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ABSTRACT

Participation in elite level sport is inherently linked with exposure to pain (Bartholemew et al„
1998; Heil, 1993) with those able to tolerate it whilst maintaining performance levels gaining a
competitive edge over their opponents (Egan, 1987). Studies have shown that the presence of
experimental pain reduces muscle performance (Farina et al„ 2002; Farina et al„ 2008) when
pain is induced via hypertonic saline injection but this is an invasive method of pain induction
whereby it is unclear if there is any interference of normal muscle functioning due to the
injection of fluid into the muscle (Wing et al„ 2011a). The series of studies presented within
this thesis aimed to investigate whether this relationship existed when pain was induced via a
non-invasive Gross Pressure Device (GPD) and subsequently the effect of severity of pain on
muscle performance. The final stages of the research explored the possible location of 
inhibition; central or peripheral.

The GPD was established to be a reliable method of pain induction at pain perception threshold
level both inter-session and intra-session. A protocol for use was established in pilot testing
which was followed throughout the research. Pain perception threshold level was established
for all participants prior to undertaking the experimental trials as well as their maximal ramped
contraction within an isometric knee extension measured on an isokinetic dynamometer which
was subsequently used for normalisation. The experimental trials consisted of three explosive
isometric voluntary contractions of which the peak maximal voluntary contraction (MVC) was
selected for analysis. Electromyographic activity (EMG) of the vastus lateralis and
semitendinosus were also measured during the contraction to indicate neural activation.
Immediately following each painful trial participants were asked to rate the painfulness of the 
condition on a visual analogue scale (VAS).

Inducing pain at perception threshold level produced a mean reduction in maximal force by 9%- 
12% when pain was induced ipsi-laterally, and 11% when induced contra-laterally. When 
pressure exerted by GPD was doubled and then trebled from previously established pain 
perception threshold, a greater reduction in maximal force was reported (18% & 21% 
respectively). When placebo and nocebo conditions were introduced and therefore there was a 
disparity between the expected pain severity and the stimulus applied, while there was a 
significant difference in the perception of pain severity reported via VAS (F = 27.971; p < 0 05) 
no significant difference in force output was found (x2(2) = .452, p>0.05).

The studies presented within this thesis have demonstrated that pain induced at perception 
threshold level reduced muscle performance even when a non-invasive method of pain 
induction was used. Furthermore it was found that there is an incremental decrease in 
performance relative to severity of pain induced. Concomitant reduction in force and EMG 
suggest that inhibition is likely to be neuronal but the level of this could not be established. 
However, the fact that pain induced contra-laterally produced similar reductions in force as 
ipsi-lateral pain induction suggests inhibition is unlikely to be at peripheral level. Furthermore 
manipulation of the severity of pain perceived was found not to alter muscle performance
Forth 8 'S Unllkely t0 be at cortical leve|; rather >t *s likely to be sub-conscious.

7 1 C° " ductfed t0 determine the mechanisms by which pain reduces muscle
strateeTes ran h' h i °"  dynamic' mu'ti-joint tasks in order that effectivestrategies can be developed for athletes to perform when experiencing pain
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1 INTRODUCTION

"Your training partner's name is pain. You start out trying to ignore 

him. Can't do it You attempt to reason with him. No way. You try to 

strike a bargain. Hah. You plead. You say 'Please stop, please go 

away. I promise never ever to do this again if  you just leave me alone. ’

But he won't Pain only climbs off if  you do. Then you're beaten."

(Martin, No date]

Pain is a likely consequence of regular participation in elite sport (Bartholomew et al„ 1998),

both during performance and as a consequence of long term exposure to the rigours of the elite

athletes lifestyle (Heil, 1993). There is an inherent association between pain and successful

performance in elite sport (Egan, 1980) and therefore the ability to cope with pain and still

maintain optimal physical performance becomes an important issue for a competitive athlete.

The commercialisation of sport means that there is a great deal of money invested into the elite

levels by sponsors, broadcasters and governments. In the UK for example Olympic sports are

set to receive £125 million a year in the run up to the 2016 Olympic Games. With such a

substantial investment there is an expectation of success in return. UK sport sets targets for

each sport and failure to achieve these targets means the sport suffers a cut in funding; for

example table tennis, wrestling, handball and basketball all had their funding removed entirely

following an unsuccessful Olympics in London (uksport.gov.uk). This means that for the

governing bodies there is a need to achieve success at world class levels on a yearly basis in

order to maintain the levels of funding they have and therefore the support they can offer their 
athletes.

This pressure to perform results in a focus upon every facet of sporting performance in 

order that where improvements can be made, they are. The amount an athlete needs to 

improve their performance from year to year varies by sport and individual so it is hard to put a 

figure on what would be considered a worthwhile change in performance measures. However, 

a study reporting the smallest worthwhile change in performance for elite triathletes suggests a 

-0.5%  decrease in race time is the smallest important change an athlete requires in order to be 

competitive (Paton & Hopkins, 2005), which is comparable to track athletes who are thought to 

require a 0.3-0.5% decrease of race time depending on discipline, or field athletes requiring a
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0.9-1.5% improvement in distance (Hopkins, 2005). These figures are based on past results and 

are therefore not direct predictors of success for future competition, but they demonstrate that

the improvements required at the elite level are marginal due to the tight nature of competition 
at that level.

The number of variables thought to affect performance in sport is vast, ranging from

physiological adaptations to training and psychological preparedness through to the social

context of the sport and participant. It is however recognised that pain management is a central

factor in performance enhancement (Addison et a!., 1998) and therefore it is believed that an

increased understanding around the interaction between pain and the neuromuscular system

may allow for development of interventions to overcome the deficits in performance

expei ienced and thereby help athletes to achieve gains in performance. Experimental muscle

pain has been reported to significantly reduce maximal strength (Ervilha et al., 2004; Graven-

Nielsen et al., 1997; Farina et al., 2004, 2005) but as yet no comprehensive explanation for the 
mechanism of this has been identified.

Reseaich over the past 60 years has established that there is a difference in the way

athletes and non-athletes respond to pain (Low et al., 2005; Ryan & Foster, 1967) with athletes

reported to have a higher tolerance for pain (Janal et al., 1994; Ryan & Foster, 1967) which

alters depending on their chosen sport (Pen & Fisher, 1994; Straub et al., 2003). The level to

which the athlete competes is also a differentiator of their tolerance towards pain, with high

level athletes able to endure heightened severity of pain in comparison to lesser able athletes

(Scott & Gijsbers, 1981). Studies investigating the influence of pain on performance have

reported that the presence of experimental muscle pain induced via hypertonic saline injection

reduces maximal muscle strength (Ervilha et al., 2004; Farina et al., 2004, 2005; Graven-Nielsen

et al., 1997) and the ability to carry out complex tasks (Brewer et al., 1990). Whether athletes

develop the ability to tolerate pain because they engage in sport, or whether they take part in

sport because they are better able to tolerate pain remains unclear and is an area requiring

further investigation as data suggesting any form of causal relationship is not available (Tesarz 
et al., 2012).

A further important consideration is the method by which pain was induced in the 

studies described above (hypertonic saline injections) which was highly invasive by nature 

(Ervilha et al., 2004; Farina et al., 2004, 2005; Graven-Nielsen et al., 1997). As the saline 

solution was injected directly into the muscle in which performance was measured it is not 

possible to determine that the changes identified were purely as a result of the pain experienced 

rather than confounding variables associated with the introduction of a foreign agent within the
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muscle. The use of injections is also ethically sensitive and difficult to control where the 

severity of pain induced is altered, thereby limiting the scope of investigations using these 

methods to account only for differences between “pain" versus “no pain" rather than being able 

to examine the complexities ol the pain-performance relationship which is necessary in order to 

gain a clear understanding of the mechanisms underpinning any changes in performance
identified.

The aim of the current research is to gain a better understanding of the mechanisms 

associated with reductions of muscle performance related to the presence of pain. Figure 1.1 

illustrates the stiuctuie of the current research which takes the form of a series of progressive 
studies building upon the knowledge gained in each one.

Establishing
Methods

--------------

Pain and 
neuromuscular 

performance

Central?

Severity of 
pain and 

neuromuscular 
performance

Figure 1.1. Overview plan of the current research

In order to investigate the potential mechanisms by which pain influences muscular 

performance it was firstly essential to establish a method by which to induce pain reliably and 

in a non-invasive manner so that any changes in performance reported could be attributed to 

the pain stimulus and not confounding variables. Once methods to induce pain were 

established, the relationship between pain severity and muscle performance was examined. 

Establishing whether there is a relationship between the two allowed for proceeding studies to 

manipulate expectation and thereby explore the possible location of pain related changes. The 

location of inhibition associated with performance losses was the final focus of the research in 
order to suggest whether level of inhibition is likely to be central or peripheral.
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2 LITERATURE REVIEW

2.1 INTRODUCTION

This chapter reviews pain mechanisms and their influence upon athletic performance, the 

development of pain theories, and some possible explanations for the physiological mechanism 

of pain sensation and experience. The literature regarding pain in the athletic domain was also 

reviewed with regard to athletic pain tolerance, methods of experimentally inducing pain, and 

how anticipation of pain may limit performance. The International Association for the Study of 

Pain (IASP) defined pain as an unpleasant sensory and emotional experience associated with 

actual or potential tissue damage (Loeser & Treede, 2008). It may be interpreted as a warning

system that places a limit on sports capabilities (Prokop, 2000) in an attempt to prevent 
potential damage to the individual.

Pain can be induced in a variety of ways and so the measurements used to indicate level

or severity of pain can also vary significantly from study to study. There are however, two

tlnesholds that can be standardised across all methods of pain induction; pain perception

threshold and pain tolerance threshold. The maximum pain that an individual can tolerate is

often used to compare across groups of individuals and their ability to deal with a particular

pain stimulus (Ryan & Kovacic, 1966) and is referred to as 'pain tolerance’. A limitation to this

method of measurement is that taking someone to their pain tolerance threshold can be

ethically problematic and hence the use of this measurement needs to be clearly justified in the

methodology. An alternative threshold measure is 'pain perception threshold’, defined as the

lowest perceived sensation that is labeled by the participant as painful. This has been found to

be the more reliable measure of pain in the literature (Loeser & Treede, 2008) and as it is at the

lowest end of the pain scale, makes it more appealing to researchers working in an ethically 
sensitive field.

_______________2.2 PAIN AND ATHLETIC PERFORMANCE

Elite level sport often not only results in, but also requires pain to be experienced and endured 

either during the performance (Egan, 1987; Major, 1996), or as a consequence of long term 

exposure to the rigours of the elite athlete’s lifestyle (Heil, 1993), and is widely accepted by 

athletes as part of their daily life (McMaster & Troup, 1993). The physiological and 

psychological requirements of pain in terms of information processing are thought to be given a 

high supra-spinal priority as pain identification and avoidance is implicit in order to survive 

(Price, 2000), a suggestion supported by numerous studies examining brain imaging 

(Derbyshire et al., 1997, 1998), cognitive performance (Crombez et al„ 1998a, 1998b, 1999;



Eccleston & Crombez, 1999) and changes in cortical and behavioural responses when exposed 

to a pain condition during performance (Lorenz et al„ 1997; Lorenz & Bromrn, 1997). Given 

that pain is so deeply associated with elite level sport and that it may be an important 

performance factor, it warrants further investigation.

2.2.1 ATHLETIC PAIN TOLERANCE

Differences in pain tolerance of athletic versus non-athletic participants have been reported 

with those involved in athletic pursuits better able to tolerate high levels of pain in comparison 

to their non-athletic counterparts (Giesbrecht et al„ 2005; Hall & Davies, 1991; Ryan & Kovacic, 

1966). Ryan & Kovacic (1966) used a novel Gross Pressure Device (GPD), where a plastic 

gridiron cleat was positioned over the tibia with a sphygmomanometer cuff then inflated 

against the tibia until the participant could no longer tolerate the pain. The researchers found 

that contact-sport athletes tolerated significantly higher levels of acute pressure pain than 

athletes from non-contact sports and that both athletic groups were better able to tolerate acute 

pressure pain than non-athletes. This finding was later supported by Janal et al. (1994) who 

found that athletes reported higher pain thresholds across three different methods of

experimental pain induction (cold-pressor, cutaneous heat and tourniquet ischemic pain) in 
comparison to the non-athletic control group.

Pen & Fisher (1994) suggested a hierarchical tolerance to pain with those involved in 

contact sports being significantly more able to tolerate experimental pain than non-contact 

sport athletes, who in turn had higher pain tolerance levels than non-athletes. The authors 

suggested that this relationship was evident because individuals choose their sport, or 

involvement in sport, based upon their ability to tolerate pain, which would suggest that people 

with a low pain tolerance would not choose to take part in sporting activity. Conversely, those 

with high pain tolerance would find that they were able to tolerate the greater pain demands of 

contact sports, be more successful within the sport and hence would opt to take part in that type 

of activity (Nideffer, 1978; Pen & Fisher, 1994; Williams, 1978). This theory assumes that 

people will generate a number of schemata by which they can judge how suited they are to a 

sport by how it relates to their previous experiences (Taylor & Taylor, 1998).

No conclusive evidence exists to indicate cause or effect however, so an equally valid 

hypothesis could be that exposure to contact sports increases the ability to tolerate pain. Using 

anecdotal evidence, Egan (1987) suggested that the training undertaken by athletes may 

desensitise them to pain related to that particular sport and that it is not the innate ability of the 

athlete to cope with pain that is fundamentally important to performance, but instead it is their 

lack of sensitivity to pain that allows them to perform. This is in accordance with the



"adaptation-level theory”, which implies that painful experiences can change the internal anchor 

points for subjective evaluation of pain and thereby determine ability to cope with pain (Anshel 

& Russell, 1994}. Approximately 3-5 million injuries occur each year amongst recreational and 

competitive sportspeople (Kraus et al„ 1984} and pain is the most frequently cited 

psychological condition associated with athletic injury according to sports medicine 

practitioners (Brewer et al., 1989}. Whilst injury forms its own section in the literature distinct 

from pain, this suggests most sports-people will have had experience of injury at some point in 

their career which would likely also expose them to pain. It would be expected that the athlete 

therefore had dealt with painful situations more than a non-athletic counterpart. This could 

mean that, as hypothesised by Egan (1987}, athletes become desensitised to pain and therefore 

better able to cope with a pain stimulus. Alternatively, it could mean that through exposure to 

pain they develop coping strategies allowing them to maintain muscular control and reduce the

negative impact of pain as hypothesised by Scott & Gijsbers (1981}. However, the precise 
mechanisms for this remain unclear.

In an effort to further understand the way in which athletes react to pain, Scott & 

Gijsbers (1981} conducted an investigation examining differences between athletic levels. The 

findings within the study are in agreement with the studies reported above, suggesting that 

athletes have a better tolerance for pain than non-athletes (janal et al„ 1994; Pen & Fisher, 

1998, Straub et al., 2003}. Importantly, Scott & Gijsbers (1981} also made a distinction between 

athletes based on performance level. Using ischaemia as the method of pain induction, they 

reported that national squad swimmers had significantly higher pain tolerance levels in 

comparison to club level swimmers, who in turn had significantly higher pain tolerance to those 

from a non-athletic group. The authors suggested that the athletes training to a high level have 

more control over their muscular system due to the amount of time spent training and are 

therefore able to limit the debilitating effects of pain. Therefore, it was the swimmer's ability to

cope with the effects of pain, and not ability to tolerate pain itself that gave high level athletes an 
advantage over athletes of a lower ability or non-athletes.

The conclusions drawn by Scott & Gijsbers (1981} were based on the assumption that 

pain has a debilitating effect on an organism and prevents it from functioning normally. 

Theiefore, through repeated exposure to painful conditions, the athlete learns to cope with the 

limitations and adapt to pain. However this explanation was speculative and not what the study 

specifically examined and therefore further investigation into coping strategies and learning to 

deal with pain associated to sports performance is needed. While it is unclear whether greater 

pain tolerance is inherent or learnt, it is apparent that regardless of the type of pain induction



method used, the type (contact or non-contact) and level (national-, club-level or non-athlete) of 

athlete influences the individual’s ability to tolerate pain.

2.2.2 PAIN COPING STRATEGIES IN ATHLETIC PERFORMANCE

Individuals may have a physiological tolerance to pain, or it may be that certain individuals have 

a better ability to cope with pain during performance (Bartholemew, 1998), which would 

suggest that the diffeiences reported between athletes and non-athletes in their response to 

pain stem from pain coping techniques and cognitive strategies that are either learned as a 

result of sports performance (Jaremko et al„ 1981; Ryan & Foster, 1967) or lead the individual 

to choose a certain sport (Pen & Fisher, 1994). The cognitive strategies of former Olympic 

cyclists for dealing with the pain associated to their performance was analysed by Kress (1999) 

in a qualitative investigation in which several higher order themes common amongst those 

interviewed were outlined showing that pain, preparation, mental skills, mind and body, 

optimism, control and "house in order" were all areas thought to be important in tolerating pain 

during performance. Those that were physically and mentally prepared for the competition and 

the pain associated with it were found to experience less pain than those lacking these 

attributes. Accoi dingly Kress (1999) concluded that pain within the performance was simply a 

perception rather than a physiological fact.

In an investigation looking at the use of cognitive strategies in sport, Gauron & Bowers 

(1986) reported a marked reduction in pain experienced by injured athletes suffering chronic 

pain, again suggesting an element of psychological control that can be trained within 

individuals. In relation to sports performance Spink (1988) analysed the use of different 

cognitive strategies and linked a dissociative cognitive strategy with pain reduction and 

improved performance in a swim test. Attentional focus (Ahles et al., 1983; Nouwen et al., 

2006) and anxiety (Villemure & Bushnell, 2002) have also been indicated to alter pain 

perception in experimental studies and an argument can therefore be made that it is the 

interpretation of a pain stimulus rather than the intensity of the stimulus itself that determines 

a person s ability to cope with pain. This would suggest limitations may be imposed through 

psychological mechanisms rather than physical (Pen & Fisher, 1994) and therefore the athlete 

could be taught to develop coping mechanisms or techniques to deal with pain. Individuals 

within sport may tolerate pain in different ways and with varying levels of success (Ryan & 

Kovacic, 1966) but in many sports there is an inherent association of pain with performance 

(Iso-Ahola & Hatfield, 1986), and therefore the way in which individuals react to pain can 

contribute to performance. Pain and the likelihood of pain occurring can induce a fear or feeling 

of perceived threat, which may decrease an individual's level of pain tolerance and hence

f
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adversely affect performance (Friedman et al„ 1985) regardless of what their baseline tolerance 

for pain is. It is therefore important to all levels of sport and to all performers.

The ability of pain to take control of an organism can result in performance decrements

(Scott & Gijsbers, 1981) as the athletes are no longer able to utilise their full muscular potential,

hence offering one possible explanation for performance losses associated with pain. Whilst

such behaviour was not found to occur with elite swimmers in the Scott & Gijsbers' study,

Brewer et al. (1990) found that pain did inhibit motor performance during complex tasks where

pressure pain was used to induce a pain response. The authors suggested that the pain stimulus

induced a state of over arousal, which in turn had a negative effect on the performance of

complex tasks. Linked to the inverted-U arousal and performance relationship (Yerkes &

Dodson, 1988) this suggests that there may be an optimal level of pain, above and below which

performance decreases. In a further investigation Birch et al. (2000), concluded that when

exposed to pain dui ing low precision tasks that muscle activity would decrease, whereas in high

precision tasks there was no reported effect of pain which may introduce other variables such

as selective attention that need to be considered when looking at pain responses in relation to 

performance.

The competitive sports environment should also be viewed as a variable influencing pain

toleiance levels according to Sternberg et al. (1998) who analysed experimental pain sensitivity

in male and female collegiate athletes two days before a competition, immediately following the

competition, and two days after the competition. Comparing these results to those of matched

non-athlete controls, they found that competition dramatically reduced the perception of

noxious stimuli and concluded that competition induces both hyperanalgesic and analgesic

states that are dependent on the body region tested and the pain assessment methodology,

therefore the pain that is felt in competition cannot always be generalised between individuals.

It does however provide a further factor in need of consideration when searching for the

optimal level to be achieved on the inverted-U scale in a competitive environment and this could

be very different from a training environment. This could have significant implications on

coaching practices and preparing the performer for competition. It suggests that not only is

exposure to pain important in learning to deal with its effects (Egan, 1987) but also competition

in order for the athlete to recreate similar emotional states to those experienced when 

performance is measured (Sternberg et al., 1998).
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2.2.1 EXPERIMENTAL PAIN INDUCTION

Numerous methods of inducing pain have been reported within the literature such as electric 

shock (Neddermeyer et al., 2008; Tursky, 1972), hypertonic saline injections (Arendt-Nielsen et 

al„ 1996; Ervilha et al„ 2005), delayed onset muscle pain (DOMS) (Dannecker et al, 2008) and 

thermal pain stimuli (Dannecker et al., 2008; Hatayama & Shimizu, 1993; Neddermeyer et al., 

2008). All of these methods of pain induction are conducted in a laboratory setting which 

means that a number of experimental variables must be considered besides the method of pain 

induction, including pain measures used, environmental cues, experimenter appearance and 

possible personal biases and their effect on the participant (Neddermeyer et al., 2008). 

