6.03 & 6.04). Those groups for which the restored landfill sites 

can be seen as unsuccessful in supporting are Butterflies and Beetles (Tables 6.03 & 

6.04). As described previously in Chapter 4, reasons for the idiosyncratic response in 

different groups is likely attributed to habitat variables which were not recorded or 

relative dispersal and colonisation ability of the taxa.
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Chapter 6 -  Conclusions and Recommendations

Conservation implications of restoring landfill sites for flower-visiting insects

This thesis has shown that restored landfill sites can support a relatively high diversity

of plant and insect species. Although the total numbers of species differ, the trends in

abundance and richness of plants and insects are similar in many ways and closely 
linked.

The potential of restored landfill sites is quite comparable to local nature reserves in 

terms of distribution and land area. There are approximately 2,200 landfill sites 

covering 28,000 ha. in England and Wales (Environment Agency, 2007a) and there are 

more than 1400 local nature reserves covering 35000 ha. in England (Natural England, 
2009).

The even distribution throughout the landscape means that landfill sites have the 

potential for supporting great agricultural pollination service provision (Figure 6.01). 

When a 2km buffer is applied to landfill sites we see that the majority of the country is 

covered. With the effects of climate change altering the ranges of insect species, the 

restored sites may be utilised as stepping stones across the UK. The restoration of 

habitat sites may allow the movement of individual flower-visiting insects from one 

area to another, in so doing increasing or moving their habitat ranges. If restored sites 

provide the foraging and nesting needs of insects, networks of small reserves may hold 

important potential for sustaining considerable pollinator richness and the ecological 

services they provide (Cane, 2001). The evidence overall of the persistence of 

pollinating insects of relatively rich diversity and abundance on modest sized restored 

habitats promises a practical solution for the conservation of populations of flower- 

visiting insects.
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Figure 6.01 Potential extent of pollination serv ice provision when a 2 km buffer zone is applied to 

landfill sites in Great Britain (Elliott et al., 2001). Based on 9565 landfill sites operational at some time
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Restored landfill sites can operate as long term wildlife habitats areas within the wider 

agricultural environment, providing areas free of agrochemical use. Restored landfill 

sites should be managed to maximise the floral resource provision in the autumn, when 

they may be absent within the landscape due to late summer grazing and mowing. If 

habitats are managed to provide a seasonal succession of suitable forage plants they can 

encourage bee and bumblebee populations (Fussell and Corbet, 1992; Corbet, 1995).

In the agricultural landscape, the diversity of flowering plants and pollinating insects are 

affected by a number of habitat attributes. For both insects and plants, it is important 

that these factors be integrated into their conservation measures. Community 

development and growth in a restored habitat requires a variety of plant mutualists. For 

plant reproduction, flower visitor richness and abundance must be adequate for the 

number and types of flowers, whether they have been artificially introduced or naturally 

set. Plant species that require specialised pollinator species may suffer the greatest 

limitation of seed set. Successful pollination will depend on the rates of invasion of the 

flower-visiting insects to the site. Protocols for restoration must include provisions for 

flower-visiting insects, as well as for the habitat requirements of the plant community. 

Giving due attention to the critical role of mutualists will increase the speed and 

likelihood of successful restoration, at no additional costs.

A landscape approach to restoration, may address issues related to practical constraints 

in restoration practice, such as ensuring that the establishment and recruitment of flora 

and fauna, is possible within the spatial configuration of the landscape. A study of 

agricultural field margins for example, found that small areas of habitat with flowering 

plants can be very effective at attracting and supporting pollinator populations (Lagerlof 

et al., 1992). Conservation and creation of bee habitats could be the best way of 

reversing the declines in pollinator populations. However, there is more to conserving 

an insect’s habitat than food alone, and it possible that suitable nesting opportunities 

generally limit pollinating insect’s abundance. Most flower visitors are generalists but 

have specific requirements for nesting. A study in the US has shown that bumblebee 

abundance in urban parks is limited by nest site availability (McFrederick and LeBuhn,
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2006) and a recent study in the UK has shown that bumblebee nests appear to be more 

common in gardens than they are in the countryside (Osborne et al., 2008a). This may 

reflect a paucity ol suitable nesting habitat in the rural environment. In this study, the 

correlation between flower-visiting insects and flowering plant richness and floral 

abundance does highlight that the floral resources are important, and that the presence 

of pollinator benelicial habitat features may be insufficient to significantly influence 

flower-visiting insect abundance or species richness. Encouraging pollinating insects to 

nest on restored landfill sites by offering suitable nesting habitat in combination with 

plentiful forage may help to ensure efficient pollination of wild and agricultural plants.

The maintenance of a healthy and diverse population of pollinating insects in the rural 

environment may ensure maximum yields of agricultural plants (Kremen et al., 2004), 

and may also be of great value for the survival and propagation of wildflowers (Osborne 

and Williams, 1996). Of recent development relating to this topic is the proposal of the 

world's first ‘Pollination Park' on a restored landfill site in the city of Guelph, Ontario, 

Canada. Here Guelph's 40 ha. Eastview landfill site is being turned into a habitat for 

pollinators by designing the restoration to include plant species that attract pollinators 

(Pollination Guelph, 2009).
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Recommendations for landfill site operators and the waste industry

Operators ot landfill sites should consider their development in a holistic manner from 

the outset, including their working life, restoration and after use of the site; and this is 

now part ol the government guidance (Watson and Hack, 2000). If operators are from 

the start proactive towards habitat restoration for wildlife then success is more likely 

and cost effective. Detailed planning from the outset may highlight valuable habitat on 

the sites, and targeting their protection may lead to speedier post-restoration 

colonisation. The restoration process may also be cheaper with local public engagement, 

potentially encouraging seed provision and management by local conservation groups. 

The advantages of wildlife habitat creation for landfill operators include its public 
relation value.

Restored landfill sites are relatively homogenous, having had graded soils and typically 

a seed mix over spread them. As such their best restoration may be to avoid the 

temptation to try and restore to a number of habitats and instead restore one large block 

of habitat. The restoration should aim to create a habitat suitable to the hydrology and 

topography and be appropriate to the surrounding landscape. Following is a number of 

recommendations aimed at restoration design and ongoing management practice on 

closed landfill sites, targeting habitat provision for flower-visiting pollinating insects.

Little is known about the life history of the majority of pollinating flower visitor species 

and so most advice here is based upon generalities. Most conservation advice is focused 

upon land management rather that restoration (e.g. Edwards, 1996). Consideration 

needs to be made whether to target the most effective pollinating insects, i.e. for the 

ecosystem service they provide to native and agricultural plants, or rarer species which 

are more threatened with extinction. Given the current wide-scale decline, restored 

habitats may be best at targeting their conservation efforts at the most general 

pollinating insects and letting NGO managed nature sites be concerned with rarer 

species with more specific habitat requirements. Focus of concern for restoration of 

habitats targeted for flower-visiting insects can therefore be on suitable general forage 

and nesting requirements. Restoration targeted at pollinating insects will not only
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benefit flower visitors but also numerous species supported by the plants. They will also 

potentially benefit plants in the surrounding landscape which benefit from their 
pollination services.

Soils

For many sites restoring in the general direction of species rich grassland may be 

beneficial. Soils of such sites typically have low concentrations of major plant nutrients 

particularly nitrogen and phosphorus. The low nutrient status, and relatively shallow 

soils will favour those plants which are drought tolerant species, typically deep rooted 

perennials (Hutchings and Stewart, 2002). Whilst selecting soils for overlaying, 

consideration should be made where possible to use soils which contain appropriate 

seed banks. This includes consideration of both storage and sources location. Use of 

lower fertility soils may benefit the floral assemblage through reducing competition 

from grasses. Compost should not be used for soil ‘improvers' and bulk agents, and 

sand or gravel should be used to break up soils which are predominantly clay.

Seeding and plant selection

The typical cheap annual grass seed mixes used by landfill restoration may actually act 

as a ‘nurse-crop’. They provide an immediate green cover which will help suppress 

weeds whilst the slower growing annuals establish (Hutchings et al., 2006). The 

assumption is that over time these initial species eventually will be excluded by the 

perennials, however the nurse crop will itself slow the establishment (Mitchley et al., 

1996). Sowing may be undertaken via tractor mounted spreaders or hydro-seeding. With 

hydro-seeding, seed-water mulch is sprayed, which can effectively cover a large area 

quickly. Regular annual cutting on the restored landfill sites will prevent it growing too 

vigorously.

Where wildflower seed is used to create a flower-rich meadow, due care should be 

made towards selecting seeds which are locally sourced. Seeds may be collected from 

donor habitat sites using specialist machinery or from commercial suppliers. These can 

be used as a starter sward into which other species will gradually colonize. For specific
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targeted habitat for flower-visiting insects the inclusion of core generalist plants into the 

seed mix would be beneficial. Within this study the core plant species recommended for 

inclusion would be those less likely to occur naturally such as Trifolium repens, 

Centaurea nigra, Lotus corniculatus, Ranunculus spp., Centaurea scabious. Natural 

revegetation is likely to produce grassland habitat which is better suited to the site’s 

physical and landscape conditions. Restoration may initially produce annual weeds, but

with continued management, a stabilised rich floral community will develop, supporting 
numerous wild species.

Introducing plants via green hay, also called ‘hay strewing’, may be effective (Jones et 

ak, 1995; Edwards et al., 2007; Kiehl and Pfadenhauer, 2007). Hay is collected from 

local donor sites after flowering, and contains seeds from many present plants. The hay 

is then spread soon after harvesting onto the new site. Local nature reserves may prove 

to be effective sources of material, and have freely available machinery and volunteers 

for hay cutting.

Planting surrounding hedgerows of native species such as hawthorn and blackthorn 

provide a habitat in their own right, and also increase bird dispersal of seed (Robinson 

and Handel, 1993). They can also provide an important nectar resource early in the 

season and nesting sites at their base (Kells and Goulson, 2003; Farkas and Zajacz, 

2007). Where landfill restoration is continuing they can help reduce wind blown 

rubbish; ideally hedges which are tall and with thick bases should be encouraged.

Restored landfill habitats will develop in plant species richness and floral abundance 

overtime. Once floral resources are present above a certain threshold, and across each 

season, then focusing restoration efforts upon nesting habitat will achieve the most for 

flower-visiting insects (Kearns and Inouye, 1997).
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Nesting habitats

Depending on taxa concerned, nesting sites may be subterranean, within dead wood and 

vegetation, or within the base of tussock grasses. Post-restoration creation of suitable 

subterranean excavations and earth faces may be problematic on restored landfill sites 

owing to the potential (albeit slight) risk of puncturing the geo-textile membrane. They 

could however be considered at the time of earth laying. There are usually numerous 

holes and cracks on site due to earth subsidence which some bee species may utilise 

(Figure 6.02). Restored landfill sites do not typically permit public access and so may 

be suitable for provision of nesting structures, without concern for vandalism.