Inducing pain experimentally allows the experimenter to control the experience of the 

participant to a certain extent and to investigate effects of pain on ‘normal’ subjects. However, a 

major limitation of inducing pain experimentally in a laboratory is that they are inherently safe 

(Pen & Fisher, 1994) which means that the individual knows that they are going to come to no 

harm and hence the emotional, or fear, component of pain is reduced.

Much of the current literature relating to pain and muscle performance used invasive

methods of injecting saline to induce pain (Arendt-Nielsen & Graven-Nielsen, 2008; Ervilha et

al., 2004, 2005; Farina et al., 2004). Whilst this has been found to be a valid and reliable method

of pain induction (Ervilha et al., 2004), there are associated limitations to studying pain in this

way. Firstly, there is little control over duration of pain stimulus, meaning that it becomes

ethically sensitive and limits the opportunity for within session repeat testing. It is also very

difficult to control for intensity of pain induced which limits investigations to pain versus no

pain comparisons rather than the more complex issue of examining the relationship between

levels of pain and performance. The current research used a GPD to induce pain which allowed

for careful control of pain intensity, was transient in nature and non-invasive, and therefore did 

not interfere with muscle physiology.

____________ _________ 2.3 THEORIES OF PAIN__________

To fully understand the effects that pain has on the body and how this may impact upon sports

performance, an appreciation of the different theories of how pain is experienced by individuals

may be valuable. In 1664 Descartes proposed a direct wire theory of pain in which he

contended that any external stimuli could only be acknowledged by an individual via messages

being sent from the periphery to the brain. Until the mid-eighteenth century all sensations were

deemed to be characterised in this way, not accounting for differences in sight, touch and sound 

which were later identified (Melzack & Wall, 1988).
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The major development in differentiation of sensations came via the first scientific 

proposition of specific nerve energies, presented by Muller (1842), in which it was suggested 

that external objects were only identified and interpreted by the brain due to sensory nerves 

which contained symbolic or coded data describing the sensation (Pearce 2005). Muller (1842) 

proposed that the type of sensation was different for every stimulus and was a function of the 

nerve, not the stimulus; pain was therefore the function of a unitary sensory system. This was 

considered to encompass all somatosensory information (including pain) which was thought to 

be transmitted by a straightforward channel from the pain organ to a pain centre in the brain. 

This later became known as the specificity theory (Pearce 2005).

2.3.1 SPECIFICITY THEORY

The specificity theory assumes that there is a single sense of touch which encompasses within it 

the sensation of pain. However this is an issue of contention as research conducted by Von Frey 

(1894) categorised this into four distinct modalities (touch, warmth, cold and pain) each with 

its own projection system to the brain. Von Frey also suggested that the skin contained 

different 'spots’ responsible for each of the four modalities and through development of pin 

prick and touch sensitivity measures (Von Frey’s Hairs) and advances in anatomical 

investigations, he was able to demonstrate the existence of free nerve endings in the skin which 

he aigued to be pain receptors. However his research was based upon many assumptions, and 

subsequent investigations into the anatomical correlations described by Von Frey have not 

supported his theories (Melzack & Wall, 1962). It did however provide a platform on which to 

develop more specific research regarding the existence of pain pathways.

Torebjork and colleagues (1970) discovered that nociceptor units do not form single

sensory spots on the skin as suggested, but instead have extended receptive fields with free

nerve endings found to serve multiple somatosensory modalities (Pearce 2005). Experiments

based upon the specificity theory were also carried out to demonstrate that there is a direct

relationship between receptor type, fibre size and quality of experience (Rose & Mountcastle,

1959; Sinclair, 1955) with fibre size being thought to be specific to each modality and therefore

supporting the idea that specific nerve energy is in existence for the different touch modalities.

Research surrounding this particular theory demonstrated that there are more complex

processes going on with regard to how we experience pain and suggested that through

identification of a pain pathway there may be the possibility of mediating the pain experience

(Rose & Mountcastle, 1959) however the precise mechanisms, especially in relation to 

neuromuscular performance required further investigation.
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2.3.2 PATTERN THEORY

The pattern theory, developed by Weddell et al. (1948] and Sinclair (1955) suggests that pain is

a product of intense stimulation of non-specific receptors (Pearce 2005). In contrast to the

specificity theory which postulates that pain is interpreted as "painful" as a result of the sensory

nerves that describe the sensation (Muller, 1842], the pattern theory suggests that pain

perception is a result of the spatial and temporal patterns of the stimulus itself (Noordenbos,

1959). This would mean that the way in which we experience pain could not be mediated

through psychological intervention or increased exposure (and therefore desensitisation) to

pain, but instead the pain stimulus itself would have to be altered in order to maintain normal

neuromuscular functioning. This would require either a change of the stimulus itself (e.g.

lemove pain from the condition) which is not possible in the case of sports performance, or

would require a sophisticated training mechanism in which the way the body interprets the

pain stimulus could be altered. This has however received little empirical support and has been

usurped by subsequent theories meaning that minimal investigations have been carried out. It

is however worth noting that the physical stimulus itself does remain a key factor in any

pel foi mance i eductions and physiological variables should be considered throughout any work 

in this field (Noordenbos, 1959).

2.3.3 AFFECT THEORY

The Affect theory was the first to centre upon the psychological element associated with pain 

and the main advocate of this was Marshall (1894) who believed that pain was not simply a 

sensory quality but that it also had a negative affective quality which could compel an individual 

to perform an action, or alter behaviour, subconsciously. Physiological theories focus upon pain 

as the primary sensation and relegate motivational or emotional elements as secondary 

processes (Wall, 1978). However, the argument could be made that sensory, motivational and 

cognitive processes occur in parallel and are therefore able to interact with one another to 

determine the performance output (Melzack & Wall, 1988). This was the first group of theories 

to consider an interdisciplinary approach to the problem and was subsequently developed by

Melzack and Wall (1965) who tried to bring together all the components of what they believe to 

be a complex mechanism leading to the pain experience.

2.3.4 GATE CONTROL THEORY

The premise of the Gate Control Theory (GCT) is that there is no clinical evidence to support a 

direct wire approach to pain transmission (Melzack & Wall, 1965). A series of interconnecting 

nerves transmit a message from the site of the stimulus to the brain, and the junction between
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each serves as an opportunity for modulation of the message to occur (Wall, 1978). The first 

point of possible modulation is the dorsal horn, located in the spinal cord which is where stimuli 

from the periphery are first sent before being redirected to the brain. The dorsal horn is the 

central point for understanding the GCT as described by Melzack & Wall (1956) but the authors 

themselves acknowledge that the pain pathway is complex and indirect and cannot be 

simplified without consideration of situation and individual.

GCT uses the metaphor of a gate which controls the level of pain an individual feels 

(Melzack, 1993) within which pain is thought to be modulated on at least three levels 

(peripheral, spinal and supra-spinal sites) and is conceptualised as a dynamic, interlocking 

series of biological reactive mechanisms (Wall, 1995). in order for a nociception to be 

interpreted as pain it must first reach the brain which requires it to pass from the peripheral 

nerves, into the spinal cord (via the dorsal horn) and then up into the brain. The dorsal horn (or 

'gate') modulates the number of impulses passing to the brain, thereby limiting and controlling 

pain perception (Melzack & Wall, 1965). When the amount of information that passes through 

the gate exceeds a critical level, the neural mechanisms for the pain experience and control are 

activated. The gate is assumed to be closed by activity in the large fibres which then decreases 

the effectiveness of the excitatory synapses and the experience of pain is reduced (Kolt & 

Mackler, 2003). Whenever a painful stimulus is detected it is transmitted via both large and 

small afferent fibres, but upon reaching the dorsal horn the neural signals travelling via the 

rapid conducting large fibres interact with those transmitted via the slower A6 and C-fibres and 

the result can be a suppressing of the activity conveying noxious information.

Volleys of impulses from large fibres reach and excite the T-cells first; later the effect is 

reduced by negative feedback through the substantia gelatinosa (SG). It is the gelatinosa cells of 

Laminae II and III and the transmission cells of laminae IV and V that are excited. In the small 

fibres, volleys of impulses activate positive feedback in the SG which exaggerates their effect on 

the T-cells. In turn the gelatinosa cells when excited by the small fibres can tonically inhibit the 

input from both large and small fibres by presynaptic inhibition (Melzack & Wall, 1965). Small 

fibres tend to be tonically active which holds the gate open. When C fibre activity is high there is 

a i educed tendency for gelatinosa cells to exert their presynaptic inhibitory influences on the T- 

ceUs which means that the excitatory effect of the AS and C fibres results in opening the gate so 

that the T-cells can fire (Melzack & Wall, 1965; Noodenbos, 1959). When a noxious stimulus is 

detected it activates all fibres which alters the balance between large and small fibre input 

(Wall, 1967). There is ongoing activation of the small fibres which in effect holds the gate open 

as explained above. When a noxious stimulus is present, there is a disproportionate activation 

of the large fibres as compared with small fibres (as these were previously largely inactive)
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which leads to an increase in presynaptic inhibitory influences exerted by the gelatinosa cells to 

suppress and modulate the activity of T-cells; this then closes the gate.

The GCT suggests that transmission of pain from the peripheral nerve to the spinal cord 

is subject to modulation by both intrinsic neurones and controls emanating from the brain 

(Dickensen, 2002). As every synapse allows opportunity for modulation this means that at any 

given point between the peripheral site at which the stimulus was detected, right up until it is 

translated in the brain, there can be any number of factors that can influence it. Cognitive 

processes are thought to function alongside affective, motivational and evaluative factors to 

determine somatic inputs (Melzack & Wall, 1965). Through its focus on the central nervous 

system and the dorsal horn in particular, this theory allowed for innovative developments in 

pain medicine due to the physiological identification of possible pain pathways (DeLeo, 2006)

and the functioning of the gate is now widely accepted as being a factor determining pain 

perception (Addison etal., 1998).

2.3.5 PARALLEL PROCESSING MODEL

The parallel processing model builds upon both the sensory model for pain and the affect theory

to try to explain how the two components work together to produce the final interpretation of

pain (Addison et al., 1998). It contends that pain contains both an informational and

emotional/motivational component; both of which are processed concurrently. Similar to the

GCT information is thought to travel to the brain via the dorsal horn, however in the parallel

processing model it is suggested that information about pain location, duration and intensity is

sent to the brain parallel to sensory perceptual information about the pain (Addison et al.,

1998). At a pre-conscious level therefore, there is a complex network of information being

processed regarding both the physical nature of the pain and emotional information alongside 
it.

The two components of pain proposed within the parallel processing model become 

increasingly intertwined as the information begins to move from the present (perceptual motor 

information) to being stored as pain schemata and then finally to where it is stored as 

informational schemata of past experiences (Addison et al., 1998). The parallel processing 

theory contends that based upon historical experiences of pain an individual develops schemata 

that contain both informational and emotional aspects of the pain experience and therefore 

whenever pain occurs the individual cross references the experience to their existing schemata 

and the experience of pain that they have will be determined by which aspects of schemata they 

activate (Taylor & Taylor, 1998). Leventhal & Everhart (1979) found that it was the aspect of 

pain attended to that determined the pain experience for an individual; for example when an
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individual focuses on informational elements of pain they experience significantly less pain than

when their attention is directed towards emotional aspects of pain. This has direct

consequences for practitioners working within sport, especially sport psychologists, who can

help to train the performer to attend to helpful rather than detrimental cues (Meichenbaum, 

1977; Nideffer, 1992; Zinsser et al„ 2001).

2.3.6 NEUROMATRIX

The GCT highlighted the role of the central nervous system and the dorsal horn in modulating

pain, however it is unable to explain phenomena such as phantom limb syndrome where the

individual suffers pain from a limb that has been amputated or never existed. In this case there

is no peripheral sensation that can be attributed as the cause for the perception of pain as there

is no limb (or any peripheral nerves) able to transmit such signals. This suggests that the

mechanism for pain perception is not simply due to inputs received, but instead involves further

involvement of the brain and sensory system. The Neuromatrix (Melzack, 2001) suggests that

pain is an integrative experience which is influenced by many different factors. Within the brain

itself there are millions of neural connections which result in a multitude of electrophysiological

activities, ultimately leading to a pain perception. Melzack (2001) proposed the existence of a

neuromatrix comprising of a series of neural networks, which themselves consist of loops

between the thalamus and cortex as well as the limbic system. This network is thought to be

initially determined genetically and is then later shaped by sensory inputs to take its complete 

form.

In contrast to previous theories (Von Frey, 1894; Torebjork et al„ 1970) that it is purely 

sensory inputs that determine the pain sensation, the neuromatrix contends that the loops 

allow parallel processing within which the cyclical processing and synthesis of nerve impulses 

develop a characteristic pattern; labelled the neurosignature (Melzack, 2001). The 

neurosignature is determined by multiple influences and past experiences, not just somatic 

sensory input The theory holds that all inputs into the sensory system undergo cyclical 

processing and the neurosignature is imparted upon them in the neuromatrix to determine the 

eventual output pattern. This then informs future responses to the same stimulus, so is a data 

bank of stored information allowing an individual to react in an appropriate way based upon the 

environment, their own genetic makeup and previous experiences.

The group of theories discussed to this point aim to explain how a pain sensation is 

recognised by an individual, but they do not account for the way in which muscle performance 

is altered when pain is experienced which could account for any performance deficits observed 

during pain conditions (Lund et al„ 1991). There have been three major theories proposed to



explain the effect of pain on muscle performance which form the basis for most empirical 

investigations surrounding pain and performance to date (Hodges & Tucker, 2011; Lund et al„ 

1991; Roland, 1986). These theories move beyond attempting to identify a pain pathway and 

seek to understand the interactions between pain and normal neurophysiological functioning to 

provide an insight into the mechanisms that may cause performance to change.

2.3.7 VICIOUS CYCLE THEORY

The vicious cycle theory contends that muscle activity increases in a uniform manner when pain 

is present independently of task (Roland, 1986), which has been shown through increased 

muscle activity and spindle discharge rate (Cram & Steger, 1983). However in the case of 

sustained activity, ischaemia is a likely outcome as well as accumulation of algesic agents 

leading to pain, although findings are inconsistent (Lund et al„ 1991). Pain induced 

experimentally has been shown to increase (Del Santo et al„ 2007; Sessle, 1999), decrease (Del 

Santo et al., 2007; Farina et al„ 2005) cr maintain (Farina et al„ 2004; Matre et al., 1999; Schulte 

et al., 2004) muscle activity during task completion. However, there is a wealth of evidence to 

suggest that muscle activity (recorded using electromyography) decreases in the presence of 

pain during a range of tasks (Svensson et al., 1995); isometric (Schulte et al., 2004), dynamic 

(Arendt-Nielsen et al., 1996) and where task complexity is the primary performance measure

(Graven-Nielsen et al„ 1997) suggesting that there may not be a uniform increase in muscular 

activity as suggested by the vicious cycle theory.

2.3.8 PAIN ADAPTATION MODEL

As with the vicious cycle theory, the pain adaptation model (Lund et al., 1991) makes the

underlying assumption that there is a uniform response to pain; in this case inhibition of motor

drive to muscles experiencing pain or involved in painful movement (Hodges & Tucker, 2011).

In conflict to the vicious cycle theory, the pain adaptation model suggests that agonist and

antagonist muscles react to limit movement during pain. Agonists reduce activity whilst

antagonists increase activity as a means of slowing or stopping the movement being undertaken

and thereby limiting potential damage from occurring (Lund et al., 1991). Whilst this is

supported through experimental pain research (Arendt-Nielsen et al., 1996; Stohler et al., 1988)

there is also evidence to the contrary (Sessle, 1999) where no uniform response has been 

detected.

The mechanisms underpinning pain-related reductions in muscular performance have 

been suggested to include information processing components (Price, 2000) which may mean 

that information being processed concurrently (such as task demands) are reduced in priority
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in the presence of pain; however exact mechanisms by which this may occur remain unknown. 

Muscle afferents identified to be sensitive to nociceptive stimuli are the group III and IV 

afferents (Falla and Farina 2008] which can be experimentally stimulated in order to allow for 

study of pain responses. In animal studies both excitatory and inhibitory postsynaptic 

potentials have been recorded in motoneuron membrane properties as a response to input from 

group III and IV nociceptive muscle afferents (Kniffki et al., 1981) supporting the existence of 

changes as suggested by the pain adaptation model. In human studies there have been 

inconsistent findings related to the pain adaptation model (Hodges et al., 2003). Patterns of 

electromypgraphic (EMC) activity relating to the model have been supported in a number of 

studies (Arendt-Nielsen et al„ 1996; Stohler et al., 1988; Svensson et al„ 1997; Graven-Nielsen et 

al„ 1997), however others have found that whilst a reduction in agonist EMG activity is 

commonly found to occur, there is not always an increase in antagonist EMG activity, rather, 

there is a similar reduction in antagonist EMG activity detected (Ervilha et al„ 2004(Birch, 

Christensen et al. 2000; Falla, Farina et al. 2007).

Challenges to the pain adaptation model come as a result of changes observed in motor 

unit discharge behaviour (Tucker, Butler et al. 2009), which has been found to decrease during 

force matched contractions in the presence of pain (Sohn, Graven-Nielsen et al. 2000; Ervilha, 

Farina et al. 2005) despite the fact that discharge rate is directly related to force production 

(Stuart and Enoka 1983) and therefore there should be a corresponding decrease in force which 

was not evident. When investigating force maintenance under painful conditions most studies 

have found a decrease in motor unit discharge rate where force is maintained (Sohn, Graven- 

Nielsen et al. 2000; Farina, Arendt-Nielsen et al. 2005; Hodges, Ervilha et al. 2008). However, 

equivocal data exist where Birch et al. (2000) reported no change in discharge rate looking at 

the whole motor pool, which was explained by recruitment of new motor units and increasing 

discharge rates in units not measured (Tucker et al., 2009). Given the equivocal reports in the 

literature and inconsistent changes in antagonist activity identified that could account for force 

maintenance (Tucker, Larsson et al. 2009), the findings related to uniform inhibition of painful 

muscles do not consistently support the pain adaptation model (Tucker, Butler et al. 2009).

Some aspects of the pain adaptation model have been identified to occur consistently 

between individuals (Hodges et al„ 1996, 2003; MacDonald et al„ 2009), whilst in other muscles 

there appears to be unique response unaccounted for by the model (Hodges et al., 1996; van 

Dieen & Selen., 2003) most commonly found to occur in the trunk which comprises of numerous 

muscles all able to achieve similar goals and therefore able to experience redundancy during 

movement (Hodges et al., 2003; van Dieen & Selen, 2003). This inter-individual variability is 

not accounted for within the pain adaptation model (Hodges & Tucker, 2011). Similarly, the



pain adaptation model ignores changes in postural control and makes predictions purely based 

on voluntary movements (Hodges & Tucker, 2011) which is based on the assumption that pain 

does not cause postural changes (Lund et al., 1991). However, literature increasingly refutes 

this with evidence that pain alters balance (Byle & Sinnott, 1991; Mok et al„ 2004) as well as 

changes to whole muscle behaviour in postural mechanisms during pain (Hodges et al„ 1996, 

2003; MacDonald et al, 2010; Magnusson et al., 1996). This would provide rationale for 

assuming that pain does change the ability of an individual to control muscular functioning and 

hence may suggest that performance may be increased through training or interventions.

2.3.9 ADAPTATION TO PAIN MODEL

Hodges & Tucker (2011) suggest the 'adaptation to pain’ theory in which pain is thought to

stimulate a protective mechanism to minimise risk to the individual in a similar way to the pain

adaptation model proposed by Lund et al. (1991). However, rather than suggesting one uniform

response to pain, they propose a more flexible solution involving redistribution of muscle

activity both within and between muscles, changes in normal mechanical behaviour and

changes at multiple levels of the motor system (Hodges and Tucker) all of which are dependent

on task and muscle region. Hodges & Tucker (2011) propose that when pain is present there is

a redisti ibution of activity which may occur in conjunction with a change in recruitment order,

thereby explaining decreased motoneuron discharge rate (Sohn, Graven-Nielsen et al. 2000;

Farina, Arendt-Nielsen et al. 2004; Hodges, Ervilha et al. 2008). Alternatively a change in

recruitment order may be presumed to occur incorrectly due to the fact that larger motor units

may be recruited at a lower force (to enhance the rate of force development as part of the

flight/fight response), or in a different direction (to preferentially activate muscle fibres with a

specific force direction to change load distribution on the painful structure) (Hodges & Tucker,

2011).

There are inconsistencies with studies reporting recruitment patterns under conditions 

of pain which have been explained by Hodges & Tucker (2011), for example, spatial 

redistribution is difficult to detect by a single pair of surface electrodes placed over the whole 

muscle which could account for the variability reported between studies (Arendt-Nielsen 1996; 

Birch, Christensen et al. 2000; Schulte, Ciubotariu et al. 2004; Farina, Arendt-Nielsen et al. 2005; 

Falla, Farina et al. 2007). There is evidence to show that discharge rate can be maintained 

during pain thought to be through recruitment of a new population of units that were not active 

before pain which could not occur with uniform inhibition of the whole motoneuron pool 

(Tucker, Butler et al. 2009; Tucker and Hodges 2009). This theory advocates a non- 

stereotypical response to pain where the nervous system is thought to have a range of options



at its disposal in order to achieve protection of the painful area. This may involve increased,

decreased or redistributed activity involving more complex neural processes than those

proposed by the existing theories (Hodges and Tucker) but which are currently unexplained

and require further investigation. It is not clear what the mechanism is that causes there to be a

reduction in muscular performance when pain is present despite the wealth of theories 

proposed.