Figure 6.02 Cracks and holes in the earth on restored landfill sites due to subsidence.

One of the simplest, cheapest and most effective measures for benefiting the 

conservation of flower-visiting insects could be the provision of Beetle Banks for 

nesting sites. Beetle Banks, defined as raised, tussock-grass sown strips, may be planted 

to encourage those bumblebees which utilize them, nesting at the bases (Lye et al., 

2009). They are also used extensively by beetles and spiders for over wintering
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(Marshall and Moonen, 1998). These 3-4m wide strips are typically planted with

various grasses including Cock's-foot {Dactylis glomerata), Yorkshire fog {Holcus

lanatus), or Red fescue (Festuca rubra), and are ideally left 2-3 years between mowing 
(Thomas, 2000).

Management

Management may include mowing or grazing. This is important for managing the fire 

risk on-site, and slowing vegetational succession. Mowing also helps suppress 

vigorously growing grasses which may out-compete the more diverse flowering 

perennials. As well as considering the proposed nesting habitats, important 

considerations relate to intensity and timing of mowing. Mowing is the most likely 

vegetation management to occur on restored landfill sites in order to reduce fire risks. 

Species richness on restored landfill sites significantly benefits from mowing without 

which succession will take the restored habitat into scrub and then woodland (Rebele 

and Lehmann, 2002).

Cutting should aim to leave floral resources when they are absent elsewhere within the 

environment and so a mid-summer cut is best, allowing time for re-flowering of plants 

before the autumn. A summer cut will also prevent the removal of larval food plants, 

eggs and caterpillars of butterfly species (Ellis et al., 2008). A great a height of cut as 

possible should be used, with the removal of clipping to reduce fertility ideally a few 

days after, to allow seed to fall and invertebrates to escape. On-site rotational cutting 

has been found to further promote insect diversity and abundance (Noordijk et al., 

2009). Landfill site operators could consider collaborating with wildlife NGOs in the 

management of their sites, without giving access by public due to presence of 

potentially dangerous, fragile engineering structures. In exchange for the NGOs 

managing the sites, they would be allowed to develop the vegetation structure to better

suit wildlife needs.
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In summary for restoration practitioners and landfill site operators; landfill sites have 

great potential to be restored as wildlife habitats and specifically for flower-visiting 

insects. Relatively little required habitat and practice adjustment is required, particularly 

if this after-use is considered in the restoration planning. Poorer quality soils may be 

used, which are easier and cheaper to source. Ideally natural revegetation, should be 

allowed to occur, where not, then use of locally sourced soils or hay-strewing. For on-

going management, mowing ideally should occur in late summer, preferably with 

rotation of bi-annual cut areas. Restored landfill sites have the potential to play a 

significant role in the conservation and achieve positive outcomes for both flower- 

visiting insects and the ecological services they provide.
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Limitations of the data used in this thesis

The restored landfill sites have not been assessed fully with regards to their potential in 

the provision of specific habitat requirements for different groups, e.g. identified larval 

host plants, but have inferred potential of sites from insect presence.

Those flower-visiting insects recorded were not tested for whether they were residents 

or “tourists’' of the sites. Flower-visiting insects may be primarily residing on-site, 

meeting all their requirements or may be resident off-site and utilising just food 

resources from within the sites.

The landfill sites were not a random selection of those within the UK, and hence 

making national implications from this research is difficult. However, nothing has been 

found to say that the landfill sites surveyed within this study are not representative of 

those across the UK.

This was a short term study, over two years of fieldwork, which may have been atypical 

years, in terms of climate or pollinator assemblage. The last two summers and the 

current one were wetter than normal(Met. Office, 2007; Met. Office, 2008; Met. Office, 

2009). The current consensus is that we are suffering a pollinator decline at the moment 

(Biesmeijer et al., 2006; Grixti et al., 2009; Winfree et al., 2009). It is likely however, 

that both of these situations, atypical insect abundance and weather, would affect both 

types of site similarly and so comparison with reference sites will still allow 

examination of the restored landfill sites; their conservation potential for flower-visiting 

insects and determination of successful restoration.

Using paired sites reduced the need for spatial and landscape analysis of the 

surrounding landscape context, when comparing restored landfill sites to reference sites 

However, for ‘restored site-restored site’ comparison nesting and forage value of 

surrounding landscape could have been measured.
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Areas of further research to develop this study

Flowering plants

Research is needed following the ecological development of restored landfill sites over 

a longer time frame, from initial revegetation. Seed bank analysis is required of landfill 

site soils. Observations should be made to document successional change. Further 

investigation should be made into revegetation of restored landfill sites, comparing 

natural colonisation, seeding with imported seed mixes, and using locally sources seed 

mixes. Experimental plots using various alternative growth media e.g. recycled building 

waste, should be compared.

Flower-visiting insects

Research should be undertaken into an assessment of the pollinating services provided 

by flower-visiting insects supported on the restored landfill sites, particularly regarding 

agricultural crops. This could be assessed through bioassays plants over a gradient of 

distances from the landfill sites and measuring seed set, or pollen deposition.