2.3.10 SUMMARY OF THEORIES TO DATE

The theories discussed above explore the issue of pain from a number of theoretical standpoints

and with different disciplines underpinning their explanations. The early theories focus upon

physiological explanations of pain and how the individual understands the physical sensation of

pain as painful’ with the central premise of a ‘pain pathway’ (Weddell et a]., 1948; Von Frey,

1894). Specificity and Pattern theories have since been criticised for their limited

acknowledgement of the interaction between the environment and the individual (Marshall,

1894, Melzack, 2001) and the fact that advances in physiological techniques have found no

direct wire (or pain pathway) to exist (Melzack & Wall, 1965), indicating that other mechanisms

are likely responsible. This was counteracted by a proposal in which affective constructs were

also thought to contribute to the pain experience and therefore the inclusion of psychology was

perceived important for advocates of the affect theory (Marshall, 1894) and parallel processing

model (Addison et al„ 1998). The psychological elements of pain were believed to be equally

important to the sensation experienced as a result of the physical stimulus. These theories

moved away from trying to provide a simple direct wire explanation for pain and moved

towards a more complex relationship between physical and psychological constructs; however

they still referred to the premise of a pain pathway for which no empirical evidence has been 

provided (Melzack & Wall, 1965).

The GCT proposed by Melzack & Wall (1965) considered pain to be more than a simple

pathway from stimulus to response and recognised that ascending and descending signals can

interact to mediate the pain experienced. However, this theory has also received criticism due

to its diagrammatic emphasis in which the role of the substantia gelantinosa and presynaptic

mechanisms were highlighted with little consideration of other variables (Nathan, 1976), and as

with many of the pain theories, it tends to concentrate on mechanism rather than outcome

without any solid evidence to suggest that the process outlined does describe the phenomenon.

In contrast, the neuromatrix (Melzack, 2001) did not focus on a single pathway, but instead

suggested the large number of opportunities for modulation to occur in which modulation 

occurs and how this cannot be viewed distinct from the environment and individual factors.



Howevei, theie is still no definitive single mechanism for the production of pain experiences.

Whilst this i emains a question yet to be answered by any of the theories proposed to date, there

aie commonalities amongst the later theories suggesting that some level of agreement has been

leached (Melzack, 2001) foi example that modulation can occur to the stimulus during

transmission (Melzack, 1978; Melzack & Wall, 1965; Noordenbos, 1959; Roland, 1986) and

multiple factors make up the pain experience rather than a simple pain pathway (Addison et al., 

1998).

The second group of theories presented here focused upon the effect of pain on human 

movement and postulated reasons for behavior change observed when an individual 

experiences pain. The vicious cycle theory (Roland, 1986), pain adaptation model (Lund et al., 

1991) and adaptation to pain theory (Hodges & Tucker, 2011) all agree that pain is accountable 

foi ceitain changes in muscular performance. However, the vicious cycle theory suggests a 

uniform inciease in muscle activity in the presence of pain whilst the pain adaptation model 

aigues against this and instead proposes that there is a uniform reduction in muscle activity of 

the agonist and increase in antagonist muscle activity in response to pain. Both theories can be 

supported through empirical evidence where muscle activity has been shown to react in the 

way hypothesised by the authors (Roland, 1986; Lund et al., 1991), however neither has been 

able to predict accurately the way in which an individual responds to pain in all situations, nor 

provide an explanation for why there is no consistent uniform response evident (Hodges & 

Tucker, 2011). For this reason the adaptation to pain model (Hodges & Tucker, 2011) does not 

propose a uniform prediction for the response to pain and instead suggests a non-stereotypical 

response to pain which is dependent on location, type and situation. This accounts for some of 

the discrepancies found between the vicious cycle and pain adaptation model, however it still 

does not provide a clear explanation of mechanisms involved and requires further development 

before it can be used as a predictive tool. It is evident that further investigations into the 

mechanisms underpinning the pain experience are required before a conclusive explanation can

be given, and with the introduction of emerging technologies new techniques may be developed 

that allow for this to be achieved.

______ __________2.4 NEUROMUSCULAR PHYSIOLOGY

In order to understand the effect of pain on muscle performance, an appreciation of how the 

neuromuscular system functions normally is also needed so that comparisons can be drawn and 

possible mechanistic changes can be investigated. It is also important to develop an 

understanding for the mechanisms of pain and how a pain response is generated to understand 

how this may interact with the normal functioning of the neuromuscular system and provide an



explanation for any differences observed. The following section discusses some of the key

physiological processes involved in muscle performance and how this contributes toward the 

pain experience.

2.4.1 TRANSMISSION OF STIMULI TO THE BRAIN

Sensation, transmission and perception of pain are a function of the nociceptive system. When a

stimulus is detected in the periphery a message is sent to the brain as nociception; it is only

when the message reaches the brain that it may be interpreted or defined as pain (Melzack &

Wall, 1965). The process of a message reaching the brain can be divided into four phases;

transduction, transmission, modulation and perception (Heil & Fine, 1999). At the nerve

endings a stimuli is detected (which may be pressure, heat, damage or any number of stimuli)

this is then tianslated into electrical activity to allow it to be transmitted through the sensory

nervous system. This change from mechanical to electrical activity is labeled the process of

transduction. Once the message is electrical, the impulses are transmitted through the sensory

nervous system to the brain. At any point between the area at which the stimulus was detected

and the brain, there is the opportunity for modulation to occur where the message is

transmitted from one nerve axon to the next (Melzack, 2000). At the synapse there is

opportunity for the message to be changed through central, cortical or peripheral influences

(Melzack & Wall, 1965). Once the signal reaches the brain it can be given meaning, which is

known as the process of perception; it is at this point that the cognitive-emotional experience of 

pain is generated (Heil & Fine, 1999).

2.4.2 AFFERENT NERVE FIBRES

The sensory nervous system contains three types of afferent nerve fibre; A-Beta (AP), A-Delta 

(A6) and C fibres; all of which are responsible for detecting and transmitting stimuli to the brain 

(Melzack & Wall, 1965). Each has a different threshold at which point it is stimulated and they 

are classified by size and suffix. The A6 fibres and C-fibres are thought to be those responsible 

for transmission of noxious stimuli; however the types of stimuli they transmit differs due to the 

physiological makeup of the fibres (Wall, 1978). Ap and AS fibres are both myelinated which 

allows for faster neural transmission, however the larger diameter of the Ap fibres means that 

they are much faster than the A6 fibres at transmitting electrical impulses (Devor & Wall, 1978). 

Sensations such as touch and proprioception stimulate the Ap fibres whilst heat and pinprick 

type sensations stimulate the A6 fibres which connect to high threshold mechanoreceptors. The 

major physiological difference between A and C fibres is that the C-fibres are unmyelinated 

meaning that neural transmission is slower. C-Fibres have a small diameter and are responsible
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for the transmission of ache type pain stimuli (Torebjork & Hallin, 1974). These fibres connect 

to polymodal nociceptors.

Nociceptors have a threshold too high to be stimulated by normal innocuous stimuli; 

their role is to detect noxious stimuli which generate a higher level of excitation (Charman, 

1994). Ap fibres detect these high threshold stimuli and transmit the information very quickly 

through the nociceptive system which ensures a rapid and non-conscious response (Eccles,

1964) . This quick response to pain is what informed Decartes (1664) first major theory to pain 

mechanisms in which it was believed that pain transmission occurred through a single channel 

from the periphery to the brain triggering a reflex response. However clinically it has been 

demonstrated that humans do not have a direct wire linking the skin to the brain; each neural 

transmission has to pass through a number of nerves before reaching the brain (Melzack & Wall,

1965) . Every synapse between nerve axons allows opportunity for modulation to occur at 

which point the meaning or interpretation of the stimulus may be altered (Melzack, 2000).

Pain is thought to activate large (Ap and A6) and small fibres (A6 and C-fibres) 

simultaneously (Noordenbos, 1959). The Ap fibres ascend directly in the dorsal columns 

allowing for a quick response. The A6 and C-fibres terminate in the dorsal horn, located in the 

spinal cord. Here the stimuli synapse with interneurones within the dorsal horn, predominantly 

in Lissauer's Tract but also deeper in the SG. At this point there is opportunity for the 

simultaneous messages being sent by the large and small fibres to interact with one another and 

even inhibit the signal that each is sending which then alters the message that is received by the 

brain (Melzack & Wall, 1965). This is important to note as during sports performance the 

individual may experience pain and this could mediate the normal functioning of the 

neuromuscular system thereby inhibiting performance (Scott & Gijsbers, 1981). Alternatively, 

it could provide valuable opportunity to help individuals learn to deal with pain and reduce the 

magnitude of effect it has on performance which could inform practitioners working in 

performance environments.

2.4.3 MUSCLE PERFORMANCE

The major function of a muscle is to produce force in order to facilitate movement (Jing et al., 

2002). Force production contains many processes and mechanisms that need to be understood 

when investigating performance in tasks where force is an outcome measure. This includes 

identification of how the muscle contracts and the biomechanical relationships concerning force 

production; the length-tension relationship and the force-velocity relationship. When 

movement is required a message is sent from the brain via the central nervous system (CNS) 

and triggers muscle contraction. This happens through a series of events described within the



sliding filament theory (Huxley et al., 1953) for which muscle structure plays an important role. 

Several important functional components can be identified in Figure 2.1.

Figure 2.1. Hierarchical organization of muscle (adapted from Bloom & Fawcett. 1968).

The range of force a muscle can produced is largely determined by how many sarcomeres there

are in a series and the magnitude of the force a muscle is able to produce is determined by the

number of muscle fibres arranged in parallel (Meijer et al., 1998). These muscle fibres are

organised into motor units in which all muscle fibres are of the same type and have the same

metabolic profile, so that when they are activated they all behave in the same manner (Liu et al.,

2002). In order to initiate voluntary movement command signals must be sent from the CNS via

efferent nerves to the motor units. As the command is transmitted down the spinal cord there is

opportunity for modulation as a result of sensory feedback sent via afferent neural fibres from

the mechanoreceptors, muscles and soft tissue which may inhibit or potentiate the activation of 

the particular motoneurons (Enoka, 2008).

If the stimulus that reaches the neuromuscular junction exceeds the threshold required 

for that muscle, it will trigger action potentials of the motor units and all the muscle fibres of 

that motor unit will contract simultaneously (Ganong, 1971). According to Ohms law (I = V/R)
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the iheobase cuilent (I) is deteimined by the required voltage change to produce an action 

potential (V) and the input lesistance of a motoneuron (R). As resting potential and the voltage 

at which an action potential is generated do not tend to change, it suggests that input resistance 

is the major determinant of activation (Gardiner, 2001). This is thought to be inversely 

proportional to motoneuron size (Macintosh et al., 2006), so smaller motoneurones have a 

lower activation threshold as a smaller rheobase current is required to generate the action 

potential (Henneman et al., 1965). In order to generate more or less force, the number of motor 

units recruited must change; movements requiring low force recruit only few motor units, those 

requiring high levels of force recruit greater numbers (McArdle et al., 1996). If one considers 

that the signal to initiate movement can be mediated as suggested by the GCT and Neuromatrix 

theories then this is a point at which it may be proposed pain could alter performance of the

muscle as a result of modulation from either the pain stimulus itself or the resulting experience 
(Melzack & Wall, 1965; Melzack, 2000).

M Y O S IN  F IL A M E N T A C T IN  F IL A M E N T

I B A N D
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Figure 2.2. A simplified diagram of a single sarcomere within a myofibril a) at rest and b) contracted 
illustrating the process of the Sliding Filament Theory (Huxley et al., 1953).

Figure 2.2 depicts a sarcomere made up of myofibrils containing both actin and myosin 

filaments organized in a lattice formation (Horowitz & Podolski, 1987a). At rest, the thick 

myosin Filament overlaps the thin actin filaments leaving a gap between the actin filaments 

known as the H Zone (Figure 2.2a). During contraction cross-bridges form and thereby cause 

the myosin and actin filaments to overlap, shortening overall muscle length without any of the



myofibrils themselves shortening (Figure 2.2b). When a muscle fibre is contracted, all 

saicomeies contract simultaneously so the contraction is uniform across the sarcomeres 

(Horowitz & Podolski, 1987a). This suggests that if an impulse is sent by the brain for a muscle 

to contract, it will contract unless the message does not reach the intended recipient(s). 

Modulation of the message could occur to prevent signals reaching all motor units within the 

muscle group which would therefore decrease force output and hence limit performance.

The mechanism for muscle contraction is stable and relies on certain chemical changes 

allowing cross-bridges to form and ATP to bind to the free binding sites (Horowitz & Podolski, 

1987b; Huxley, 1953). This happens whenever a movement is desired as a consequence of 

neuial stimulation. However, level of force produced is determined by numerous factors, such 

as level of agonist activation (de Ruiter et al., 2004, 2006, 2007), intrinsic contractile properties 

of the muscle (Andersen et al„ 2006), type of contraction (Hill, 1938) and muscle length and 

joint angle (Rassier et al., 1999). An inverted-U relationship has been found between length of 

the muscle and tension produced, with the greatest force evident at mid-range of motion in the 

contractile elements. At shorter lengths than resting length, the actin and myosin cross bridges 

are thought to interfere with one another meaning reduced force production (Abernethy et al., 

1992). At lengths greater than resting rate there are not enough binding sites, meaning that 

muscle tension cannot be produced. In contrast, the elastic elements have no influence on force 

production until the muscle length is greater than resting length. When this occurs, the elastic 

fibres stretch and produce tension in the muscle. The total length-tension relationship is the 

sum of the two. Isometric tasks provide a situation in which the muscle length and joint angle 

lemain constant and therefore allows for neural and mechanical determinants of force to be 

investigated more reliably which is why this type of task was selected for the current study.

The length and direction of movement also influences force production which is 

depicted as a hyperbolic curve describing the dependence of force on velocity of movement; 

implying that a) velocity of movement is inversely proportional to load, b) large force cannot be 

exerted in rapid movements, and c) conditions of low loading create the greatest velocities (Hill, 

1953). The force-velocity relationship makes the assumption that at a given velocity, the 

muscles are generating maximum force (Beck et al., 2008) with the likely source of the 

relationship being the fact that when speed of cross-bridge cycling increases, there are fewer 

cross bridges formed to develop force (Gulch, 1994) thereby reducing output over a given 

velocity. In studies in which pain has been induced by injection of saline into the muscle 

(Arendt-Nielsen & Graven-Nielsen, 2008; Ervilha et al., 2004; Farina et al., 2004), the 

physiological properties of the muscle may be compromised and therefore alter processes 

involved in contraction. Within the current work, the use of a gross pressure device which is
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non-invasive and induces pain remote to the target muscle ensures that any changes observed 

are as a consequent of the pain rather than physiological interference with normal processing.

Muscle performance in sport can take many forms, be that power output, force 

production or muscular endurance. However, within this study a task that would be relatively 

novel to all participants and would allow the controlled study of both force output and muscle 

activity was chosen. EMG can be used to capture and measure electrical activity produced by 

skeletal muscles during movement through detecting the action potential that is generated by 

those muscle cells when they are neurologically activated (Macintosh et al., 2006; Robertson, 

2004). Amplitude of EMG signal increases with increased motor unit recruitment and firing 

frequency, making it a useful measure of neural activation (De Luca, 1997; Farina et al., 2002) 

provided that methodological and physiological factors that can alter the signal are accounted 

for, such as crosstalk from other muscles, amount of subcutaneous tissue, blood flow, electrode 

placement (De Luca, 1997) and equipment noise (Turker, 1993). In small muscles the 

relationship between EMG and force tends to be linear, whilst bigger muscles that require 

greater motor recruitment tend not to demonstrate such a linear relationship as amplitude 

variations do not correspond directly to force variations (Basmajian et al., 2004). However a 

positive curvilinear relationship exists which is thought to support the use of EMG as a global 

indicator of neural activation (Alkner et al., 2000; Kooistra et al., 2007).

There are two types of EMG analysis; surface and intramuscular (fine wire), which can be 

used for diagnostic purposes (Nigg et al., 1999) and to assess tension developed in muscle 

(Petrofsky & Laymon, 2005) or the degree of fatigue during exercise (Gerdle et al., 1990; 

Basmajian & De Luca, 2004). Surface EMG records the sum of the electrical contributions made 

by active motor units which are detected by two electrodes placed over the muscle belly and is 

considered to be a global measure of motor unit activity (Farina et al., 2004). Intramuscular 

EMG can measure the activation timing and Firing rate of individual motor units, and due to the 

fact that the electrode is inserted directly into the muscle belly being measured makes this 

suitable for muscle located deep within the body (Turker, 1993). However, it is inaccurate 

during strong contractions when impulse patterns become too dense (Macintosh et al., 2006) 

and limited to measuring only one motor unit therefore for larger muscle groups surface EMG is 
more appropriate.

When a muscle starts to fatigue the power produced by the individual muscle Fibres is 

reduced (Fitts & Holloszy, 1976) which is reflected in reduced EMG signal recorded. However, a 

number of factors have been identified to alter EMG amplitude and frequency including 

proportion of fibre types (fast or slow) (Petrofsky, 2001), thickness of subcutaneous fat
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(Bilodeau et al., 1990) and placement of electrodes (Gerdle et al., 1990, 2001) which all need to 

be taken into account when selecting location of measurement site and task performed. This 

study used surface EMG to analyse muscular activity during an isometric task as it allowed for 

investigation of changes to muscle electric potential and muscle synergies in specific movement 

patterns (Farina & Merletti, 2000). The initial signal that is recorded is the collective action 

potential of the muscle fibres in the motor unit being measured, all of which work together as 

they are innervated by the same motor neuron (Basmajian & De Luca, 2004).

When analysing EMG recordings it is common to use the root mean square (RMS) value 

which quantifies the electrical signal through reflecting physiological activity in the motor unit 

during a contraction (De Luca, 1997) and applying mathematical treatments that quantify the 

intensity and duration of several events of the EMG signal (Farina & Merletti, 2000). As there 

are so many factors that can influence EMG signal between individuals, it is common for EMG 

signal to be normalised to maximum isometric contraction (Burden et al., 1999; Merletti et al., 

1999; Kaplanis et al., 2000) in order that comparison can be made across participants. Using 

this technique, coupled with data about the level of force being produced allows for intra-

individual differences to be observed which can be used to help explain the influence of pain on 

muscle performance and be applied to the sport setting.

2.4.4 THE INFLUENCE OF PAIN ON NEUROMUSCULAR FUNCTIONING

In elite sport it is essential that muscle performance is optimal in order to achieve the desired 

results; therefore any factors compromising this are detrimental to the athlete. Muscle pain has 

been shown to influence control of movement via numerous reflex and central mechanisms 

(Arendt-Nielsen and Graven-Nielsen 2008) with experimental pain induced within a muscle 

shown to reduce activation of the painful muscle (Farina, Arendt-Nielsen et al. 2004; Falla, 

Farina et al. 2007). This is thought to be reflective of a decreased neural drive from spinal cord 

to muscle (Sohn, Graven-Nielsen et al. 2000; Farina, Arendt-Nielsen et al. 2004). The inhibition 

in this case is postulated to be a result of a combination of reflex mechanisms which are 

mediated by small diameter muscle afferents and reduced supra-spinal drive to the muscle 

(Falla, Arendt-Nielsen et al. 2009) however the mechanisms for this are yet to be fully identified.

In an investigation of participants with neck and shoulder disorders, researchers 

observed changes in the activation of the upper trapezius (Arendt-Nielsen and Falla 2009; Falla, 

Arendt-Nielsen et al. 2009) including reduced muscle activation during a repetitive upper limb 

task in participants experiencing chronic neck pain (Falla et al., 2004), increased muscle activity 

during computer work (Szeto, Straker et al. 2005), reduced ability to relax the upper trapezius 

muscles following voluntary activation (Falla et al., 2004) and reduced rest periods of the upper
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trapezius muscle during repetitive tasks (Veiersted, Westgaard et al. 1990). This was 

investigated further with regard to location of pain stimulus in the trapezius showing that 

location (caudal, cranial, or both simultaneously) caused the same activation changes, 

demonstrating that the activation pattern of inhibition was unaltered by site of stimulation 

(Falla, Ai endt-Nielsen et al. 2009) and perhaps indicating a more centralised response to pain.

Experimentally induced pain has also been used to study the effect of pain on muscle 

performance and the possible mechanisms by which changes occur. In a swimming task 

inducing ischaemia there was no peiformance decrement detected in high level swimmers 

(Scott & Gijsbeis, 1981). This contradicted the original hypothesis that pain could take control 

of an organism and therefore inhibit motor performance in suggesting that those at elite levels 

were able to perform without any significant inhibition. In contrast, Brewer et al. (1990) found 

that pressure pain did inhibit motor performance when task complexity was investigated. To 

explain this, the authors suggested that the pain stimulus induces a state of over arousal, which 

when considered relative to the inverted-U theory of arousal (Yerkes and Dodson 1908) would 

provide rationale for performance decrements to occur; for every task there is an optimal level 

of arousal and values above or below this cause performance to decrease (LeUnes 2008). In the 

case of pain, it could lead to increases in arousal levels and thereby take the participant outside 

of the ‘‘optimal” performance zone leading to a decrease in task performance. Similar findings 

were reported by Birch et al. (2000) who concluded that when exposed to pain during low 

precision tasks, muscle activity would decrease, whereas in high precision tasks there was no 

effect of pain suggesting that there may be a higher level neurological element able to override 

the influence of pain when examining task accuracy. The fact that in the Scott & Gijsbers (1981) 

study there were no decrements found in elite swimmers could be indicative of the fact that 

high level performers are able to train to deal with the consequences of pain and have therefore 

developed coping strategies allowing them to maintain performance (Jaremko et al., 1981; Ryan 

& Foster, 1967) or have reached elite levels as a result of being able to cope with pain (Pen & 

Fisher, 1994). However, a causal relationship has not been shown to date.