Landfill sites and other restored habitats need to be assessed to determine the limiting 

factors on habitats for supporting flower-visiting insects on landfill sites.

Future studies should involve the creation of artificial assemblages of plants and 

pollinators, including behavioural studies involving development of additional plant 

species and observe changes in interaction structure and robustness.

Theoretical

The restoration framework needs further development to determine a fully compressive 

ecosystem services and interactions approach, both to determine successful restoration 

and highlight the importance of early consideration of species interactions and

ecosystem, services.
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Concluding statement

The findings from this research show that restored landfill sites can support as rich and 

abundant flower-visiting pollinating insect assemblage as reference wildlife sites. This 

is important both tor their conservation and the ecosystem services they provide. There 

are over 2,000 restored landfill sites covering 28,000 ha. in the UK. This is a substantial 

resource of land and given their even distribution means that restored landfill sites can 

play an important role tor the conservation of pollinating insects as habitats and as 

habitat-stepping stones. The artificial agricultural landscape developed over the last 

halt-decade has been detrimental for our wildlife and in particular our flower-visiting 

insects. There is clear need to rectify this and strategically restoring wildlife habitats is 

paramount. These sites, if focused to provide floral and nesting resources can aid in the 

conservation effort of pollinating insects and the crucial ecosystem service they provide.

“The human race is challenged more than ever before to demonstrate our 

mastery, not over nature but of ourselves.”

Rachel Carson (1907 -  1964), American nature writer.
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Appendices

Appendix 1

Table of flower sizes. All plants found on at least one of the study sites, sizes calculated from 
personal measurements and literature (Knuth, 1906-1909; Rose and O’Reilly, 2006).

Common name Latin name
Flower Size 

(mm2)
Yarrow A c h ille a  m ille fo liu m 15.71
Agrimony A g r im o n ia  e u p a to r ia 20.42
Garlic Mustard A llia r ia  p e /io la ta 18.85
Cow Parsely A n th r is c u s  s y lv e s tr is 15.71
Hairy rock cress A r a b is  h ir su ta 11.00
Winter Cress B a r  b a re  a  vu lg a ris 25.13
Daisy B e ilis  p e r e n n is 64.40
Hedge Bindweed C a ly s te g ia  se p iu m 172.79
Wavy Bitter cress C a rd a m in e  f le x u o s a 9.42
Cuckoo-Flower C a r d  a m in e  p r a ie n s is 47.12
Common Knapweed C e n ta u re a  n ig ra 94.25
Greater knapweed C e n ta u re a  s c a b io sa 141.37
Common Centaury C e n ta u r iu m  e ry lh ra e a 34.56
Common Mouse-Ear C e ra s tiu m  fo n ta n u m 23.56
Chamomile C h a m a e m e lu m  n o b ile 67.54
Rosebay Willowherb C h a m e r io n  a n g u s tifo liu m 78.54
Creeping Thistle C irs iu m  a rv e n se 31.42
Woolly Thistle C irs iu m  e r io p h o ru m 109.96
Marsh Thistle C irs iu m  p a lu s tr e 39.27
Spear Thistle C irs iu m  v u lg a re 102.10
Wild Basil C lin o p o d iu m  v u lg a re 47.12
Field Bindweed C o n v o lv u lu s  a rv e n s is 94.25
Marsh Hawk's-beard C re p is  p a lu d o s a 62.83
Beaked Hawks Beard C re p is  v e s ic a r ia 62.83
Common Spotted Orchid D a c ty lo r h iz a  fu c h s i i 36.00
Wild Carrot D a u c u s  c a ro l a 157.08
Wild Teasel D ip s a c u s  fu l lo n u m 157.08
Great Willowherb E p ilo b iu m  h ir su tu m 59.69
Meadowsweet F ilip e n d u la  u lm a r ia 21.99