A significant development in the study of pain theories came with the proposition of the 

pain adaptation model (Lund et al., 1991) which attempted to explain the relationship between 

pain and muscular performance stating that pain affects muscle activation through inhibition of 

agonistic muscle and excitation of antagonistic muscle, resulting in a reduced force production 

and range of motion (Bonifazi et al., 2004). The activation of the agonistic and antagonistic 

muscle in synchrony with one another, referred to as co-contraction (Hammond et al., 1988) is 

thought to be a strategy providing a way of adapting the limb to external forces or those arising 

from multijoint dynamics (Gribble & Ostry, 1998). If a stressor is placed on a limb it is identified



by the body as a potential lisk and in reducing muscular force in the agonist and increasing

tension in the antagonist, the range of motion reduces, hence limiting the potential damage that 
can occur.

Pattei ns of EMG activity relating to the pain adaptation model have been supported in a 

number of studies (Arendt-Nielsen et al., 1996; Stohler et al., 1988) where pain has been found 

to deci ease EMG activity in the agonist and increase EMG activity of the antagonist within a 

plantar flexion (Graven-Nielsen et al., 1997) and an elbow flexion (Ervilha et al., 2004) task. 

However, there is some contradictory evidence to show that whilst a reduction in agonist EMG 

activity usually occurs there is not always a corresponding increase in antagonist EMG activity, 

rather a similar reduction in antagonist EMG activity is also detected (Ervilha et al., 2004). 

Another finding common among studies looking at EMG response and pain is that the level of 

force produced during a maximum voluntary contraction (MVC) is decreased during both 

experimentally induced muscle pain and non-experimentally induced muscle pain (Graven- 
Nielsen et al., 1997; Backman et al., 1988; Suzuki & Endo, 1983).

Whilst EMG activity and force level were found to reduce during pain conditions in

studies using MVCs (Graven-Nielsen et al., 1997; Backman et al., 1988; Suzuki & Endo, 1983),

studies using sub-maximal contractions found opposing results. Ashton Miller et al. (1990)

found that during sub-maximal isometric contractions there were no changes to either EMG

activity or force. What was found to change however was the endurance time of participants in

the pain condition compared to those in the no pain condition. These findings were later

supported by Graven-Nielsen et al. (1997, 2002) who concluded that pain has an inhibitory

effect of isometric contractions when the muscle activity rises above 70% of the MVC but not

before. In dynamic tasks there is again a change in the findings reported from isometric MVC

trials. Within dynamic tasks it is suggested that pain modulates voluntary activation of the

muscle either through increasing the EMG activity in phases of contraction where it is normally

silent, or through decreasing EMG activity in phases where it is normally activated (Arendt-

Nielsen et al., 1996; Graven-Nielsen et al., 1997; Svensson et al., 1998; Zedka et al., 1999) thus

not showing a net increase or decrease in EMG activity generally, but instead altering the 
patterns of contraction.

There is a relatively stable motor unit recruitment order for most behaviours which is 

based upon factors such as motoneuron size and common drive to the motoneuron pool 

(Heckman and Binder 1990; Mendell 2005) where it is predicted that recruitment of units 

extends fi om smallest to largest (Desmedt and Godaux 1977). However, changes in recruitment 

order have been identified as occurring as a result of non-physiological stimuli, such as
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electrical stimulation (Garnett and Stephens 1981; Semmler and TA%rker 1994), and in some 

voluntary tasks where muscles have multiple physiologic functions (Thomas, Schmidt et al. 

1978; ter Haar Romeny, van der Gon et al. 1982; Riek and Bawa 1992; Butler, McKenzie et al. 

1999). More contemporary research centers upon the changes occurring to muscle recruitment 

patterns in the presence of pain (Tucker and Hodges; Cowan, Bennell et al. 2001; Tucker, Butler 

et al. 2009) demonstrating that when knee pain is induced experimentally, there is a 

redistribution of active motor units within the quadriceps muscle which changes the direction 

of knee extension force a few degrees medial or lateral to that in the pain free trials (Tucker and 

Hodges). Beyond diiection of foice exerted, pain is also found to change relative timing of the 

activation of medial and latei al heads of the quadriceps in a stair stepping exercise with patients 

with patellofemoral pain (Cowan, Bennell et al. 2001; Hodges, Ervilha et al. 2008) and a 

ieduction in synchronicity of discharge of motoneurons is found to occur within these muscle 

heads in the presence of anteiioi knee pain (Mellor and Hodges 2005). It is clear that pain can 

cause complex adaptations to motor strategy, which in turn can lead to impairment of the

generation and control of steady force production thought to be linked to muscle architecture 
(Salomoni and Graven-Nielsen).

Neural mechanisms for the inhibition of muscle performance linked to pain also need to 

be considered. Pain is thought to decrease net excitatory drive to the motor neuron (Sohn, 

Graven-Nielsen et al. 2000; Wang, Arima et al. 2000; Farina, Arendt-Nielsen et al. 2004) and the 

general pattern is for the initial reduction in drive to take place in motor units that have a higher 

threshold for activation (Falla, Arendt-Nielsen et al. 2009). De-recruitment of motor neurons 

with a higher threshold for activation and a lower discharge rate at a given force occurs first via 

decreased synaptic input, therefore pain is found to induce a change in spatial distribution of 

muscle activity for muscles characterised by non-uniform spatial recruitment of motor units, 

such as the upper trapezius (Falla, Arendt-Nielsen et al. 2009). When pain was induced via 

injection of hypertonic saline within the cranial region of the trapezius muscle there was found 

to be a greater reduction in EMG amplitude in the cranial (over caudal) region of the muscle 

during static tasks (Madeleine, Leclerc et al. 2006) which is consistent with the above 

hypothesis as the cranial region has a higher threshold for activation (Falla, Arendt-Nielsen et al. 

2009). This suggests that the neural mechanisms associated to the pain experience are 

important contributors to any decrements observed. However still no conclusive evidence 

exists to demonstrate a mechanism for pain and associated performance change in muscles.

The use of surface EMG has provided valuable insight into the activation of muscle groups 

within a movement (Graven-Nielsen et al., 1997; Backman et al., 1988; Suzuki & Endo, 1983) 

however cannot give accurate detail about which motor units are activated at certain points.
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Fine wiie EMG data lecoidings have been used to show a decrease and changed recruitment in 

25% and 40% of quadiicep and flexor pollucis longus recording zones measured, with the new 

units i eci uited found to be those at the next highest threshold in some cases, but not all the time 

(Tucker, Butler et al. 2009). These findings are significant as they suggest that it is not the 

painful iegion of the muscle that is always most protected, instead there is a more consistent 

change in motor strategy which prioritises motor units with the highest activation thresholds 

and therefore inhibits these first (Falla, Arendt-Nielsen et al. 2009). By way of explaining the 

mechanisms responsible for this Luscher et al. (1979), suggests that inhibitory input to the 

motoneuron pool will generate larger inhibitory postsynaptic potentials in the smaller 

motoneurones, thereby overcoming the excitation to those motoneurones first (De Luca 1985). 

De-recruitment of low threshold motor units would consequently result in higher levels of 

central drive and a subsequent recruitment of new, higher threshold units to maintain the force 

that is generated at pre-pain levels (Tucker, Butler et al. 2009). A further possibility is that 

there is an inhibition of discharge of the smaller low-threshold motor units when larger units 

are recruited, thereby explaining the change in recruitment pattern (Ross, Cleveland et al. 1975; 

De Luca 1985). It could then be suggested that pain causes changes to both population of motor 

units recruited and the order in which they are recruited and this is what could account for 

performance decrements (Tucker, Butler et al. 2009).

___________ 2.5 THE ROLE OF PSYCHOLOGY IN PAIN RESPONSE____________

As discussed in section 2.4.1, pain is thought to stem from the detection of noxious stimuli 

which signifies potential risks to the brain allowing the individual to act upon this (Heil & Fine, 

1999). There is however, little neurological evidence that noxious stimuli exist (Pen & Fisher, 

1994), instead it is suggested that every stimulation is simply carried as an impulse along a 

certain neural pathway; it is only at the point of recognition or perception that these stimuli 

become noxious (Melzack, 1973). Pain could therefore be classified as a cortical phenomenon 

as it is not experienced as pain until it reaches the cortex and is identified as noxious. For this 

reason it must be studied with physiological and psychological components in mind. There is 

little literature published with a specific focus on mechanisms underpinning the pain 

experienced by athletes despite the evidence that there are differences in the way athletes and 

non-athletes respond to pain (Giesbrecht et al., 2005; Hall & Davies, 1991; Janal et al., 1994; 
Ryan & Kovacic, 1966; Straub et al., 2003).

There is a 'macho' image associated with sports participation which has been linked to a 

culture in which ‘playing with pain' is widely accepted (Nixon, 1992, 1993) and peer pressure 

from team mates or the broader sports net can lead to individuals tolerating greater levels of



pain than they would otherwise (Frey, 1991). Social pressure has also been identified to alter

pain response where physiological, subjective and social cues investigated were thought to

interact to change the verba! reporting of a pain stimulus (Manell, 1980; Sternbach, 1978).

Similarly social models may increase the ability of an individual to deal with pain (Craig &

Weiss, 1971; Craig & Coren, 1975) so when seeing a significant other deal with a given stimulus

an individual may feel pressure to be able to cope equally well with that stimulus and not show

weakness in i elation to peers. These are all factors suggesting that cognitive processes can alter

pain response and are prevalent within the sporting culture. Therefore the psychological

element of the experience must be considered carefully. It also demonstrates that it is possible

to manipulate the perception of pain through controlling situational factors which suggests it

may be possible for applied practitioners to design interventions intended to help athletic 
performance.

Ryan & Kovacic (1966) suggested that the different pain tolerances identified between 

athletes and non-athletes may be as a result of the way in which the pain stimulus is perceived. 

They pioposed that the perceptual style of an athlete allowed them to reduce the perceptual 

stimulation and thereby tolerate greater levels of pain than non-athletes, which was developed 

fuithei by Petiie (1978) who differentiated perceptual style into three categories; reducers, 

augmentors and moderators. The way in which the same stimuli are processed from the 

environment within the three categories differs. Reducers tend to decrease what is perceived, 

therefore allowing them to tolerate greater levels of pain than moderators. In contrast 

augmentors tend to amplify the stimuli perceived and therefore are not able to tolerate as much 

pain as moderators. This is consistent with findings from mainstream psychology where the 

effects of association and dissociation have been studied (Schomer, 1987), however has not 

been widely researched within the athletic population. However, Addison and colleagues 

(1998) attempted to bring together some of the existing research available within mainstream 

psychology and the more specific traits associated with those involved in high level sport which

highlights a number of factors that should be considered within studies in which athletic pain 
response is investigated.





Figure 2.3 summarises the work of Addison et al. (1998) whereby the highly complex
processes involved in the athletic experience of, and response to pain are represented in a

systematic manner. There are numerous variables referred to within the model that may help

predict the way in which an athlete responds to a given pain stimulus, however the list is not

exhaustive and should therefore form the basis for further research in order to help elaborate

on what is already understood to be important. This model identifies the complicated

underlying processes associated with pain during sports performance (such as physiological,

psychological and behavioural characteristics) and suggests that they are closely intertwined to

determine the outcome. Of particular note are the primary and secondary appraisals of pain

given by athletes which categorise pain into threatening and non-threatening, with altered

responses based upon the label attached to the pain experienced. With further development

this model could be a valuable tool for practitioners to help guide athletes to deal with pain both

during training and competition. For the current research this model is of interest as it suggests

that inti insic factors such as expectation may be able to influence the physiological sensation of

pain which forms the basis for one of the experimental studies carried out and will be discussed 
further in the next section.

2.5.1 EXPECTATION OF PAIN

There is to date little known in relation to the role of expectation of pain and how that may 

influence muscle performance, however theories proposed in relation to pacing strategies in the 

heat can offer some indication of how and why anticipation of conditions may be an important 

factor for investigation (Noakes et al., 2004). Pacing strategies have been found to alter in hot 

climates where the athlete automatically, and subconsciously, selects an appropriate pace based 

upon the conditions (Tucker, 2006) and an expectation effect that determines athletic 

performance output based on the conditions has also been identified for pacing strategies in 

distance running (Noakes et al., 2004, 2005). However this is not caused by the conditions 

themselves, rather it is a response mechanism that reduces performance output based on 

anticipation of severity of environmental conditions. Although there is no existing research 

into this form of mechanism with regard to neuromuscular responses to pain, it could be argued 

that a similar central control mechanism exists.

Perception of effort or pain may positively or negatively affect fibre recruitment; for 

instance during the closing stages of a time trial athletes typically perform better and tolerate 

higher levels of pain (Tucker, 2006). Similarly anticipation of high ambient temperatures has 

been suggested to reduce muscle fibre recruitment thereby decreasing performance output 

(Noakes, 2004). In isometric contractions it has been found that by exposing a muscle to



experimentally induced muscle pain the motor unit firing rate decreases (Sohn et al., 2000) and

Farina et al. (2004) found that the amount of nociceptive input was linearly correlated to

inhibition, meaning the more pain that was detected, the more the contraction was limited.

However, method of pain induction for both studies was injection of hypertonic saline which is 
highly invasive and difficult to control for level of pain.

Lund et al. (1992) suggest that pain causes the agonistic muscles to shut down in order

to protect the organism from potential harm, whilst Hodges & Tucker (2011) argue for a non-

uniform response in which muscle recruitment patterns are altered, which also serves to

protect the region. What is unknown, however, is whether it is the physical stimulus of pain

that causes the muscle to reduce its force output, or whether the expectation of receiving a pain

stimulus would be sufficient to cause performance decrements. As explained earlier, there is

opportunity for modulation of a pain stimulus at numerous points as it ascends to the brain

(Melzack & Wall, 1965). Descending pathways may interact with the ascending message to

modulate the end i esulting pain experience, and where an individual is expecting high dose pain

the descending messages may then interfere with the ascending message to create a pain

perception higher than the actual pain stimulus that is applied. Alternatively, if a pain stimulus

higher than the expected level of pain is applied, then the modulation from the descending

pathways may create a pain perception that is lower than the actual stimulus warrants (Melzack 
& Wall, 1965).

Descending pathways can have an influential role in the pain experience by modulating

the signal that eventually arrives at the brain. Placebo response research has demonstrated that

responses to a stimulus are partially mediated by simple cue-outcome contingencies (Brown et

al., 2008). However, when induced by verbal cues these responses are found to be particularly

significant as the perception of pain can be increased and decreased through manipulation of

the verbal cues hence altering the level of uncertainty (Benedetti et al., 2003; Fields & Price,

2005; Watson et al., 2006). There are environmental factors that have been found to make pain

symptoms more relavant and hence change the perception of pain that a participant

experiences. For example, being warned that a procedure may be painful, combined with a 
■

prior experience of pain can lead to a schema whereby pain or other symptoms are more 

carefully monitored and attended to (Bayer, 1998; Leventhal & Everhart, 1979) suggesting that 

pain expectancy may have a strong influence on pain perception (Price, 1999; Fields, 2000; 

Wager, 2005; Vase et al., 2005).

Expectation of pain has been shown to alter attention (Hudson et al., 2006) and 

information processing demands (Van Damme et al., 2004) but how this may alter muscle
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performance has not been established. There are different components of the pain experience 

that should be considered which include the cognitive, affective and sensory-discriminatory 

aspects (Finniss, 2005). If a substance is believed to increase pain (nocebo expectation) it may 

alter expectations (cognitive), but it may also lead to anticipatory anxiety (emotional). A 

cognitive modulation of pain therefore may be assumed to comprise of an emotional response, 

and the influence emotions have on pain may include cognitive operations, so they should be 

considered as interdependent constructs (Anderson & Pennebaker, 1980; Weich, 2009). A

study using fMRI activation patterns to identify differences between control and placebo

analgesia supported this by suggesting that placebo analgesia affected all three dimensions of

the pain experience (Wager et al„ 2004). A heightened fear of pain, which may be induced by

verbal cues or expectations of pain, has also been shown to up-regulate the sensitivity in regions

of the brain encoding the emotional aspects of pain (Weich, 2009) which may explain the

altered responses to pain due to expectation and support the hypothesis that anticipation may 
lead to altered pain responses.

2.5.2 PLACEBO AND NOCEBO EFFECTS

A placebo can be defined as an inert substance or procedure that alters one's physiological and 

psychological response (Stewart-Williams, 2004). Research on the effects of placebos suggests 

an important link between physiology and psychology (Geers et al., 2007) as they are believed 

to produce an effect in patients that results from intent rather than specific physical or chemical 

properties (Arnstein, 2003). Placebo's have been held partially responsible for bringing about 

treatment outcomes in many areas of medicine and play a major role in the clinical practices of 

both medicine and research (Geers et al., 2005). The placebo and nocebo effect may be useful in 

determining the psychological and physiological involvement in pain responses, however even 

within the placebo response it is unclear whether changes can be attributed to physiological and 

psychological factors. In pain research there has been a focus on endogenous opioid 

mechanisms and their involvement in placebo analgesia. However other non-opioid 

mechanisms (such as seretonin and other hormone secretion) have been suggested, which may 

be possible physiological explanations for the influence of pain on performance (Benedetti et al., 

2003b). There is no definitive explanation for the mechanisms associated with the placebo 

response, however the major neurobiological mechanisms that have recieved considerable

attention have been conscious expectation and unconscious behavioural conditioning (Pacheco- 
Lopez et al., 2006).

The conditioning mechanism has been based upon Pavlov's theory of classical 

conditioning (1927) where it is suggested that a previously neutral stimulus (such as the
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environment), when coupled with an unconditioned stimulus (such as a drug), is able to elicit a 

response (Siegel, 2002; Stewart-Williams & Podd, 2004). Therefore it could be suggested that 

by giving an individual expectation for a certain level of pain, this could produce a conditioned 

response based upon their previous exposure to pain and thereby alter their performance. In 

an attempt to explain the placebo response through physiological mechanisms, de la Fuente- 

Fernandez et al. (2004) proposed that when an interaction creates a reward possibility (such as 

positive veibal suggestion), certain cortical neurons are activated in relation to reward 

probability. These neurons send direct excitatory glutamergic inputs to dopaminergic cell 

bodies along with indirect inhibitory gamma amino butyric acid inputs. The combination of 

these signals arriving at the dopaminergic neurons contributes to the probability of tonic 

activation. In furthei reseaich the tonic activation during reward expectant conditions was 

examined and it was i epoi ted that neurons in the prefrontal cortex, nucleus accumbens and the 

caudate-putamen displayed tonic activation when the participant was expectant of recieving a 

ieward (Schultz, 1998). This would suggest that there are chemical changes associated to the 

expectation of an event occurring, so therefore it is not simply a psychological phenomenon.

As discussed in section 2.4.1 when a message is sent to the brain there is opportunity for 

modulation of the signal to occur and once in the brain this opportunity is still existant. All 

thoughts come from communication between nerve cells (Benson, 1994) and when you 

consider that within the brain there are in the region of 5000 to 500 000 connections between 

nerve cells, and any of these connections offers opportunity for modulation of a message this 

provides huge opportunity for modulation to occur. As suggested by the neuromatrix 

explanation, there are some aspects of human perception that are genetically programmed, 

whilst others are brought about through environmental factors and learning (Melzack, 2001). 

Every event that occurs within our lifetime becomes stored as a schema and is interpreted 

based upon previous events which suggests that whilst there are physiological events that must 

occur in order for us to generate thoughts, we must also regard the psychological aspects of the 
process in which messages are interpreted.

Numerous psychological factors have been found to influence the placebo response 

(Pacheco-Lopez et al., 2006). The strength of the placebo response has been found to alter 

based upon motivational processes (Geers et al., 2005), concern (Todd, 1987), anxiety (Melzack, 

1988), feeling uncomfortable (Todd, 1987), consciousness (Benedetti et al., 2003), expectations 

(Benedetti et al., 2003), optimism (Geers et al., 2007), pessimism (Geers et al., 2005) and the 

character of pain (Hauor, 2005). All of these factors can mediate the effect of a message that is 

being sent to the brain via interactions occurring in between ascending and descending 

pathways. If a person has optimistic traits then they may modulate the message accordingly



and be less prone to reporting pain (Geers et al., 2007). The same principle could apply to any

psychological variable that may have the opportunity to modulate ascending messages, thereby

inferring that there is possibility that some are born with innate abilities to tolerate pain better

(Pen & Pisher, 1994), but also individuals can learn to deal with the negative effects of pain in 
sports performance (Benedetti et al., 2003; Geers et al., 2007).

Nocebo was a term originally used to define negative symptoms due to a placebo (Geers 

et al., 2005), for example, negative meanings that patients attach to verbally induced 

expectations (Benson, 1997; Hahn, 1997; Speigel, 1997). Whilst referred to seperately from 

placebo effects, the underlying mechanisms behind nocebo effects are considered to be the 

same (Hahn, 1997). At its most extreme, in the Framingham Study (Eaker et al., 1992), nocebo 

effects have been attributed to causing death; in these cases it is thought to be the belief that 

you are going to die that will increase the risk of death. In less extreme cases, researchers have 

found that the search for pain, or expectation towards pain, is what leads to altered pain 

reporting behaviour rather than any actual experience of pain (Bayer et al., 1998). If a substance 

is believed to increase pain, then it seems feasable to believe that this may change expectations 

and also anticipatory anxiety (Weich, 2009). This is not limited to the use of substaces to bring 

about changes to pain perception. In a study by Bayer et al. (1990) participants were lead to 

believe that a sham stimulator would be passing electrical current through their heads and that 

they may experience a head ache as a result of this. Consistent with studies using substance 

ingestion, it was found that in the absence of a painful stimulus, participants still reported pain 

demonstrating the powerful influence of expectation. If the role of expectation of pain can be 

better understood, it can be applied to the elite sport environment in order to best help athletes 

deal with the pain of performance, or alternatively help with rehabilitation from injury in 
athletic and non-athletic populations.

2 .6 AIMS

The literature currently offers a wide range of conflicting theories attempting to identify a 

simple pain pathway (Marshall, 1894; Von Frey, 1894; Weddell et al., 1948), or lack thereof 

(Addison et al., 1998; Melzack, 2001; Melzack & Wall, 1965) and how this may influence muscle 

performance ((Hodges and Tucker); Lund et al., 1991; Roland, 1986) without any one definitive 

explanation being supported. The development of new technologies may allow for this to be 

understood better in the coming years, however regardless of mechanisms, what is of value to 

applied practitioners is an understanding of how the pain experience influences behaviour and 

what, if anything, can be done to prevent or minimise negative consequences of pain. In order 

to achieve this there needs to be a clearer understanding of the role of psychological and
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physiological influences upon pain and sports performance which has received limited attention 

to date. The current research sought to further understand the relative influence of 

psychological and physiological factors in performance when an individual experiences pain. 

Each chapter focusses upon achieving these aims with regard to specific hypotheses; however 
the general aims of the work were addressed through the following questions:

1. Does pain perception threshold induced via GPD alter muscle performance?

2. Does the relationship between pain and muscle performance alter based upon pain 
severity?

3. What role, if any, does expectation of pain severity play in muscle performance?

I
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__ 3 PILOT WORK

___________________ 3.1 INTRODUCTION

In order to study the effects of pain a number of experimental methods have been developed 

including electric shock (Neddermeyer et al., 2008; Tursky, 1972), hypertonic saline injections 

(Arendt-Nielsen et al., 1996; Ervilha et al., 2005), delayed onset muscle soreness (DOMS) 

(Dannecker et al., 2008) and thermal pain stimuli (Dannecker et al., 2008; Hatayama & Shimizu, 

1993; Neddermeyer et al., 2008). These methods have been validated for use in the studies in 

which they weie used, however they have limitations in their application for investigating 

mechanisms by which pain alteis performance and also tend to be highly invasive (Wing et al., 

2011a). A method used by Ryan & Kovacic (1966) enabled the experimenters to induce pain in 

a non-invasive manner. The gross pressure device (GPD) induces pressure pain to the tibia 

using a blood piessuie monitor to carefully control amount of pressure exerted. In the Ryan & 

Kovacic study (1966) pain tolerance levels were examined in relation to athletic versus non- 

athletic groups, rather than investigating muscle performance; however the benefits of this 

method are that it allows pain to be induced away from the muscles, thereby not interfering 

with normal muscular functioning in the area being measured for performance. This device has 

however not been validated for use at pain perception threshold, the lowest stimulus 

recognised to be painful (Loeser & Treede, 2008). Therefore, in order to establish the optimal 

methods for this research project, a number of pilot studies were conducted to establish 

validity, reliability and positioning of the GPD constructed.

The use of the GPD in inducing controlled pain at tolerance level has been validated in 

previous research (Ryan & Kovacic, 1966) and it has been suggested that the ability to tolerate 

pain induced by the GPD is a good indicator of the ability to tolerate pain generally 

(Bartholomew, 1998). Pain is thought to consist of two components: sensory and emotional 

(Melzack & Torgerson, 1971). In asking a participant to identify pain perception threshold (the 

earliest perception of pain) as will be used in this study, there is little threat to the emotional 

element. Conversely measuring pain tolerance levels (defined as the maximum amount of pain 

an individual can withstand) may induce a fear component which may exaggerate the pain 

response. Previous studies have tested pain tolerance (Ryan & Kovacic, 1966) and for this 

reason, whilst the GPD was considered a valid measure within the pain tolerance studies, this 

cannot be generalised to pain perception threshold as well, as the two constructs are working 

within different components of pain.
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3.1.1 THE GROSS PRESSURE DEVICE

A prototype GPD was developed for use in this research based on the work of Ryan and Kovacic

(1966). It consists of a modified sphygmomanometer cuff (model DM304, Mercurial

sphygmomanometer Bigger Case, China) which was extended to allow it to fit around the girth

of a lower leg, a curved plastic shin pad (107 x 175 mm) with a removable semicircular metal

cleat (80mm length, 23mm radius) and Velcro attachment to the inner surface of the shin pad 
positioned over the tibia.

Plate 3.1. Gross Pressure Device consisting of a modified sphygmomanometer cuff and blood 
pressure monitor, safety release valve for the participant to hold during the trials, curved shin 
pad and metal plated cleat.
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3.2 POSITIONING OF THE CLEAT FOR RELIABLY INDUCING PAIN 
____________ PERCEPTION THRESHOLD ON THE TIBIA

3.2.1 INTRODUCTION

Previous research using the GPD has not specified precisely where on the limb pain is induced

(Ryan & Kovacic. 1966], The anatomy of the lower leg would suggest that there may be 

differences in an individuals' sensitivity for n^in unnn — 1 *.1__

amount of fatty deposits, curvature

important

position chosen is that which elicits the earliest pain response from 

inflation of the cuff is minimal and therefore likelihood of confou 

ischaemia reduced.

An examination of the muscular

sarto rius

subcutaneous

protection offered to the tibia. In the lower third of the lower leg there is also protection offered 

:o the bone surface in the form of the superior extensor retinaculum, extensor digitorum longus 

and extensor hallucis longus which all merge towards the ankle joint forming a muscular layer 

over the bone as illustrated by Plate 3.2. An axial view of the structure of the lower limb 

indicates that there is little soft tissue protection offered to the surface of the tibia in some 

regions of the lower leg. The posterior border and media! subcutaneous surface of the tibia are 

most exposed across the mid portion of the lower leg which means that there is little protection 

of the bone from the cleat of the GPD. The periosteum that surrounds all bone isolates the bone 

mom surrounding tissue, as well as providing a channel for nervous supply to the lower limb 

(Martini 2004 s. This would suggest pain sensitivity will be greatest over the bony surface and 

the mid region of the lower leg. therefore 50% from the medial malleoulus would face an 

increased level of pain sensitivity due to the bones exposure.
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The location of major nerves within the lower leg also suggests pain sensitivity may be

increased in the mid portion of the lower leg. The nerves surrounding the tibia are the

saphenous nerve and superficial peroneal nerve; both located to the side of the tibia and hence

should not interact with the GPD (see Plate 3.3). The deep peroneal nerve also runs beneath the

extensor hallucis longus and so this may be detected on some of the sites. The main nerve that

may inteiact with the GPD is the middle cutaneous nerve of the calf which runs directly down

the centre of the lower leg and hence is quite exposed as can be seen in Plate 3.4. The exposure

of the neives along the mid-section of the lower leg could indicate a possible reason for 

increased pain sensitivity.

► Main nerves of the 
right Interior limb

Frontal view.
O  femoral nerve 
0 obturator nerve 
©  iscbiatic or sciatic 

nerve
©  posterior cutaneous 

nerve of trie femur 
©  Tibia! nerve 
O  Middle cutaneous 

nerve of the calf 
Q  Saphenous nerve 
O  Middle plantar nerve 
G  Lateral plantar nerve 
©  Dorsal digital nerves 

of the foot
©  Lateral dorsal cuta­

neous nerve 
©  Dorsal intermediate 

cutaneous nerve 
©  Dorsal middle cuta­

neous nerve 
©  Calf nerve 
©  Lateral cutaneous 

nerve of trie calf 
©  Fibular nerve 
©  Lateral cutaneous 

nerve
©  Genilofemural nerve 
©  Ilioinguinal nerve 
©  Iliohypogastric nerve

Deep ficuiar 
nerve

Superior fihu 
lar nerve

Plate 3.4. Nerves of the lower leg (Behnke, 2006).
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A furthei consideration to cleat placement is the soft tissue structure of the lower leg. Whilst

individual difference accounts for a large amount of variation within the exact distribution of fat

on the body, there is limited space available beneath the skin surface on the anterior surface of

the lowei leg and this prohibits gross fat formation. Individuals are more likely to have fatty

deposits on the upper leg wheie theie is more soft tissue or on the posterior side of the lower

leg. Within the anteiioi side of the lower limb itself, there appears to be more soft tissue

coverage of the bone at the upper and lower extremities of the lower limb. This includes

tendons and muscular coverage, but also fatty deposits. At these sites it would be expected that

lowei peiceptions of pain will be prevalent due to increased coverage of the bone. If an

individual has large fatty deposits on the lower limb this may cushion the effects of the GPD and

hence increase that persons pain tolerance which should be a consideration in participant 

suitability.

__ 3.2.2 AIM

The aim of this study is to determine the optimal placement of the GPD on the lower limb to 

induce the lowest pain perception threshold.

3.2.3 PARTICIPANTS

Twenty healthy males volunteered to take part in the study having given written informed 

consent (see Appendix 1) (mean ±SD; age = 23.9 ± 5.9 yrs, height = 1.7 ± 0.05m, mass = 77.6 ± 

0.9kg). All participants were recreationally active and free from illness or injury that would 

interfere with the study results. Ethical approval was obtained from the Moulton College Ethics 

Committee in accordance with the declaration of Helsinki.

3.2.4 PROCEDURE

Participants sat with their knee held at a 90° angle. The GPD was placed on the participant's 

self-selected dominant leg. The five selected sites were marked along the tibia with a 

permanent marker and measured with an anthropometric tape measure (Body Care, 

Warwickshire, UK). The shin pad and cleat were held in place using the sphygmomanometer 

cuff but this remained deflated until immediately prior to each experimental condition. The 

equipment was set up as illustrated in Plate 3.5. The cuff was inflated at a constant rate of 

~5mmHg on each inflation to put pressure on the cleat.



Plate 3.5. Positioning of the participants lower limb and G P D w j U T h ^ a d ^ r i a l

Participants were given instructions as to what pain perception threshold was, and that there 

was no merit in exceeding this. Trials took place in a room away from others and the 

participant had no knowledge of their own or other participants' results, thereby limiting the 

potential for confounding variables. Pain was induced at all five sites with a two minute interval 

between tests. This was carried out in a randomised, counterbalanced and cross-over manner 

to prevent likelihood of order or familiarisation effects.

Sites measured and 
marked

Time (min)

Figure 3.1. Timeline of protocol used to establish positioning of GPD

3.2.5 EXPERIMENTAL CONDITIONS

Five measurement sites were selected along the lower leg in order to cover the largest possible 

scale. The upper and lower 25%  of the lower leg were excluded due to practical considerations; 

the GPD could not be secured to the leg in those areas. Five sites were measured along the
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anterior surface of the lower leg at 25%, 33o/0, 50o/o, 66%, 75o/„ from medial malleolus to medial 
condyle.

3.2.6 DATA ANALYSIS

Data wei e analysed using the SPSS statistics software package (version 17.0). Data within each

condition were examined for normality using the Kolmogorov-Smirnov test. Where the raw

data were not normally distributed appropriate data transformation was used. Where no

suitable transformation could be found, non-parametric tests were used. All data are reported

as mean ± SD where normally distributed, and as median, IQR and range where non-parametric. 

Statistical significance was accepted at p < 0.05.

A one way ANOVA was carried out comparing values for all five sites. A Bonferroni post-hoc t- 

test was carried out to establish difference between sites and a correction factor of ten was 

used. This ensured that likelihood of type I error was not inflated as multiple comparisons had 

been accounted for. An alpha value of p < 0.005 was set as the acceptable limit for these tests.

3.2.7 RESULTS

Data were found not to be normally distributed at the 25%, D(17) = .20, p < 0.05, 33%, D(17) =

.18, p < 0.05, and 66%, D(17) = .18, p < 0.05, sites. Whilst all other sites were found to be 

normally distributed no suitable data transforms could be found, and therefore non-parametric 

tests were used for analysis. A Friedmans ANOVA revealed a significant difference in pain 

perception thresholds at the five different test sites on the lower leg, x2(4) = 38.613, p < 0 05

(see Figure 3.2). Wilcoxon tests revealed a significant difference (p < 0.05) to lie between all 

sites except between 25% -75%  (z = -0.91, p > 0.05) and 33% -66%  (z = -1.95, p > 0.05).
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between med ia l  m a l leo lu s  and m ed ia l  condy le .  Data p re sen ted  as median,  IQR and range.

A Friedmans ANOVA showed that there was a difference in pain perception threshold between 

sites and post-hoc t-tests w ith Bonferroni correction establishing that at 50% from the medial 

malleolus to medial condyle median pain perception threshold was significantly lower (p < 

0.005) than at all other sites. This was also the site at which the range was smallest (median = 

40.0, IQR = 25.0, range = 80.0mmHg) indicating higher re liab ility  than at the other sites.

3.2.8 DISCUSSION

The results of this study support the use o f the GPD w ith in pain perception threshold testing 

and further to this that optimal placement is at 50% from medial malleolus and medial condyle. 

Determining a site on the lower limb that produces the highest pain perception from the lowest 

pressure stimulus reduces the need to inflate the cuff and in doing so lim its the possib ility of 

confounding variables such as ischaemia. This suggests less variance at this site and therefore 

more homogeneity between participants which may have implications for va lid ity and 

reliability. There is no documented evidence that the positioning of the GPD affects pain 

response, however this study suggests that 50% between the medial malleolus and medial 

condyle is the optimal placement to induce early pain perception threshold responses.
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An explanation for this heightened sensitiv ity at the 50% mark may lie in the muscular

anatomy of the lower limb as discussed previously, in which the bone surface of the tibia and

the free nerve endings are exposed at the m id-point o f the lower leg. Aside from the anatomical

makeup of the lower leg, it is also im portant to consider other variables that may affect pain

response. As reported in a study using DOMS as a measure of pain tolerance, there were higher

pain ratings after the first bout of tests than after the second, suggesting that desensitisation

occurred (Dannecker et al„ 2008). This study also used multip le trials and therefore a

desensitisation effect may have occurred. However a crossover and counterbalanced design

was used which elim inates fam ilia rity  effects and suggests that results are valid regardless of 
order in which the sites were tested.



3.3 RELIABILITY OF INDUCING PRESSURE PAIN VIA GPD ON CONSECUTIVE
DAYS

3.3.1 INTRODUCTION

The in itia l p ilot work conducted in this research determ ined the position at which the gross

pressure device was perceived to be most painful (50% from medial malleolus to medial

condyle). This study aimed to determ ine the re liab ility  of the GPD at pain perception threshold

level when induced on consecutive days to determ ine the ab ility of the GPD to be used in studies

where testing is not carried out w ith in  one session. In previous research the GPD has been

found to have a .95 test-retest re liab ility  coefficient when measuring pain tolerance (Brewer et

al„ 1990; Ryan & Kovacic, 1966) which means it is highly like ly  that on two separate tests the

same level would be reached. In order to be a useful tool in studying the effects of

experimentally induced pain, the GPD needs to be able to induce pain repeatedly and illic it the

same response from the participant. However w ith in  this study the equipment has been

modified slightly and therefore the results cannot sim ply be generalised across. The study also

diffets from previous research in that it seeks to measure pain perception threshold rather than

pain tolerance, therefore again any previous research using the GPD cannot be presumed to

have the same re liab ility  and for that reason a series of pilot studies were carried out to 
determine its suitability.

A study investigating pain perception threshold using algometry to induce pressure pain 

on the torso and upper extrem ities found there to be good re liab ility  across the four days tested 

with highly consistent intraclass correlations (Jones et al„ 2007). When pressure pain threshold 

was tested in measures taken a week apart using an algometer this finding was also supported 

with no significant difference being found between measures (Brennum et al„ 1989). Pain is 

thought to have a sensory and emotional component (Melzack & Torgerson, 1971) and as a 

result of this emotional attachment it may be that fam iliarisation to a given stimulus w ill reduce 

sensitivity to it and therefore reduce reliability. A lgometry studies show pain perception 

thieshold to be reliable across different days and weeks (Brennum et al„ 1989; Jones et al„ 

2007; Orbach & Gale, 1989) however a significant finding from Jones et al. (2007) reported that 

on day four readings were significantly lower than the baseline measure taken on day one 

suggesting that there may be fam iliarisation effects evident when the participant is exposed to 

repeated trials. Jones et al. (2007) argued that this was as a result o f a reduced fear element 

attached to the stimulus when the participant was fam iliar with it. This finding was however in 

contrast to the findings of Orbach & Gale (1989) who found no significant differences. This pilot 

study w ill aim to determ ine if  the GPD induces pressure pain reliably over consecutive days
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which w ill show whether or not the device can be re liab ly used to test participants on separate 
days during the experimental trials.

3.3.2 AIM

To determine the re liab ility  o f the GPD to induce pain perception threshold on consecutive 
weekdays.

3.3.3 PARTICIPANTS

Seven healthy male volunteers (mean ± SD; age = 24.4 ± 10.7, height = 1.8m ± 0.03, mass =

78.9kg ± 3.5) volunteered for the study. The participants all completed an informed consent

form prior to commencement o f the study confirm ing that they had no injury o r illness that may

exclude them from taking part (see Appendix 1). Ethical approval for this study was granted by 

the Moulton College Ethics Committee.

3.3.4 PROCEDURE

The pai ticipants each completed ten tria ls on ten consecutive weekdays at the same time of day 

(± 1 hi) to avoid circadian influences. In each trial the participant was asked to indicate pain 

perception threshold once using the GPD at the previously established site on the lower leg. The 

protocol for using the GPD was established in the first p ilot study (see chapter 3.2).

3.3.5 DATA ANALYSIS

Data w ith in each condition were examined for norm ality using the Kolmogorov-Sm irnov test.

Where the raw data were not norm ally distributed appropriate data transformation was used.

Where no suitable transformation could be found, non-parametric tests were used. A ll data are

reported as mean ± SD where norm ally distributed, and as median, IQR and range where non-

parametric. Statistical significance was accepted at p < 0.05. Mean data were analysed

comparing week one w ith week two using a paired t-test. Further analysis using repeated

measures ANOVA were conducted to investigate the effects o f time. Statistical significance was

accepted at an alpha value of p < 0.05. Furthermore coefficient variation (percentage) was 
calculated using the equation

standard deviation x 100 
mean

55



3.3.6 RESULTS

Data were found to be norm ally distributed for week 1, (D(7) = .17, p > 0.05), and week 2, (D(7)

= .21, p > 0.05). A paired samples t-test was conducted to compare the mean (± SD) pain

perception threshold reported in week one (52.57 ± 10.0) and week two (60.21 ± 15.45) and

determined that there was no significant difference between groups, (t(6) = -1.58, p > 0.05) 
(two-tailed) (see figu re 3.3).
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Figure 3.3. Pa in  pe r cep t ion  th re sho ld  (m m Hg)  m easu red  on consecu t ive  weekdays .  No 
s ign i f i can t  d i f fe rence  (p<0.05) was  found be tween  m easu rem en t  in week  one and week  two.

In comparing individual days, data from three days of the study were reported to violate 

assumptions of norm ality and no suitable transforms could be found; day 3, (D(5) = .39, p <

0.05), day 9, (D(5) = .36, p < 0.05), and day 10, (D(5) = .36, p < 0.05). Data from all other days

were found to be normally distributed; however as the sample has to be considered as a whole,

non-parametric tests were used. A Friedm an’s ANOVA revealed there to be no significant

difference in pain perception threshold reported between days, (x2(9) = 10.228, p > 0.05) (see 
Figure 3.4).
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s ign i f icant  d i f f e ie n ce  (p < 0.05) was  found be tween  measures .

3.3.7 DISCUSSION

Theie were no significant differences found between the measurements taken in week one and 

week two and no trends were identified between the measurements taken on each day o f the 

week. Further analysis established that the data reported in this study had a coefficient of 

variation of 17.5% and intraclass correlation coefficient of 0.98. This suggests that w h ilst there 

is some variation, the GPD is reliable across measurements taken on consecutive days w ith no 

desensitisation or fam iliarisation effects found to occur. In contrast to Jones et al. (2007) there 

was no significant difference found between the last measurement and the baseline measure as 

there were no differences detected between the days o f the tests. It is also suggested by this 

study that the two day interval between week one and week two testing did not defam iliarise or 

influence the pain perception threshold of the individuals as no significant differences were 

detected between measurements (p > 0.05). This suggests that the GPD is suitable for use in 

studies where participants w ill be exposed to the stimulus on multiple days over a period of 

time, whether this be on consecutive days or more w idely interspersed. What remains to be 

determined is whether this is also true of repeated tests on the same day.