GooseGrass G a liu m  a p a r in e 6.28
Lady's Beadstraw G a liu m  veru m 7.85

Cut-leaved Cranes Bill G e ra n iu m  d isse c tio n 16.49

Ground ivy G le c h o m a  h e d e ra c e a 54.98

Perforated St John's-wort H y p e r ic iu m  p e r fo r a tu m 62.83

Field Scabious K n a u tia  a rv e n s is 62.83

Prickly Lettuce L a c tu c a  s e r r io la 37.70

White Dead Nettle L a m iu m  a lb u m 31.42

Red Dead Nettle L a m iu m  p u r p u r e u m 31.42

Nipplewort L a p s a n a  c o m m u n is 39.27

Grass Vetchling L a th y r u s  n is so lia 80.00

Meadow Vetchling L a th y ru s  p r a te  n s  is 51.84

Rough Hawkbit L e o n to d o n  h isp id u s 102.10

Lesser Hawkbit L e o n to d o n  s a x a til is 70.69

Oxeye Daisy L e u c a n th e m u m  vu lg a re 133.52

Fairy Flax L in u m  c a t  h a r t  icu m 15.71

Common Birds-foot Trefoil L o tu s  c o rn ic u la tu s 25.13

Narrow Leaved Birds-foot Trefoil L o tu s  g la b e r 21.99

212



Appendices

Black Medick M ed ic a g o  lu p u lin a 15.71
Ribbed Melilot M e lilo lu s  o ffic in a lis 17.28
Grape Hyacinth M u sc a r i n e g le c tu m 12.57
Field Forget-me-not M y o so lis  a rv e n s is 9.42
Early Forget-me-not M y o so tis  ra m o s iss im a 9.42
Red Bartsia O d o n tite s  ve rn u s 28.27
Common Restharrow O n o n is  re p e n s 25.13
Spiny Restharrovv O n o n is  sp in o sa 18.85
Bee Orchid O p h ry s  a p ife ra 60.00
Green-winged Orchid O rch is  m o rio 75.00
Wild Parsnip P a s tin a c a  sa liv a 235.62
Redshank P e rs ic a r ia  m a sc u lo sa 15.71
Bristly Oxtongue P ic r is  e c h io id e s 78.54
Hawkweed Oxtongue P ic r is  h ie ra c io id e s 78.54
Ribwort Plantain P la n ta g o  la n c e o la ta 12.57
Tormentil P o te n til la  e re c ta 28.27
Creeping Cinquerfoil P o te n til la  re p ta n s 67.54
Cowslip P r im u la  ver is 28.27
Selfheal P ru n e lla  vu lg a ris 25.13
Meadow Buttercup R a n u n c u lu s  a c r is 47.12
Bulbous Buttercup R a n u n c u lu s  h u lh o su s 47.12
Lesser Celandine R a n u n c u lu s  f tc a r ia 62.83
Creeping Buttercup R a n u n c u lu s  re p e n s 47.12
Yellow Rattle R h in a n th u s  m in o r 28.27
Bramble R u b u s  fr u t ic o s u s 31.42
Great Burnet S a n g q u iso r b a  o ffic in a lis 62.83
Hoary Ragwort S e n e c io  e ru c ifo liu s 54.98
Common Ragwort S e n e c io  ja c o b a e a 62.83
Field Madder S h e r a r d ia  a rv e n s is 9.42
Bladder Campion S ile n e  vu lg a ris 61.26
Charlock S in a p is  a rv e n s is 54.98
Smooth Sow Thistle S o n c h u s  o le ra c e u s 70.69
Hedge Woundwort S ta c h y  s y lv a tic a 15.71
Lesser Stitchwort S t  e l l  a r ia  g r a m in e  a 37.70
Dandelion T a ra x a c u m  o ffic in a le 125.66
Hop Trefoil T rifo liu m  c a m p e s tre 39.27
Lesser Trefoil T rifo liu m  d u b iu m 18.85
Red Clover T rifo liu m  p r a te n s e 62.83
White Clover T rifo liu m  re p e n s 62.83
Wall Speed well V ero n ic a  a rv e n s is 14.14
Germander Speedwell V ero n ic a  c h a m a e d ry s 15.71
Slender Speedwell V eron  ic a  f i l i f o  r m  is 25.13
Common Field Speedwell V ero n ica  p e r s ic a 31.42

Thyme Leaved Speedwell V ero n ica  s e rp y lli fo lia 15.71

Tufted Vetch V icia  c ra c c a 25.13

Hairy Tare V ic ia  h ir su ta 15.71

Common Vetch V ic ia  sa liv a 47.12

Bush Vetch V ic ia  s e p iu m 47.12

Smooth Tare V icia  te tra sp e rm a 12.57

Early Dog Violet V io la  r e ic h e n b a c h ia n a 56.55

Common Dog-violet V io la  r iv in ia n a _________________ _________ 62.83
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Appendix 2

Shannon's diversity of flowering plant species
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Mean flower Shannon's Diversity per transect for landfill sites and reference sites 2007 (±95%  

Confidence Limits). N = sample sizes, (one-way ANOVA (F1 79 = 0.004 p= 0.951)
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Mean seasonal flowering plant Shannon’s Diversity per transect for landfill sites and reference sites 

2007 (±95% Confidence Limits). N= sample sizes. (ANOVA; Landfill sites across seasons 

p .,=0.491 d =0.615 Reference sites across seasons F2,35=2-718 p=0.081. Independent Samples I- 

Test (2-tailed) Spring Landfill vs. Reference t= 0.266 df=27 p=0.792, Summer Landfill vs. Reference 

t=-0.657 df=30.686 p=0.516. Autumn Landfill vs. Reference t=1.901 df=14 p=0.078.
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Landfill Site Reference Site

Type of Site

Mean flower Shannon's Diversity per transect for landfill sites and reference sites 2008 (±95%  

Confidence Limits). N= sample sizes, (one-way ANOVA (F l 44= 0.373 p= 0.544)

Type of Site

I
Landfill Site

I
X Reference Site

Mean seasonal flowering plant Shannon’s Diversity per transect for landfill sites and reference sites 

2008 (±95% Confidence Limits). N= sample sizes. (ANOVA; Landfill sites across seasons 

p2 23=0.834p=0.448, Reference sites across seasons F2,2o= 10-463 p=0.001. Independent samples I- 

Test (2-tailed) Spring Landfill vs. Reference t= -0.529 df=9 p=0.610, Summer Landfill vs. Reference 

t=-0.975 df=20 p=0.341. Mann-Whitney 2-Tailed independent test: Autumn Landfill vs. Reference

U=6.00 p=0.022.
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Appendix 3

Table of presence and frequency of flower-visitor species on restored landfill and reference sites 
2007