57



3.4 INTRA-SESSION RELIABILITY OF INDUCING PRESSURE PAIN VIA GPD

3.4.1 INTRODUCTION

The pievious p ilot study established re liab ility  of the GPD on measures of pain perception 

threshold taken acioss consecutive days; however, there is no data reported stating the 

ie liab ility of the GPD acioss intra- session measures which is fundamental to the current 

reseai ch pi oject as each pai ticipant w ill be required to complete multiple tests w ith in the same 

session. There have been no lepo its  of any lasting damage caused by the GPD where pain was 

induced at pain tolerance (Ryan & Kovacic, 1966), or w ith in  p ilot work reported in this research 

testing pain perception threshold (chapter 3). It is therefore un like ly that there would be any 

physical implications to inducing pain at perception threshold level. However if the same site is 

being tested repeatedly in a short time period it may be that there is some transient damage 

caused that w ill increase the sensitiv ity of the testing site after multip le trials. The anatomy of 

the lower leg offers little  protection to the surface of the tibia at the site being tested (Behnke, 

2006) therefore any damage that may be caused would be confined to skin, bone, nerves and 

blood vessels. The likelihood of bone being damaged is remote due to the low  pressures being 

exerted by the GPD, however the skin and blood vessels may be damaged through the pressure 

and bruising may result. This was not found to occur in previous pilot work, however in these 

tests the tria ls were separated by a m inimum of 24 hours. This does not elim inate the 

possibility of heightened or reduced sensitiv ity resulting from later tria ls w ith in a session which 

is what this current study examined.

3.4.2 AIM

The aim of this study is to determ ine the intra session re liab ility  of the GPD.

3.4.3 PARTICIPANTS

A total of seven participants completed the study (mean ± SD; age = 26.2 ± 4.9yrs, height = 1.8 ± 

0.09m, mass = 78. 3 ± 10.1kg). The participants gave written, informed consent prior to 

commencement of the study confirm ing that they had no injury or illness that may exclude them 

from taking part (see Appendix 1). Ethical approval for this study was granted by the Moulton 

College ethics committee.

3.4.4 PROCEDURE

The participants each completed six tria ls w ith a two minute interval between trials. In each 

trial the participant was asked to indicate pain perception threshold once using the GPD. The



GPD was then deflated foi the remainder of the two m inute interval and then inflated

immediately pi ioi to the next ti ial. The site at which the cleat was positioned was marked with

a permanent marker. Between trials the GPD remained fastened but deflated to ensure the

reliability of positioning in each trial. The protocol for using the GPD was established in the first 

pilot study (see chapter 3.2).

3.4.5 DATA ANALYSIS

Data w ith in each condition were examined for norm ality using the Kolmogorov-Sm irnov test. 

Where the raw data were not norm ally distributed appropriate data transformation was used. 

Where no suitable transformation could be found, non-parametric tests were used. A ll data are 

reported as mean ± SD where norm ally distributed, and as median, IQR and range where non- 

parametric. Statistical significance was accepted at p < 0.05.

3.4.6 RESULTS

Data were not found to be norm ally distributed in 2 of the 6 trials; tria l 3, (D(7) = .29, p < 0.05), 

and trial 5, (D(7) = .29, p < 0.05). No suitable transforms were found and therefore a Friedman's 

ANOVA was used to examine if  there was a significant difference between trials. Statistical 

significance was accepted at an alpha value of p < 0.05. There was no significant difference 

between mean pain perception threshold reported across the ten time points, (x2(5) = 2.598, p > 

0.05) (see figure 3.5). Further analysis established that the data reported in this study had a 

coefficient of variation of 12.2% and intraclass correlation coefficient of 0.84.
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3.4.7 DISCUSSION

There were no significant differences (p > 0.05) found in intra session measurements suggesting 

that the GPD is a reliable method of pain induction for studies in which comparisons between 

individual scores in different conditions are required. There were no familiarisation or order 

effects apparent and no suggestion of increased sensitivity as trials continued. The anatomy of 

the lower limb suggests that there is little protection offered to the tibia when the GPD cleat is 

pressed against it (Behnke, 2006) which means that there is little soft tissue that can be bruised 

through use of the GPD. This may explain the findings of this study in showing no significant 

differences between the trials.

Jones et al. (2007) found that there were familiarisation effects evident in their study 

using algometry across a number of days, however in this study trials were conducted within 

the same session and such familiarisation effects were not evident. This could be due to the fact 

that this familiarisation effect was thought to occur as a result of cognitions attaching meaning 

to the pain stimulus and thereby rationalising it to be as a result of an experimental trial where 

no harm will result (Melzack & Torgeson, 1971). In this study there were only 2 minutes
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between each tiial meaning less time for the individual to think about the experience and it 

appeals that this potentially lesulted in maintenance of the emotional component of pain rather 

than any incr ease oi i eduction (Melzack & 1 orgeson, 1971). The results reported imply that the

GPD is a leliable method of pain induction where multiple measurements are required within a 
single session.



3.5 ESTABLISHING THE SEVERITY OF PAIN THAT CAN BE TOLERATED 
_____________________________ USING THE GPD

3.5.1 INTRODUCTION

The previous pilot studies have focused upon the need to reliably induce pain at pain perception 

threshold level using the GPD. The reason the GPD was selected as the method of pain induction 

is due to the highly controllable nature of the device and the fact that it can be used to induce 

different severities of pain. However, all that is known to date is that this can be used to 

establish pain tolerance (Brewer et al„ 1990; Ryan & Kovacic, 1966) and pain perception 

threshold (pilot work), but how much pain between these two threshold that can be 

comfortably withstood by an individual so that it can be repeatedly induced is unknown.

___  3.5.2 AIM

The aim of this study is to examine the pressure that can be induced via GPD and tolerated by 

individuals before pain tolerance is reached.

3.5.3 PARTICIPANTS

A total of ten participants completed the study (mean ± SD; age = 24.9yrs ± 10.1, height = 1.8m ± 

0.06, mass = 79.2kg ± 4.0). The participants gave written, informed consent prior to 

commencement of the study confirming that they had no injury or illness that may exclude them 

from taking part (see Appendix 1). Ethical approval for this study was granted by the Moulton 

College ethic committee.

3.5.4 PROCEDURE

Upon arrival in the lab pain perception threshold was established for each participant. This 

then formed the baseline measure for each individual. The participants each completed as 

many trials as they were able to withstand. There were two minute intervals between trials. On 

the first trial pain perception threshold (as previously determined) was induced and then the 

cuff was deflated. In the subsequent trials pain perception threshold was multiplied by two, 

three, four etc. until the participant could no longer withstand the pressure induced. 

Participants were asked to indicate how painful each trial was using a VAS immediately 

following each trial (see Appendix 2). The site at which the cleat was positioned was marked 

with a permanent marker following the protocol established in chapter 3.2. Between trials the 

GPD remained fastened but deflated to ensure the reliability of positioning in each trial. A 

successful trial was considered to be any trial at which the predetermined pressure was
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exerted. As soon as a participant indicated they wished to stop this ended their involvement in 
further trials and established their maximal pain tolerance.

___ 3.5.5 DATA ANALYSIS

Theie weie two vaiiables measuies in the present study; amount of pressure (mmHg) 

withstood, and pain perception indicated in each trial. Descriptive data of number of trials 

successfully completed by each participant is presented as there was not considered a benefit to 

statistical analysis. Trials are presented as a percentage of pain perception thresholds. The 

mean percentage of pain perceived by participants as indicated via VAS was examined for 

normality using the Kolmogorov-Smirnov test and repeated measures ANOVA used to 

determine any statistical difference present in the conditions where all participants successfully 

completed the trial. Significance was accepted at an alpha value of 0.05. Post-hoc t-tests with 

Bonferroni correction were used where appropriate to determine where any difference lay.

3.5.6 RESULTS

All ten participants successfully completed the 100%, 200% and 300% conditions before drop 

out occurred (see Table 3.1). No participants successfully completed 700% pain perception 

threshold, however over 50% of participant were able to withstand 500% pain perception 

threshold without the pain being considered unbearable. Figure 3.6 indicates that the pain 

perceived by participants increased in a near linear fashion in line with pressure exerted via 

GPD.

Table 3.1. Number of participants successfully completing each of the conditions and mean 
pain perception indicated via VAS.

Condition
Number of participants 

completing trial Mean pain perception (%)
100% 10 12.4
200% 10 27.5
300% 10 49.3
400% 8 70.75
500% 6 83.5
600% 2 95
700% 0 N/A



Figure 3.6. Mean pain perception indicated via VAS immediately following each trial.

Further analysis of the 100%-300% conditions was conducted as these were the three 

conditions that all participants were able to complete. Data were found to be normally 

distributed in the 100%, (D(10) = .22, p > 0.05), 200%, (D(10) = .20, p > 0.05) and 300% 

condition, (D(10) = .16, p > 0.05). Therefore a repeated measures ANOVA was used to 

determine whether there was a significant difference between the three conditions. There was 

a significant difference in mean pain perception found between conditions (F = 60.0, p < 0.001). 

Post-hoc t-tests with Bonferroni correction indicated that there was a significant increase in 

pain perceived between 100% - 200%, 100%-300% and 200%-300% (p < 0.05).

The value (mmHg) indicated to be pain perception threshold was examined in relation 

to how many trials the participant was able to complete. Table 3.2 indicates that the pain 

perception thresholds of the ten participants ranged between 25-50mmHg and the maximum 

value tolerated was 200mmHg. The lowest pressure tolerated as maximum was 120mmHg 

which was 300% of that participant's pain perception threshold. Participants with the higher 

pain perception thresholds tended not to be able to continue through as many trials as those 

with the lower pain perception thresholds.

64



Table 3.2 Pain Perception threshold (mmHg) and maximal pressure exerted for each 
participant w ithin the study. r  1 Cclcn

Condition successfully
completed

300%
300%
400%
400%
500%
500%
500%
500%
600%
600%

Pain perception threshold
(mmHg)

40
45
35
50
30
30
25
35
25
30

Maximal pressure exerted via 
______ GPD (mmHg)

120
135
140
200
150
150
125
175
150
180

____ 3.5.7 DISCUSSION

The data pi esented in this study suggest that the GPD can be used to induce pressure pain up to 

three times the individuals pain perception threshold before participants are unable to tolerate 

the stimulus. The VAS data suggests that participants are able to distinguish between the 

different levels of pain induced and that there appears to be a linear relationship between 

pressure exerted via GPD and severity of pain perceived by the individual. This data would 

suggest that 300% pain perception should be the highest severity of pain induced for a study 

examining the effect of pain severity on muscle performance as this would decrease likelihood 

of dropout from participants and therefore ensure that data could be collected for all individuals 

taking part in the study. The VAS data showed that statistically significant differences (p 

0.05) existed between the 100-300% conditions. This indicates that these severities of pain are 

perceived differently enough by participants to be used within the main studies where a variety 

of levels are required. Another important finding of this study was that the average pressure 

induced at 300% pain perception threshold was between 75-150mmHg for the ten participants 

tested. This means that the maximum pressure required for a study examining this level of pain 

is likely not to exceed 200mmHg which is the pressure at which Bostock et al. (1991) suggested 

ischaemia can occur. This means that any differences detected in performance would likely 

result from pain rather than extraneous variables caused by the pressure cuff.
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3.6 CHAPTER SUMMARY

The pilot work presented in this chapter determined that the GPD is a reliable method for

inducing pain at perception threshold levels both on consecutive days and within a session

Testing found it to be highly reliable at identifying pain perception threshold (ICC = 0.84), which

is consistent with Ryan & Kovacic (1966) who also found it to be reliable at inducing pain

tolerance (ICC = 0.95). This indicates that the GPD may be an appropriate method of reliable

pain induction that can be used for inducing pain at varying intensities (pain perception

threshold, present data; pain tolerance, Ryan & Kovacic, 1966), whilst having the additional

benefit of being non-invasive and therefore not interfering with the mechanical or physiological 
functioning of the limb on which pain is induced.

It was decided that only males would be selected for participation due to the influence of 

the menstrual cycle on pain thresholds (Rollman et al., 2000) which would therefore allow for 

repeat testing to be conducted should this be required in a later study. The study population 

consisted of recreational males, defined as those participating in physical activity at least three 

times a week. This was the sample group chosen as they would have some understanding of 

their physical capabilities and the novel task would therefore not be too difficult for them, but as 

this was the first study investigating the effects of pain using the GPD in this way it wasn't 

considered necessary to use an athlete population who are harder to recruit. Pilot testing found 

these participants to be able to distinguish pain perception threshold level and withstand 

reasonably high levels of pain which makes them suitable for studies involving pressures higher 

than pain perception threshold.

The pilot studies conducted have found that the modified GPD is reliable both intra- and 

inter-session which means that it can be used in studies that require repeat visits to the lab, or 

multiple trials within a session. This makes it a highly flexible tool in future research and 

increases the potential scope of investigations that can utilise it. It has also been determined 

that the optimal positioning of the cleat of the GPD is mid-way between medial condyle and 

medial malleolus as this is the most sensitive part of the lower limb. Using the GPD at this point 

reduces the need to inflate the cuff to high pressures and thereby reduces risk of confounding 

variables associated with ischeamia. A further finding from the pilot work was that pain could 

successfully be induced at varying intensity, with 300% of pain perception threshold 

determined to be the highest pressure that all participants could withstand. The studies 

inducted within this chapter will form the basis for the protocol used throughout this thesis.
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t h e : AFLr s csEPoRFp ; r ; ^ cEPTioN thresh° ^  in d u c edVIA GROSS PRESSURE DEVICE ON NEUROMUSCULAR 
PERFORMANCE IN A MAXIMAL ISOMETRIC KNEE EXTENSION

TASK

INTRODUCTION

The mechanisms underpinning pain-related reductions in muscular performance have been

suggested to include information processing components where pain sensation is given a high

supra-spinal priority due to it being an implicit survival mechanism (Price, 2000). This may

result in a loss of performance when more than one stimulus is being processed concurrently

(e.g. task demands) as the pain sensation will be afforded greater priority than the task being

completed. In an effort to explain how this could influence muscle performance specifically,

Lund et al. (1991) proposed the pain adaptation model whereby pain was thought to cause a

decrease in muscle force or velocity. It was suggested that EMC activity of the agonist reduced

and EMG activity of the antagonist increased by way of a protective response limiting movement 
around a joint (Bonifazi et al., 2004).

Patterns of EMG activity found in a number of studies have supported the pain 

adaptation model (Arendt-Nielsen et al., 1996; Stohler et al., 1988); however evidence for this is 

equivocal. Some studies have found that a reduction in agonist EMG activity may not 

necessarily be accompanied by an associated increase in antagonist EMG activity, instead there 

is a reduction in antagonist EMG activity detected (Ervilha et al., 2004). This suggests that the 

relationship between pain and muscle performance is more complex and therefore greater 

flexibility is required when trying to establish mechanisms. To address this issue, Hodges & 

Tucker (2011) proposed a theory in which a non-stereotypical response to pain was advocated. 

Within the adaptation to pain theory the nervous system is thought to have a range of options at 

its disposal in order to achieve protection of the painful area which may involve increased, 

decreased or redistributed activity involving more complex neural processes than those 

proposed by existing theories (Hodges & Tucker, 2011) but which currently remain 

unexplained and require further investigation (see Chapter 2).

The literature suggests that when a pain stimulus is present, muscular recruitment and 

therefore performance can be compromised (Arendt-Nielsen et al., 1996; Bonifazi et al., 2004; 

Ervilha et al., 2004, 2005; Hodges & Tucker, 2011; Stohler et al., 1988) however, the method for 

inducing pain has been highly invasive via saline injections that do not enable the level of pain 

lnduced to be easily controlled. Furthermore, injecting fluid into the muscle may compromise 

n°rmal biomechanical properties and physiological processes important to force production.
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Pilot work outlined in Chapter 3 established that the use of a GPD is an instrument that can be 

used to reliably induce pain in consecutive trials at perception threshold level (CV = 12.5; ICC = 

0.84) and at varying intensity. It was shown not to cause any damage to the site at which pain 

was induced, making it a safe tool for use in research particularly where multiple trials are 

required. Theiefoie, the aim of this study was to determine whether pain induced via GPD at 

pain perception threshold affects muscular performance during an isometric knee extension

task.

RESEARCH QUESTION

Does pain induced via GPD at perception threshold level influence neuromuscular performance

in a maximal isometric knee extension task?

METHOD

4.3.1 PARTICIPANTS

In order to ensure an adequate participant population size for the study to reach statistical 

power, variance was calculated from the first 20 participants of this sample group. A number of 

variables will be measured through this study (force output, EMG activity of the vastus lateralis 

and semitendinosus), however the primary research question is whether there is a difference 

between control and pain in relation to force produced. The first 20 participants were used as a 

pilot in order to determine the mean difference and standard deviation of difference in order to 

calculate the sample size required for a power of 90%. For the first 20 participants an estimate 

of mean difference was 10.0 and SD of difference 16.7. This would give a required number of 

cases of 31 participants to achieve a 90%  power. This means that 90%  of studies would be 

expected to yield a statistically significant effect assuming it exists, rejecting the null hypothesis 

that the population mean difference is 0.00. Based upon this, thirty three recreationally active 

male participants (mean ± SD; age = 31.9 ± 12.8 yr, height = 1.8 ± 0.07 m, mass = 85.4 ± 12.4 kg) 

were recruited via poster (see Appendix 3) and email (see Appendix 4) advertisement. As was 

the case in all studies, participants received a participant information sheet (see Appendix 5) at 

least 24 hours prior to the study and were required to give written informed consent (see 

Appendix 1) prior to participation. The participants were free from any lower limb injury and 

were asked to refrain from any intense exercise or stimulant use for 24 hrs prior to testing.

Ethical approval was granted from the School of Health's Ethics Committee in accordance with 

the declaration of Helsinki.



4.3.2 EQUIPMENT AND MEASURES

An isokinetic dynamometer (Biodex System 3 Pro, IPRS, Suffolk, UK) was used to measure 

isometric knee extensor moment, while skin-mounted bi-polar double differentiated active 

electrodes (model MP-2A, Linton, Norfolk, UK) measured EMG activity of the vastus lateralis 

(VL) and senutendinosus (ST) muscles, joint moment and EMG data were directed to a high- 

level transducer (model HLT100C, Biopac, Goleta, CA) before analog-to-digital conversion 

(model MP150 Data Acquisition, Biopac). The data were then directed to and stored on a 

personal computer running AcqKnowledge software (version 4.0, Biopac). To induce pain, a 

gross pressure device was designed using a modified sphygmomanometer cuff (model DM304, 

Mercurial sphygmomanometer Bigger Case, China), a curved plastic shin pad (107 x 175 mm) 

with a removable semicircular metal cleat (80mm length, 23mm radius) and Velcro attachment 

to the inner surface of the shin pad positioned over the tibia (see Chapter 3).

4.3.3 PROCEDURE

Participants visited the laboratory on two separate occasions completing a familiarisation trial

at least 24 hours prior to the experimental trial. On both occasions, the participants performed

a five minute warm up on a Monark cycle (824E) at 60 rpm against a 1 kg load producing a

power output of 60 W. The familiarisation trial included measuring and establishing pain

perception threshold and practicing explosive and ramped MVC's on the isokinetic

dynamometer until each MVC performance was consistently within 5 %  to ensure that maximum

values were being achieved within each trial. The ramped contraction, where MVC was

achieved through a gradual increase over 5 seconds, was used to determine the EMG-joint

moment relationship (Kay & Blazevich, 2009), while the explosive, rapid MVC performed in the

shortest time was used as a measure of maximal muscular performance. Physiological research

has shown that the level of force produced during a maximum voluntary contraction (MVC)

decreases during both experimentally induced muscle pain (Graven-Nielsen etal., 1997; Ervilha

et al., 2005) and non-experimentally induced muscle pain (Backman et al„ 1988; Suzuki & Endo,

1983), however during sub maximal isometric contractions pain was not found to be a limiting

factor in performance (Ashton-Miller et al., 1990), therefore MVCs would be used throughout 

the current research.

During the experimental trial, pain perception threshold was measured and recorded 

prior to participants performing a ramped isometric MVC. Participants then underwent one of

three experimental conditions (pain, cuff or control) where they performed three explosive
#

isometric MVC's on an isokinetic dynamometer with a two minute rest period between 

contractions (see figure 4.1). All three conditions were performed during the trial in a
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randomised, counterbalanced manner. The peak isometric knee extensor moment (force) and

the corresponding peak EMC activity from the vastus lateralis and semitendinosus from the

three trials were used for analysis. The peak values were used as it was felt that an average

value across the three trials in each condition may not be reflective of the participant's maximal

ability and may cause a skewing of data if the participant under- or over- performed in any of

the trials. In order to avoid skewing as far as possible, when analysing the results any trials that

was more than 5 %  different from the other trials in that condition was excluded from analysis 

as this was considered to be an outlier and not a true MVC.

Pain perception
Conditions completed in a randomised, 

counterbalanced manner

Time (min)

Figure 4.1. Tim eline of protocol undertaken by each of the participants during the 
experimental trials. 6

4.3.4 EXPERIMENTAL CONDITIONS

Three conditions were performed within the trial; pain, cuff and control. During the pain

condition, the GPD was strapped to the lower limb with the cleat positioned over the tibia one

third from medial tibial epicondyle to medial malleolus. Pilot testing revealed that this site was

the most sensitive area on the tibia accessible when the leg was positioned on the isokinetic

dynamometer (see chapter 4). The GPD was then inflated at 5 mmHg-s1 to the previously

established pain threshold, considered as the lowest experience of pain that a participant would

recognise (Loeser & Treede, 2008). The participant was then instructed to perform the MVC

trials whilst the cuff remained inflated. Immediately following each MVC, pressure from the cuff

was released; however the GPD remained in position between each trial to ensure reliability of

the position of the device. The cuff condition was identical with the exception that the cleat was

removed from the GPD, therefore no pain was induced, while the control condition followed the 

same protocol but without use of any parts of the GPD.