Restored landfill sites
number o f sites present

Reference sites
number of sites present

Honey Bee 6 1 5 i
Calliopum  spp. 6 1 5 i
B terrestris 6 1 4 i
B lapidarius 5 1 8 i
B Pascorum 5 1 6 i
H7 5 1 3 i
HI 4 1 1 i
H8 3 1 3 i
01 3 1 1 i
H5 3 1 0 0
H10 2 1 2 1
H9 2 1 2 1
F2 2 1 1 1
07 2 1 1 1
B3 2 1 0 0
Psithryus sylvestris 2 1 0 0
H12 1 1 3 1
F5 1 1 2 1
Thymelicus sylvestris 1 1 1 1
HI 1 1 1 1 1
B pratorum 1 1 0 0

F10 1 1 0 0

FI 1 1 1 0 0

F7 1 1 0 0

H13 1 1 0 0

H3 1 1 0 0

H4 1 1 0 0

02 1 1 0 0

04 1 1 0 0

06 1 1 0 0

B1 0 0 2 1

B4 0 0 2 1

F6 0 0 2 1

FI 0 0 2 1

BF2 0 0 2 1

B2 0 0 1 1

05 0 0 1 1

03 0 0 1 1

H6 0 0 1 1

H2 0 0 I 1

H14 0 0 1 1

F9 0 0 1 1

F4 0 0 1 1

F3 0 0 1 1

BF5 0 0 1 1
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BF4

BF3

BF1

BB7

BB8

0
0
0
0
0

0
0
0
0
0

1
1

Appendix 4

Table of presence and frequency of flower-visitor species on restored landfill and 
reference sites 2008

Restored landfill sites Reference sites
number of sites present number of sites present

Bom bus lapidarius 3 1 3 i
Bom bas pascuorum 3 1 3 i
Bom bus pra torum 3 1 3 i
Bom bus terrestris /  lucorum 3 1 3 i
Ferdinandea ru ficom is 3 1 3 i
C haem aesyrphus scaevoides 3 1 2 i
M acrophya m ontana 3 1 2 i
O edem era nobilis 3 1 1 i
Sphaerophoria scripta 3 1 1 i
Calliopum spp. 2 1 3 i
Syrphus vitripennis /  ribesii 2 1 3 i
Pipizini sp. 2 1 2 i
Psilota anthracina 2 1 2 i
Chrysotoxum  bicinctum 2 1 1 i
E pisyrphus balteatus * 2 1 0 0
Eriothrix rufom aculata 2 1 0 0
Eristalis crypt arum 2 1 0 0
E ristalis tenax 2 1 0 0
M acropis europaea 1 1 3 1
M aniola ju rtin a 1 1 3 1
A nthom yiidae  sp. 1 1 2 1
E ristalis arbustorum 1 1 2 1
H elophilus pendu lus 1 1 2 1
M egachile ssp. 1 1 2 I
M etasyrphus latifasciatus 1 1 2 1

Tenthredo notha 1 1 2 1
Eristalis intricarius 1 1 1 1

M uscina  pro lapsa 1 1 1 1

Pieris brassicae 1 1 1 1

P yronia  tithonus 1 1 1 1

Zygaena filipendu lae 1 1 1 I

A glais urticae 1 1 0 0

Apis m ellifera 1 1 0 0

C helostom a cam panularum 1 1 0 0

M alachius bipustulatus 1 1 0 0
/■v

Osmia rufa 1 1 0 0
/V

Osmia sp. I 1 1 0 0

i In c / i *i  I’ll HI 1 1 0 0
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P olyom m atus icarus 1 1
R h a g o n ych a  fu lv a 1 1
A n a sim yia  linea ta 0 0
B om bas hortorum 0 0
C a llip h o ra  vom itoria 0 0
C oenonym pha  p a m p h ilu s 0 0
C n p to c e p h a la s  hypochaerid is 0 0
E m p is liv ida 0 0
F ly  1 0 0
M elanarg ia  g a la th ea 0 0
M e lig e t lies a en eu s 0 0
O ch lo d es sy lva n  as 0 0

P a n em eria  ten ebra ta 0 0

P o llen ia  ra d is 0 0

S a rco p h a g a  carnaria 0 0

0
0

0
0

Appendix 5

Nestedness metrics values Temperature for Landfill and reference sites 2007. 

(kna' - matrix is too small for analysis.)

Year Site Type Temperature 
T(Er) P(Er)

Null models
T(Ce) P(Ce)

2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007

Barnes Meadow 
Bletchley 
Blue Lagoon 
Brixworth 
Brogborough 
Cranford 
Ditchford 
Draycote 
Glebe Meadow 
Harlestone 
Kettering 
Kilsby 
Pitsford 
River Ise 
Scrubfield 
Sidegate 
Twywell 
Wootton

Reference 
Landfill 
Reference 
Landfill 
Landfill 
Landfill 
Reference 
Reference 
Reference 
Landfill 
Landfill 
Landfill 
Reference 
Reference 
Reference 
Landfill 
Reference 
Landfill

44.07 
53.28 
12.13
43.00 
22.56 
28.63
42.68 
32.19 
38.99
28.01 
28.77
44.27
41.68 
45.32 
55.04 
79.36
44.07
53.28

41.99
45.37
37.73
46.73 
45.00
46.31 
37.18 
34.90 
45.55 
39.61 
41.33
48.11 
47.13
43.31 
44.79
43.11
41.99
45.37

0.57
0.70
0.03
0.35
0.02
0.09
0.66
0.44
0.27
0.22
0.06
0.34
0.35
0.55
0.81
0.99
0.57
0.70

37.16
40.10 
27.94 
43.42 
36.86
33.78
30.96 
30.74
39.78
31.18
40.97
43.18
40.78 
38.39 
40.70 
39.44
37.16
40.10

0.69
0.82
0.21
0.48
0.14
0.37
0.72
0.57
0.48
0.44
0.14
0.55
0.55
0.67
0.83
0.99
0.69
0.82
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Appendix 6

Nestedness metrics values Temperature for Landfill and reference sites 2008 
(‘na' - matrix is too small for analysis.)