4.3.5 ISOMETRIC JOINT MOMENT

Participants sat upright in the chair of an isokinetic dynamometer (Biodex System 3 Pro) with 

the knee positioned at a 90“ angle (180“ full extension) with the lateral femoral epicondyle 

aligned to the centre of rotation of the dynamometer. The foot and shank were supported by 

Velcro strapping attached to the lever arm to hold the lower limb in position (see Plate 4.1). 

The upper body was also strapped into position across the chest, pelvis and femur to ensure 

reliable subject positioning. Participants were instructed to sit with their hands behind their 

backs for each trial as pilot testing indicated this position resulted in the most reliable joint 

moment data (see Plate 4.2). Participants were given a safety release valve to hold during the 

trials which when activated would deflate the GPD. During the MVC trials, joint moment data 

were exported from the dynamometer to a high-level transducer (model HLT100C, Biopac) 

before analogue-to-digital conversion at a 1000-Hz sampling rate (model MP150 Data 

Acquisition, Biopac). The data were then directed to a personal computer running 

AcqKnowledge software (version 4.0, Biopac) and filtered with a double-pass 6-Hz Butterworth 

low-pass filter. Data were normalised as a percentage of the peak isometric joint moment 

recorded during the ramped MVC. The normalised joint moment (%MVC) from the trials that 

produced the greatest joint moment were used as a measure of muscular performance.
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4.3.6 EMG RECORDING & PROCESSING

The skin over each electrode site was shaved, lightly abraded and then cleansed with ethanol in 

order to reduce skin resistance and to minimise the risk of infection (De Luca, 1997). Skin- 

mounted bi-polar double-differentiated active electrodes (model MP-2A, Linton) with a 12 mm 

diameter, a fixed inter-electrode distance of 18 mm and central bar of 12 mm by 3 mm, were 

then positioned over the central portion of the muscle bellies of the VL and ST. The positioning 

of the electrode on each muscle followed the general direction of the muscle fibres. A ground 

electrode was positioned over the medial aspect of the patella of the same limb. During the MVC 

trials, EMG activity was amplified (gain = 300, input impedance = 10 Gfl, common mode 

rejection latio >100 dB at 65 Hz) and directed to a high-level transducer (model HLT100C, 

Biopac) before analog-to-digital conversion at a 1000-Hz sampling rate (model MP150 Data 

Acquisition, Biopac). The signal was then directed to a personal computer running 

AcqKnowledge software (version 3.8.2), where it was filtered using a 20- to 500-Hz band-pass 

filter. The filtered signal was converted to root-mean-squared (RMS) EMG with a 1000-ms 

sample window and normalised as a percentage of the peak amplitude recorded during the

ramped MVC. The normalised peak EMG amplitude (%MVC) from the trials that produced the 

gi eatest joint moment was used as a measure of neuromuscular activity.

4.3.7 DATA ANALYSIS

Data were analysed using the SPSS statistics software package (version 17.0) and reported as

mean ± SD where normally distributed, and as median, IQR and range where non-parametric.

All data were initially examined for normality using the Kolmogorov-Smirnov test before

further analyses were performed. A repeated measures design was used for this study,

therefore either a one way repeated measures ANOVA, or Friedman's ANOVA would be used for

data analysis. The ANOVA is a robust statistical test when used with equal sample sizes (Field,

2009) thereby reducing the likelihood of Type 1 error. It does assume that distributions within

groups are normal and that variances within experimental conditions are fairly similar, which 

they would be expected to be in this study.

Post-hoc t-tests with Bonferroni correction were used, where statistical significance was 

established. Statistical significance was accepted at p < 0.05. In each condition the peak MVC 

trial was selected for analysis. All values were normalised to the ramped contractions and 

reported as percentages. Initial analysis of the data from the 33 participants revealed an outlier 

in the EMG activity for one participant in the latter two of the three conditions, which suggests 

that the electrode position or adhesion to the skin may have been compromised and the data



were unreliable and were therefore removed from subsequent analysis leaving 32 sublets' data 
for analysis.

_____________________  4.4 RESULTS_______

Due to the number of hypotheses being examined within this study, the results have been 

divided up for ease of understanding into; isometric knee extensor moment, EMG of the vastus 

lateralis, and EMG of the semitendinosus. Each section first reports normality of the data being 

tested (using the Kolmogorov-Smirnov test) and then any significant differences (p < 0.05) 

found as well as showing where those differences lie where appropriate.

4.4.1 ISOMETRIC KNEE EXTENSOR MOMENT (FORCE)

Normality was confirmed in all three conditions; pain, (D(32) = 0.66, p > 0.05), cuff, (D(32) =

0.89, p > 0.05), and control, (D(32) = 0.89, p > 0.05). An analysis of variance (ANOVA) with 

repeated measures was therefore used to test the following:

HI. There is a difference in knee extensor moment in an isometric knee extension task when 

pain perception threshold is induced via GPD.

HO: There is no difference in knee extensor moment in an isometric knee extension task when 

pain perception threshold is induced via GPD.

A significant difference in force produced between the three conditions was found (F = 7.96; p < 

0.05), with Bonferroni-adjusted post-hoc t-tests indicating that there was a significant 

difference between the pain and cuff condition, and pain and control (p < 0.05), but no 

significant difference between cuff and control (p > 0.05). Mean force (see Figure 4.2) was 

8.9% lower in the pain condition (101.0 ± 2.5% MVC) than control (110.9 ± 2.5% MVC) and 

7.2% lower than the cuff condition (108.9 ± 3.1% MVC).
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Figure 4.2. Normalised maximum voluntary isometric contractions produced in the pain, cuff and control 
condition. Data are presented as mean ± SD (n=32).

Table 4.1. Statistical differences in m axim um  voluntary isometric contractions produced 
between the three experimental conditions where significance is accepted at p < 0.05.

Pain Cuff Control

Pain - p  = 0 .0 1 7 p  = 0 .0 0 2

Cuff p  = 0 .0 1 7 - NS

Control

NS = No significant difference

p  = 0 .0 0 2 NS -

4.4.2 EMG VASTUS LATERALIS

Data were found to be normally distributed in the pain, (D(32) = 0.08, p > 0.05], cuff, (D(32] =

0.06, p > 0.05) and control condition, (D(32) = 0.06, p > 0.05). An analysis of variance with 

repeated measures (ANOVA) was therefore used to test the following:

HI: There is a difference in VL EMG activity in an isometric knee extension task when pain 

perception threshold is induced via GPD.

HO: There is no difference in VL EMG activity in an isometric knee extension task when pain 

perception threshold is induced via GPD.

A repeated measures ANOVA revealed a significant difference in VL EMG activity between the 

three conditions (F = 6.73, p < 0.05) with post-hoc t-tests identifying that the difference was
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located between pain and control fn < o 051 Nn fLP u.u^j. ino diffei ence was found between pain and cuff (p
> 0.05) and control and cuff fo > 0 051 In t-hp ^LP o .ud j . in the pi esence of pain there was a 12.8% reduction in

EMG activity (see Figure 4.3) between pain (97.08 ± 3.92% MVC) versus control (111.37 ± 5.15

/o MVC), and a 9.7 /o i eduction dui ing the pain condition in comparison to cuff (103.43 ± 4.69 % 
MVC).
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Figure 4.3. Normalised EMG activity recorded in vastus lateralis during the pain, cuff and control
condition. EMG recordings corresponding to the peak MVC produced over three trials in each condition 
were selected. Data are presented as mean ± SD (n=32).

Table 4.2. Statistical differences in normalised EMG activity of the vastus lateralis recorded 
between the three experimental conditions where significance is accepted at p < 0.05.

Pain

Cuff

Control

Pain Cuff Control

NS

NS

p = 0.002

p = 0.002

NS

NS
NS No significant difference

76



 M  M

The assumptions of normal distribution were violated in the cuff (D(32) = 0.20, p < 0.05), and

conti ol (D(32) = 0.19, p < 0.05), conditions. A log transformation was used, whereby normality 

was confirmed in pain, (D(32) = 0.10, p > 0.05), cuff, (D(32) = 0.10, p > 0.05), and control, (D(32)

= 0.11, p > 0.05). An analysis of variance (ANOVA) with repeated measures was therefore used 

to test the following:

HI: There is a difference in ST EMG activity in an isometric knee extension task when pain 

perception threshold is induced via GPD.

HO: Theie is no difference in ST EMG activity in an isometric knee extension task when pain 

perception threshold is induced via GPD.

Repeated measures ANOVA found there to be a significant difference in ST EMG activity 

between the three conditions (F = 7.03, p < 0.05). Post-hoc t-tests revealed a significant 

difference between pain and control (p < 0.05) but no significant difference between pain and 

cuff (p > 0.05) and cuff and control (p > 0.05). In the presence of pain there was found to be a 

22.3% reduction in EMG activity (see Figure 4.4) (6.84 ± 0.76% MVC) in comparison to the 

control (8.80 ± 0.95% MVC).
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Figure 4.4. Normalised EMG activity recorded in semitendinosus during the pain, cuff and control
condition. EMG recordings corresponding to the peak MVC produced over three trials in each condition 
were selected. Data are presented as mean ± SD (n=32).

Table 4.3. Statistical differences in normalised EMG activity of the semitendinosus between 
the three experimental conditions where significance is accepted at p < 0.05.

Pain

Cuff

Control

NS -  No significant dillerence

Pain Cuff Control

- NS p = 0.002

NS j - NS

p = 0.002 NS -

To establish the EMG:moment relationship, a bivariate correlation was conducted between EMG

activity in the vastus lateralis and force produced during the ramped contraction trial for 10

participants. Strong correlations were established between mean EMG VL and mean joint

moment (r = 0.992; p < 0.01) with individual participants also showing strong correlations (r =

0.703 - 0.999; p < 0.01). The ratio of EMG activity from VL to ST was also examined. A repeated

measures ANOVA showed that there was no significant difference between conditions (F = 1.44, 

p < 0.05).

4.5 DISCUSSION

The major finding from this study was that pressure pain induced by the GPD significantly 

reduced muscular performance during an isometric knee extension task as a reduction in peak
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force (8.9%) during the MVC was detected. This is in agreement with previous studies that also

reported reductions in performance following pain induced via hypertonic saline injections 

(Farina et al, 2004, 2005; Graven-Nielsen et al., 1997; Ervilha et al., 2004, 2005).

Several possible mechanisms could explain the reduced force output in these studies

including reduced neuronal activity, ischaemia or changes to normal physiological processes

following saline injection to the target muscle. The methods and data from the cuff condition in

the present study have removed ischaemia as a possible mechanism. A concern with using

pressure pain induced with a cuff inflated around the limb was that this may result in ischaemia

with potential implications for force production. However, this is unlikely for several reasons:

a) the cuff was distal to the target muscle and therefore unlikely to compromise blood flow; b)

while ischaemia can be induced at around 200mmHg (Bostock et al., 1991), the mean pressure

exerted during trials was far below this intensity (58.8 ± 33.8 mmHg); and c) the cuff was

inflated foi only a short duration (5-10s). This makes it very unlikely that any losses in force 

could be due to ischaemia.

This study also found that, unlike the previous studies employing saline injections to 

induce pain, changes to normal physiological processes are unlikely as the pain stimulus was 

non-invasive and removed from the target muscle. Interestingly the present results also 

detected a concomitant reduction in agonist EMG activity, which would suggest that the 

reduction in force might be attributed to reduced neuromuscular activity. A correlation in 

reductions between peak VL EMG and moment was detected (r = 0.387, p < 0.05) when pain 

was induced. This is in agreement with previous research using dynamic tasks where EMG 

amplitude and MVC force decreased with a pain stimulus (Backman et al., 1988; Graven-Nielsen

et al., 1997; Suzuki & Endo, 1983) thereby suggesting that reductions in neuromuscular 

performance are likely to be as a result of neuronal inhibition.

The pain adaptation model (Lund et al., 1991) attempts to explain reductions of force in 

the presence of a pain stimulus through a reordering of neuromuscular agonist-antagonist 

activity, which suggests a reduction in agonist activity and an increase in antagonist activity. 

The present findings support this model as concomitant reductions in force and agonist EMG 

activity were detected coupled with increases in EMG activity reported in the ST. The decrease 

in force output and concomitant reduction in agonist muscle activity during the pain condition, 

suggests that there may be central processes limiting performance. In order for movement to 

occur a message needs to be sent from the brain to the relevant muscles to instigate that 

movement. In the presence of pain the level of activation of the motor units within the muscles 

may be influenced either at a central or spinal level. There could be an interaction effect
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between descending neural drive and efferent signals which may account for lin,nations in 
motor output

The mechanisms by which pain modulates behaviour are still not fully understood, 

however the Gate Control theory (Melzack & Wall, 1965) suggests the neural pathway by which 

a pain stimulus reaches the brain from the peripheral nerve to the spinal cord is subject to 

modulation by both intrinsic neurones and controls emanating from the brain (Dickensen, 

2002). As every synapse allows opportunity for modulation this means that at any given point 

between the peripheral site at which the stimulus was detected, right up until it is translated in 

the brain, there can be any number of factors that can influence it. Alternatively, the presence of 

a painful stimulus may alter the message sent from the brain, thereby limiting motor output at a 

higher level. An explanation for why this may happen lies in the high supra-spinal priority that 

pain is affoided as this is thought to be implicit in order to survive (Price, 2000). As a 

consequence, other information processing requirements occurring at the same time (for

example, motor output) may be reduced in priority and performance changes may result 

(Lorenz et al., 1997b; Lorenz & Bromm, 1997).

Melzack (2001) put forward the idea of a 'neuromatrix' suggesting that pain is an 

integrative experience. In contrast to previous thinking, the neuromatrix contends that the 

loops allow parallel processing within which the cyclical processing and synthesis of nerve 

impulses develop a characteristic pattern; labelled the neurosignature. The neurosignature is 

determined by multiple influences and past experiences, not just somatic sensory input, 

therefore the context in which a person is being asked to perform a task may influence their 

reaction to the pain stimulus. In this case, performance in the isometric knee extension task 

was compromised as a result of a pain stimulus being induced in the lower leg. The nociceptive 

signals travelling from the site of the pain to the brain could in some way interact with the 

efferent signals controlling the task and therefore influence performance output on a spinal 

level, or there could have been a more complex process occurring within the brain in which past 

experience of pain dictated the level of activation being sent from the brain to the muscles; 

thereby limiting motor output at a higher level.

 H  MM

This study has demonstrated that the presence of pain decreases the level of isometric force 

produced by the knee extensors with a concomitant reduction in EMG activity of the VL muscle. 

Unlike previous studies where saline injections induced pain in the target muscle, the non- 

invasive pressure cuff employed in the present study enabled both a reliable intensity of pain to
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be administered and the pain to be remote from the target muscle in which muscular

performance was measured. This indicates that the presence of pain compromises normal

muscular functioning despite the target muscle remaining intact. The major benefit of this

method of pain induction is that there are no influences upon muscle physiology or

biomechanics as a result of the methods employed, removing these as possible mechanisms

underpinning the losses in force. Higher level, spinal or supra-spinal control mechanisms may

be compromised as a result of pain, which would explain the reduced EMG activity detected.

However, the present methods do not enable the location of the impairment to be detected and

further research could examine where this exists. Similarly, while pain perception threshold

significantly reduces muscular performance, the severity of pain stimulus should be examined 

to determine whether intensity influences force losses.

81



5 T H E I N F L U E N C E  OF P R E S S U R E  PAIN S E V E R I T Y  ON 
N E U R O M U S C U L A R  P E R F O R M A N C E  IN A MAXIMAL IS O M ETR IC  
_________________  K N E E  EX TEN SIO N  TASK

1 

Experimental muscle pain has been found to decrease maximal muscular performance (Ervilha

et al„ 2004, 2005; Graven-Nielsen et al., 1997) even when severity of pain induced was at

perception threshold level (see chapter 4). This suggests the presence of pain across varying

levels influences performance, but the relationship between severity of pain and muscle

performance has not received a great deal of attention. The previous chapters have

demonstrated that pain can be induced reliably via GPD at pain perception threshold level (CV =

12.5: ICC = 0.84, Chapter 3) and is associated with a decrease in maximal muscular performance

(chapter 4). This is in agreement with previous research in which pain has been found to have

debilitating effects on muscular function and physical performance in day-to-day tasks (Young,

1993) with the association found to be greater as severity of pain increases (Onder et al„ 2006).

However, the literature focuses upon populations experiencing chronic pain, or groups where

small losses of function are likely to have more damaging consequences (such as older adults)

and as such there is little evidence of the effects of severity of experimental pain in a healthy 

sample.

Farina et al. (2004) conducted an experiment in which they administered repeated

hypertonic saline injections to induce an increasing level of pain in a sub-maximal isometric

task. Perceived pain intensity was found to be inversely proportional to motor unit firing rate,

thereby supporting the pain adaptation model (Lund et al., 1991). However the method of pain

induction was highly invasive and could not be controlled for severity in comparison to

individual thresholds but could only be reported as a perception retrospectively (Wing et al.,

2011a). The fact that pain severity could only be increased through accumulation of the

hypertonic saline solution also means that conducting experiments in a randomised manner is

pioblematic and thus limits the usefulness of the technique to investigate mechanisms of pain-

related changes. The highly controllable nature of the GPD allows for baseline measures to be

obtained and used to quantify different pain severities for the purpose of experimental trials. It

was the aim of this study to examine the influence of the severity of pain induced by a non- 

invasive GPD on muscular performance in the lower limb.
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 H 

Does seventy of pain induced via a GPD influence neuromuscular performance in a maximal 

isometric knee extension task?

 M H

1 

Thirty-one recreationally active male participants (mean ± SD; age = 32.7 ± 12.3yrs, height =

180.2 ± 7.9m, mass = 85.3 ± 12.1kg) volunteered for the study after giving written informed

consent (see Appendix 1). The participants were free from any lower limb injury and were

asked to refrain from any intense exercise or stimulant use for 24 hrs prior to testing. Ethical

approval was granted from the School of Health's Ethics Committee in accordance with the 

declaration of Helsinki.

 

Equipment, measures and experimental protocol were as described in chapter 4 with all

participants visiting the lab on two separate occasions for a familiarisation session and then

experimental trial. Each participant undertook three MVCs in three conditions in a

counterbalanced and randomised trial. The peak MVC in each trial was selected for 

measurement

Figure 5.1. Timeline of protocol undertaken by each of the participants during the 
experimental trials.



5.3.3 EXPERIM ENTAL CONDITIONS

Four conditions were performed within the trial in which a control, 100%, 200% or 300% of the

participants' previously determined pain perception threshold was induced using the GPD. The

participant was then instructed to perform the MVC trials. Immediately following each MVC,

pressure from the cuff was released, while the GPD remained in position between each trial to 

ensure reliability of the position of the device.

5.3.4 DATA ANALYSIS

In each condition the peak MVC trial was selected for analysis. All values were normalised to 

the lamped contractions and reported as percentages; all data are reported as mean ± SD where 

normally distributed, and as median, IQR and range where non-parametric. Data within each 

condition weie examined for normality using the Kolmogorov-Smirnov test. Where the raw 

data were not normally distributed appropriate data transformation was used. Where no 

suitable transformation could be found, non-parametric tests were used. Post-hoc t-tests with 

Bonferroni correction were used where statistical significance was established. Statistical 

significance was accepted at p < 0.05 (see chapter 4 for full explanation of data analysis).

__________________________________5.4 RESU LTS____________

Due to the number of hypotheses being examined within this study, the results have been 

divided up for ease of understanding into; isometric knee extensor moment, EMG of the vastus 

lateralis, EMG of the semitendinosus and pain perception (VAS). Each section first reports 

normality of the data being tested (using the Kolmogorov-Smirnov test) and then any significant 

differences (p < 0.05) found as well as showing where those differences lie where appropriate.

5.4.1 ISOMETRIC KNEE EXTENSOR MOMENT (FORCE)

Assumptions of normality were violated in the control, (D(31) = 0.16, p < 0.05), and 300% 

condition, (D(31) = 0.17, p < 0.05). Normality was confirmed in the 100%, (D(31) = 0.10, p > 

0.05), and 200% condition, (D(31) = 0.12, p > 0.05). No suitable data transforms could be 

found; therefore a Friedman's ANOVA was used to test the following:

HI: There is a difference in knee extensor moment in an isometric knee extension task when 

pain of varying severity is induced via GPD.

HO: There is no difference in knee extensor moment in an isometric knee extension task when 

pain of varying severity is induced via GPD.
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A significant difference in mean force output was found between all four conditions, (xz(3) = 

41.28, p<0.05). Wilcoxon tests were used to determine where this difference existed. A 

Bonferroni correction was applied and so all effects are reported at a .0125 level of significance. 