Season

Spring
Summer
Autumn
Annual
Spring
Summer
Autumn
Annual
Spring
Summer
Autumn
Annual
Spring
Summer
Autumn
Annual
Spring
Summer
Autumn
Annual
Spring
Summer
Autumn
Annual

Site

Barnes Meadow
Barnes Meadow
Barnes Meadow
Barnes Meadow
Brixworth
Brixworth
Brixworth
Brixworth
Ditchford
Ditchford
Ditchford
Ditchford
Pitsford
Pitsford
Pitsford
Pitsford
Sidegate lane
Sidegate lane
Sidegate lane
Sidegate lane
Wootton
Wootton
Wootton
Wootton

Type

Reference
Reference
Reference
Reference
Landfill
Landfill
Landfill
Landfill
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Reference
Landfill
Landfill
Landfill
Landfill
Landfill
Landfill
Landfill
Landfill

Temperature Null models

42.97
60.09

na
40.75
19.07
15.23
18.63
21.45

28.29

28.36
18.89
41.41

na
37.49

0.00
20.67

na
67.39
18.26
33.59
33.54
37.26

Er
49.18
44.74

na
51.94

112.09
38.56
42.33
38.84

57.34
32.20
45.88

na
43.83

0.00
39.31

na
39.40
27.72
47.29
48.05
51.93

P(Er
0.30 
0.84 

na 
0.13 
0.05 
0.00 
0.02 
0.00

59.56 0.00

0.00
0.23
0.32

na
0.21
1.00
0.51

na
0.96
0.36
0.16
0.12
0.04

T(Ce 
41.04
40.83

na
42.09
65.31
34.26
33.22
33.68

29.87

31.46
25.81
41.62

na
41.42

0.00
22.14

na
35.02
22.80
36.01
36.87 
44.07

P(Ce
0.57 
0.88 

na 
0.48 
0.31 
0.00 
0.14 
0.01

0.49

0.44 
0.41 
0.48 

na 
0.34 
1.00 
0.72 

na 
0.90 
0.53 
0.45 
0.41 
0.23

Matrix
size

78 
40 

0 
140 
20 

312 
45 

495 
1

105 
1

132 
21 

128 
0

210 
2 
8 
0 

18 
12 
55 
65 
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Species identities for Flower-insect visitor interaction structure in 2008 on Brixworth restored 
landfill and Pitsford reference site

Plant 1 A ch illea  m ille fo liu m

Plant 2 B eilis  p e re n n is

Plant 3 C a rd a m in e  p ra te n s is

Plant 4 C irsiu m  a rven se

Plant 5 C irsiu m  vu lgare

Plant 6 I le ra c le u m  sp.
Plant 7 L e o n to d o n  h isp id u s

Plant 8 L eu ca n th em u m  vu lgare

Plant 9 L o tu s  co rn icu la tu s

Plant 10 P ie r  is ech io id es

Plant 11 P icris  h iera c io id es

Plant 12 P o te n tilla  rep ta n s

Plant 13 R a n u n cu lu s  rep en s

Plant 14 S en ec io  ja c o h a e a

Plant 15 T araxacum  o ffic in a le

Plant 16 C irsium  p a lu s tre
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Plant 17 H yp o ch a eris  ra d ica ta
Plant 18 L eo n to d o n  saxa tilis
Plant 19 R an u n cu lu s acris
Plant 20 R an u n cu lu s bu lbosus
Plant 21 R h in an  thus m in o r
Plant 22 Trifo lium  p ra te n se
Insect 1 E p isyrp h u s  b a ltea tu s
Insect 2 S p h a ero p h o ria  scrip ta
Insect 3 B o m b u s lap idarius
Insect 4 C allio p u m  spp
Insect 5 E ris ta lis  ten a x
Insect 6 C h ryso to xu m  b ic inctum
Insect 7 F erd in a n d e a  ru ficorn is
Insect 8 H elo p h ilu s  p e n d u lu s
Insect 9 A g la is  u rticae
Insect 10 B o m b u s te rrestr is  /  lucorum
Insect 11 E ris ta lis  c ryp ta ru m
Insect 12 O ed em era  nob ilis
Insect 13 P ip iz in i sp.
Insect 14 S y rp h u s  v itr ip en n is  /  r ib esii
Insect 15 A n th o m y iid a e  sp.
Insect 16 B o m b u s p a scu o ru m
Insect 17 B o m b u s p ra to ru m

Insect 18 C a /lip h o ra  vo m ito ria
Insect 19 C h a em a esyrp h u s  sca evo id es
Insect 20 C h elo sto m a  cam p a n u la ru m

Insect 21 E ris ta lis  in tr ica riu s

Insect 22 M a c ro p h y a  m o n tan a

Insect 23 M a la ch iu s  b ip u stu la tu s

Insect 24 M eg a ch ile  ssp.
Insect 25 M eta syrp h u s la tifa sc ia tu s

Insect 26 M u scin a  p ro la p sa

Insect 27 O sm ia  sp. 1
Insect 28 P silo ta  a n th ra c in a

Insect 29 P yro n ia  tith o n u s

Insect 30 R h a g o n y c h a  fu lv a

Insect 31 Z y g a e n a  ji l ip e n d u la e

Insect 32 E ris ta lis  a rb u sto ru m

Insect 33 M acrop is  e u ro p a e a

Insect 34 M a n io la  ju r tin a

Insect 35 M elig e th es  aeneus

Insect 36 P a n em eria  ten eb ra ta

Insect 37 P ier is  b ra ssica e

Insect 38 T en thredo  n o th a



Appendix 8

Species identities for Flower-insect visitor interaction structure in 2008 on Wootton 
landfill and Barnes Meadow reference site

Plant 1 
Plant 2 
Plant 3 
Plant 4 
Plant 5 
Plant 6 
Plant 7 
Plant 8 
Plant 9 
Plant 10 
Plant 11 
Plant 12 
Insect 1 
Insect 2 
Insect 3 
Insect 4 
Insect 5 
Insect 6 
Insect 7 
Insect 8 
Insect 9 
Insect 10 
Insect 11 
Insect 12 
Insect 13 
Insect 14 
Insect 15 
Insect 16 
Insect 17 
Insect 18 
Insect 19 
Insect 20 
Insect 21 
Insect 22 
Insect 23 
Insect 24 
Insect 25 
Insect 26 
Insect 27 
Insect 28 
Insect 29 
Insect 30

A n th r iscu s  sy lves tr is  
C erastium  fo n ta n u m  
C irsium  p a lu s tre  
P ie r  is ech io id es  
P icr is  h iera c io id es  
R a n u n cu lu s  acris  
R a n u n cu lu s  bu lbosus  
R a n u n cu lu s  rep en s  
S en ec io  ja c o b a e a  
T araxacum  o ffic in a le  
Trifo lium  p ra te n se  
T rifo lium  repens  
A n a s im y ia  line  a! a  
A p is  m ellife ra  
B o m b  us ho  riorum  
B o m b u s  la p id a riu s  
B o m b u s p a sc u o ru m  
B o m b u s p ra lo ru m  
B o m b u s  te rre s tr is  /  lucorum  
C h a em a esyrp h u s  sca evo id es  
E p isy rp h u s  b a ltea tu s  
E ris ta lis  in tr ica riu s  
E rio th r ix  ru fo m a cu la ta  

E ris ta lis  a rbusto rum  
E ris ta lis  c ry p t arum  

E ris ta lis  ten  ax  
F erd in a n d e a  ru fico rn is  
C allio p u m  sp p  
M a cro p h ya  m o n ta n a  

M a cro p is  eu ro p a ea  
M eta syrp h u s la tifa sc ia iu s  

M a n io la  ju r t in a  
O ch lo d es  sy lva n u s  
O ed em era  n o b ilis  

O sm ia  ru fa
P a rh e lo p h ilu s  fru te to ru m  

P ieris  b ra ssica e  

P ip iz in i sp.
P silo ta  a n th ra c in a  
S p h a ero p h o r ia  sc r ip ta  
S y rp h u s  v itr ip en n is  /  r ibesii 

T en thredo  no tha
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Appendix 9

Species identities for Flower-insect visitor interaction structure in 2008 on Sidegate Lane restored 
landfill and Ditchford reference site

Plant 1 C ardam ine  p ra ten sis
Plant 2 R a n u n cu lu s  acris
Plant 3 R a n u n cu lu s rep en s
Plant 4 S a n g q u iso rb a  o ffic in a llis
Plant 5 T araxacum  o ffic in a le
Plant 6 Trifo lium  p ra te n se
Plant 7 Trifo lium  repens
Plant 8 A n th o m y iid a e  sp.
Insect 1 B o m b u s p a scu o ru m
Insect 2 B o m b u s terrestris  /  lucorum
Insect 3 C h a em a esyrp h u s sca evo id es
Insect 4 C h ryso to xu m  b ic inc tum
Insect 5 E m p is  liv id a
Insect 6 E ris ta lis  a r  b u s torn  m
Insect 7 F erd in a n d ea  ru fico rn is
Insect 8 Fly 1
Insect 9 C allio p u m  spp
Insect 10 H elo p h ilu s  p e n d u lu s
Insect 11 M a c ro p h y a  m on tana
Insect 12 M a cro p h ya  m o n ta na
Insect 13 M a cro p is  eu ro p a ea
Insect 14 M a n io la  ju r t in a
Insect 15 M eg a ch ile  ssp.
Insect 16 M eta syrp h u s la tifa sc ia tu s
Insect 17 M u sc  in a  p r o  la p  sa
Insect 18 P ip iz in i sp.
Insect 19 P o llen ia  rud is
Insect 20 P silo ta  a n th ra c in a

Insect 21 S a rco p h a g a  carnaria

Insect 22 S p h a e ro p h o r ia  sc r ip ta

Insect 23 S y rp h u s  v itr ip en n is  /  ribesii

Insect 24 T en th red o  n o th a
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