A significant difference was found between control and 100% (z = -3.74, p = 0.000), 200% (z = -

4.31, p = .000), and 300% (z = -4.53, p = .000). Further significant differences were detected 

between 100o/o-200% (z = -2.69, p = .007) and 100%-300% (z = -2.78, p = .005). However, no 

significant difference was detected between 200%-300% (z = -.61, p = .544). In comparison to 

control (median = 111.6, IQR = 30.82, range = 118.3% MVC) median force was 6.2% lower in the 

100% condition (median = 104.7, IQR = 72.8, range = 22.1% MVC), 9.5% lower in the 200%

condition (median = 101.0, IQR = 24.8, range = 90.1% MVC) and 9.7% lower in the 300%

condition (median = 100.8, IQR = 28.8, range = 74.8% MVC). In comparison to the 100%

condition median force was reduced by 3.5% in the 200% condition, and 3.7% in the 300%

condition (see Figure 5.2).
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Figure 5.2. Normalised maximum voluntary isometric contractions produced in the control,
100%, 200%  and 3 00 %  pain perception threshold conditions. Data are presented as median,
IQR and range (n=31). The location of significant (p > 0.05] differences are denoted in Table
5(1.

Table 5.1. Statistical differences between mean maximal voluntary contractions produced in 
the four experimental conditions where significance is accepted at p < 0.05.

NS No significant difference

Control 100% 200% 300%
Control - p = 0.000 p = 0.000 p = 0.000
100% p = 0.000 - p = 0.007 p = 0.005
200% p = 0.000 p = 0.007 - NS
300% p = 0.000 p = 0.005 NS _
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5.4.2 EMG VASTUS LATERALIS

Data were found to be normally distributed in the 100%, (D(31) = 0.09, p > 0.05), 200%, (D(31)

= 0.09, p > 0.05), 300% (D(31) = 0.10, p > 0.05) and control condition, (D(31) = 0.13, p > 0.05).

An analysis of variance with repeated measures (ANOVA) was therefore used to test the 
following:

HI: There is a difference in VL EMG activity in an isometric knee extension task when pain of 
varying severity is induced via GPD.

HO: There is no difference in VL EMG activity in an isometric knee extension task when pain of 

varying severity is induced via GPD.

A significant difference in VL EMG activity between the four conditions (F = 10.933, p < 0.05) 

was reported with post-hoc t-tests identifying a difference between all conditions and control (p 

< 0.05). In comparison to control (117.4 ± 29.8% MVC) mean EMG activity reduced by 13.6% in 

the 100% condition (101.79 ± 20.2 MVC), 16.2% in the 200% condition (98.4 ± 24.24% MVC) 

and 21.5% in the 300% condition (92.2 ± 22.2% MVC). There was a 9.5% reduction in the 

300% condition in comparison to the 100% condition which was found to be significant (p <

0.05), but no other conditions significantly differed (p > 0.05) from 100% or 200% pain 

perception threshold conditions (see Figure 5.3).
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Figure 5.3. Normalised EMG activity recorded in vastus lateralis during the control, 100%, 200% and 
300% pain perception threshold conditions. EMG recordings corresponding lo the peak MVC produced 
over three trials in each condition were selected. Data are presented as mean ± SD (n=31). The location of 
significant differences is described in Table 5.2.

Table 5.2. Statistical differences in mean EMG activity of the VL produced between the four 
experimental conditions where significance is accepted at p < 0.05.

NS No significant difference

Control 100% 200% 300%
Control - p = 0.042 p = 0.027 p = 0.000
100% p = 0.042 - NS p = 0.019
200% p = 0.027 NS - NS
300% p = 0.000 p = 0.019 NS
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5.4.3 EMG SEM ITENDINOSIS

The assumptions of normality were violated in the 100% condition, (D(31) = .18, p < 0.05),

200% condition, (D(31) = .16, p < 0.05), and control condition, (D(31) = .002, p < 0.05).

Normality was confirmed within the 300% condition, (D(31) = .11, p > 0.05). No appropriate

transforms were found for the other three conditions and therefore a Friedman’s ANOVA was 
used to test the following:

HI: There is a difference in ST EMG activity in an isometric knee extension task when pain of

varying severity is induced via GPD.

HO: Theie is no difference in ST EMG activity in an isometric knee extension task when pain of 

varying severity is induced via GPD.

There was a significant difference in EMG activity of the ST detected between the four

conditions, (x2(3) = 13.88, p < 0.05). Wilcoxon tests were used to determine where this

difference existed. A Bonferroni correction was applied and so all effects are reported at a .0125

level of significance. A significant difference was found between control and 100% (z = -2.82, p

- 0.005) but not between all other conditions (p > 0.0125). In comparison to control (median =

8.0, IQR = 5.7, range = 17.6% MVC) median EMG reduced by 22.5% in the 100% condition

(median = 6.2, IQR = 6.2, range = 23.2% MVC), 12.5% in the 200% condition (median = 7.0, IQR

= 5.9, range = 18.5% MVC) and 13.8% in the 300% condition (median = 6.9, IQR = 5.7, range = 

17.6% MVC) (see Figure 5.3).



14-

1

HI
2io-
O
c

■  mmm

T3
Co>
.ts
E
at

i = -
ili

4 -

o-
I

Control
I

100%
i

200%
I

300%
Condition

Figure 5.4. Normalised EMG activity recorded in semitendinosus during the control, 100%, 200% and 
300% pain perception threshold conditions. EMG recordings corresponding to the peak MVC produced 
over three trials in each condition were selected. Data are presented as median, 1QR and range (n=31).

Table 5.3. Statistical differences in mean EMG activity of the ST recorded between the four 
experimental conditions where significance is accepted at p < 0.05.

NS -  No significant difference

Control 100% 200% 300%
Control - p = 0.005 NS NS
100% p = 0.005 - NS NS
200% NS NS - NS
300% NS NS NS
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5.4.4 PAIN PERCEPTION (VAS)

The assumptions of normality were violated in the 100% condition, (D(30) = .15, p < 0.05), and 

300% condition, (D(30) = .17, p < 0.05). Normality was confirmed within the 200% condition,

(D(30) = .11, p > 0.05). No appropriate transforms were found and therefore a Friedman's 

ANOVA was used to test the following:

HI: There is a difference in pain perception reported via VAS during an isometric knee 

extension task when pain of varying severity is induced via GPD.

HO: There is no difference in pain perception reported via VAS during an isometric knee 

extension task when pain of varying severity is induced via GPD.

There was a significant difference in pain perception reported between the three conditions,

-  44.60, p<0.05). Wilcoxon tests were used to determine where this difference existed. A 

Bonferroni correction was applied and so all effects are reported at a .017 level of significance. 

There was a significant increase in pain perception between the 100%-200% conditions (z = - 

4.39, p = .000), 100%-300% conditions (z = -4.78, p = .000) and 200%-300% conditions (z =  -  

3.36, p = .001). In comparison to the 100% condition (median = 24.9, IQR = 27.8, range = 82.3% 

MVC) there was a 122.1% increase in pain perception in the 200% condition (median = 55.3, 

IQR = 37.6, range = 88.7% MVC), and 198.4% increase in the 300% condition (median = 74.3,

IQR -  32.4, range = 91.5% MVC). There was a 34.6% increase in pain perception in the 300% 

condition in comparison to the 200% condition (see Figure 5.4).
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Figure 5.5. Pain perception as reported by participants on a visual analogue scale in the 
100%, 200%  and 300%  conditions. Data are presented as median, IQR and range (n = 31). The 
location of sign ificant differences is described in Table 5.3.

Table 5.4. Statistical differences in mean pain perception reported via VAS in each of the three 
pain conditions where significance is accepted at p < 0.05.

100% 200% 300%
100% - p = 0.000 p = 0.001
200% p = 0.000 - p = 0.000
300% p = 0.001 p = 0.000 -

5.5 D ISC U SSIO N

The major finding of this study was that muscular performance on a maximal isometric knee 

extension task decreased as pain intensity induced by GPD increased. This supports the 

findings of Farina et al. (2004) who determined a similar association between pain and muscle
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performance where hypertonic saline injections were used to induce pain. The current study

used a non-invasive method of pain induction whereby pain was induced remotely from the

target muscle thereby limiting the potential confounding variables, such as changes to muscle

physiology or mechanics as a result of fluid injections. This suggests neuronal inhibition is the

likely cause of reductions in performance as discussed in Chapter 4, however does not allow for

location of such impairment to be determined and this is something that requires further study.

It has been suggested that in order to gain a better understanding of central muscle control

strategies, more advanced techniques are required so that activity distribution can be traced at

single motoi unit level (Farina et al„ 2002). This was not the purpose of the current 
investigation but should be considered for future research.

The most likely theory to explain the reductions in muscle performance identified is the 

adaptation to pain theory (Hodges & Tucker, 2011) as it proposes a non-uniform response to 

pain whereby a global decrease in muscle activity is one of three possible responses to pain. 

Whilst the pain adaptation model (Lund et al„ 1991) also suggests a decrease in muscle activity, 

it specifically predicts a decrease in agonist EMG activity and associated increase in antagonist 

EMC activity which was not evident in this study, instead both agonist and antagonist 

decreased. Another adaptation response proposed by Hodges & Tucker (2011) is that muscle 

activity is redistributed to alternate muscles that are able to fulfill similar functions (Hodges & 

Tucker, 2011). However, this study only examined the VL (agonist) and ST (antagonist) and can 

therefore not state whether redistribution occurred in this case, but the fact that reductions in 

activity were identified whilst pain was induced remotely, coupled with concomitant reductions 

in force, suggests that neuronal inhibition was the likely cause rather than any mechanical or 

physiological mechanisms within the muscle. A further consideration is that this study did not 

specifically test athletes, instead recruited recreationally active males. There is a suggestion 

that athletic status increases an athlete's ability to tolerate pain (Tesarz et a!., 2012) which may 

therefore make them more able to control their performance in the knee extension task even

when experiencing higher levels of pain. This may result in different findings were the study to 
be replicated using athletes at a high level.

An interesting finding within the data collected for ST EMG activity was that there was a 

significant difference between the control condition and 100% condition. However, there was 

no significant difference found between control and 200% or 300% despite the fact that the 

median decrease from control to 200% (7.0%) and 300% (6.9%) was greater than the median 

difference from control to 100% (6.2%). This could be attributed to a number of factors. 

Firstly, the amount of activity required by the ST during this task was limited as the participant 

was strapped in to the dynamometer with their knee locked at 90° and was instructed to push



against the lever arm. Therefore involvement of an antagonist is minimal, and the perception 

that they were in a safe environment (little risk of injury) may have contributed to the lack of 

engagement of the ST. Figures recorded tended to be below 10% maximum and there were 

comparatively large deviations reported, indicating that this data is sensitive to distortion. 

Where dynamic tasks have been used (Arendt-Nielsen et al„ 1996) there is a clearer increase in 

antagonist EMG, supporting the Lund et al. (1991) theory, as within dynamic tasks it can be 

assumed that the need for stabilisation and control around the joint is greater and therefore 

engagement will likely be higher. This may explain why the pain adaptation model was not 

supported in this study and lends further support to the adaptation to pain theory in suggesting 
that task demands may also contribute to the protective strategy adopted.

As was discussed in Chapter 4 the method of inducing pain via GPD allows for careful

control of pain induced. The researcher was able to accurately measure absolute pressure being

exerted (to within 5mmHg) and relate this to perception of pain reported by the participant in

order to establish the experimental conditions. An interesting finding in this study is that

although pressure exerted (absolute pain) increases incrementally from pain perception

threshold, there was not a symmetrical increase in pain perception (as measured by VAS). No

correlational analysis was carried out due to the different type of the data gathered between the

variables (with VAS data being reported as absolute values and force data being normalised).

However, researchers may wish to consider carrying out studies in the future that seek to

explore the relationship between pain perception reported and force output in order to build up

a better understanding of the mechanisms at work as in the current study some interesting

findings emerged. Perception of pain appeared to plateau after 200% pain perception threshold

was reached with a greater mean difference found between 100-200% (26.25%) than between

200-300% (12.99%) conditions, interestingly this relationship was similar in the force data,

with a plateau appearing to occur. The median difference in force between the control to 100%

condition was 6.3%, but between 100 to 200% was only 3.5% and between 200 to 300% was

3.7%. The current study did not investigate beyond 300% pain perception threshold and

therefore it cannot be assumed that this is a plateau and that no further increases would occur,

but it does suggest that the association between pain perception and muscle performance may

be closer than that between absolute pain and muscle performance. This adds further support

to the suggestion that reductions in performance in the presence of pain are as a result of

neuronal inhibition. However, to determine whether this is at spinal or supra-spinal level 
further investigation is required.
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5.6 CHAPTER SUMMARY

This study showed that severity of pain induced via non-invasive GPD is inversely related to 

muscular performance in the lower limb. This supports previous work in which injection of 

hypertonic saline was used to induce pain of varying intensities. Concomitant reductions in 

agonist EMC and force data, combined with the non-invasive methods employed suggest a 

neuional inhibition as the likely cause of reductions in force. In contrast to the Farina et al. 

(2004) study, this research was able to carefully control for severity of pain induced which was 

demonstrated through the VAS data collected and indicated non-linear relationship between 

absolute pain and perceived pain which may have consequences for future studies. Whilst this 

study was able to rule out mechanical or physiological changes to the muscle being a likely 

cause of performance differences, it cannot conclusively suggest a mechanism by which changes 

occur. It is likely that reductions in performance are as a result of neuronal inhibition, but 

location (spinal or supra-spinal) remains unknown and should be investigated further.
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6 THE ROLE OF PERIPHERAL MECHANISMS IN REDUCTION OF 
NEUROMUSCULAR PERFORMANCE IN A MAXIMAL ISOMETRIC 

_______ KNEE EXTENSION TASK DURING PAIN

_________________________ 6.1 INTRODUCTION

Pain has been identified as a factor that reduces muscular performance in a range of tasks

(Ervilha et al„ 2005; Farina et ah, 2008; Sohn et ah, 2004; Wing et ah, 2011a, 2011b). However,

to date a comprehensive understanding of the mechanisms by which pain reduces muscle

performance is not available. Studies conducted within the current research have established

that the presence of low level pain reduces muscle performance (see Chapter 4), and further to

this that the severity of pain is inversely related to exercise performance (see Chapter 5) when

pain is induced via GPD in the lower limb remote from the target muscle. Concomitant

reductions in muscle activity and force produced by the participants, combined with the non-

mvasive methods employed to induce pain suggest a neuronal inhibition as the likely cause of

ieductions in performance but whether this was at the central or peripheral level could not be 
determined from these studies.

The previous work reported in this thesis suggest that the most likely theory to explain 

the reductions in muscle performance is the adaptation to pain theory (Hodges & Tucker, 2011) 

as it proposes a non-uniform response to pain rather than any single uniform response that one 

would expect to see on every occasion pain is present Whilst the pain adaptation model (Lund 

et al., 1991) also suggests a decrease in muscle activity, it specifically predicts a decrease in 

agonist EMG activity and associated increase in antagonist EMG activity which was not evident 

in the findings from chapter 5. Given that reductions in activity were identified whilst pain was 

induced remotely from the target muscle, coupled with concomitant reductions in force, it could 

be suggested that neuronal inhibition was the likely cause of reductions reported rather than 

any mechanical or physiological mechanisms within the muscle. However, even though pain 

was induced on a separate site from the target muscle, it was still on the same limb which 
means that there may have been some inhibition possible at a local level.

Theories that attempted to identify a specific 'pain pathway' focused upon the 

physiological aspects of pain sensation (Weddell et al., 1948; Von Frey, 1894) with only limited 

acknowledgement of the interaction between individual and environment (Marshall, 1894; 

Melzack, 2001). The Gate Control theory proposed by Melzack and Wall (1965) recognised that 

whilst a "pain pathway” could exist, it is likely that there was interaction between ascending and 

descending neural pathways that mediated the pain experience. In contrast, the neuromatrix 

proposed by Melzack (2001) disregarded the single pathway approach and instead suggested



that the pain experience could not be viewed as distinct from the environment, individual

factors and past experience. However, no conclusion for the exact mechanisms of pain related

reductions in performance were agreed upon and so further work is required. The vicious cycle

theory (Roland, 1986), pain adaptation model (Lund et al„ 1991) and adaptation to pain theory

(Hodges & Tucker, 2011) all agree that pain is associated with certain changes in muscular 
performance.

____________________________ 6.2 R E S E A R C H  AIM

To investigate whether peripheral mechanisms are associated with neuromuscular reductions 
in performance in the presence of pressure pain?

6.3 M ETHO D

6.3.1 PARTICIPANTS

Nineteen recreationally active male participants (mean ± SD; age = 21.0 ± 3.4 yr, height = 1.8 ±

0.06, mass = 80.6 ± 9.0kg) volunteered for the study after giving written informed consent (see

Appendix 1). As this study was exploratory in nature and would be used in conjunction with

previous study findings (see chapter 5) this was deemed a large enough sample population to

gam meaningful results. The participants were free from any lower limb injury and were asked

to refrain from any intense exercise or stimulant use for 24 hrs prior to testing. Ethical approval

was granted from the School of Health’s Ethics Committee in accordance with the declaration of 
Helsinki.

6.3.2 PROCEDURE

Equipment, measures and experimental protocol were as described in chapter 4 with all 

participants visiting the lab on two separate occasions for a familiarisation session and then 

experimental trial. Each participant undertook three MVCs in three conditions in a 

counterbalanced and randomised trial. The peak MVC in each trial was selected for
measurement.
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Figure 6.1. Tim eline of protocol undertaken by each of the participants during the 
experimental trials.

6.3.3 EXPERIM EN TAL CONDITIONS

Three conditions were performed within the trial in which control, 100% or 200% of the 

participants previously determined pain perception threshold was induced using the GPD. The 

GPD was strapped to the lower limb with the cleat positioned over the tibia one third from 

medial tibial epicondyle to medial malleolus on the leg not being tested in the MVC. The GPD 

was then inflated at 5 mmHg.s1 to the previously established pain threshold, considered as the 

lowest experience of pain that a participant would recognise (Loeser & Treede, 2008). The 

participant was then instructed to perform the MVC trials. Immediately following each MVC, 

pressuie from the cuff was released, while the GPD remained in position between each trial to
ensure reliability of the position of the device.

6.3.4 ISOMETRIC JOINT MOMENT

Participants sat upright in the chair of an isokinetic dynamometer (Biodex System 3 Pro) with 

the knee positioned at a 90° angle (180° full extension) with the lateral femoral epicondyle 

aligned to the centre of rotation of the dynamometer. The foot and shank were supported by 

Velcro strapping attached to the lever arm to hold the lower limb in position. The upper body 

was also strapped into position across the chest, pelvis and femur to ensure reliable subject 

positioning. Participants were instructed to sit with their hands behind their backs for each 

trial as pilot testing indicated this position resulted in the most reliable joint moment data. 

During the MVC trials, joint moment data were exported from the dynamometer to a high-level 

transducer (model HLT100C, Biopac) before analogue-to-digital conversion at a 1000-Hz 

sampling rate (model MP150 Data Acquisition, Biopac). The data were then directed to a 

personal computer running AcqKnowledge software (version 4.0, Biopac) and filtered with a



double-pass 6-Hz Butterworth low-pass filter. Data were normalised as a percentage of the

peak isometric joint moment recorded during the ramped MVC. The normalised joint moment

(%MVC) from the trials that produced the greatest joint moment were used as a measure of 
muscular performance.

6.3.5 DATA ANALYSIS

In each condition the peak MVC trial was selected for analysis. All values were normalised to 

the lamped contractions and reported as percentages; all data are reported as mean ± SD where 

normally distributed, and as median, IQR and range where non-parametric. Data within each 

condition were examined for normality using the Kolmogorov-Smirnov test. Where the raw 

data were not normally distributed appropriate data transformation was used. Where no 

suitable transformation could be found, non-parametric tests were used. Post-hoc t-tests with 

Bonferroni correction were used where statistical significance was established. Statistical 

significance was accepted at p < 0.05 (see chapter 4 for full explanation of data analysis).

_________________________________6.4 R E S U LT S ______________________

Due to the number of hypotheses being examined within this study, the results have been 

divided up for ease of understanding into; isometric knee extensor moment, EMG of the vastus 

lateralis, EMG of the semitendinosus and pain perception (VAS). Each section first reports 

normality of the data being tested (using the Kolmogorov-Smirnov test) and then any significant 

differences (p < 0.05) found as well as showing where those differences lie where appropriate.

6.4.1 ISOM ETRIC KN EE EXTENSOR MOMENT (FORCE)

Normality was confirmed in all three conditions; control, (D(20) = 0.16, p > 0.05), 100%, (D(20)

= 0.17, p > 0.05), and 200%, (D(20) = 0.11, p > 0.05). An analysis of variance (ANOVA) with 
repeated measures was therefore used to test the following:

HI: There is a difference in knee extensor moment in an isometric knee extension task when 
pain is induced contra-laterally via GPD.

HO: There is no difference in knee extensor moment in an isometric knee extension task when 
pain is induced contra-laterally via GPD.

A significant difference was reported in force produced between the three conditions (F = 

9.273; p < 0.05), with Bonferroni post-hoc t-tests indicating a significant difference existed 

between all conditions and control (p < 0.05). In comparison to control (114.3 ± 16.2% MVC)



mean force was 11.1% lower in the 100% condition (102.5 ± 16.1% MVC) and 15.8% lower in

the 200% condition (98.4 ± 17.4% MVC). There was no significant difference detected between 
100% and 200% conditions (p > 0.05).
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Figure 6.2.
100%, and 
(n=19).

Normalised maximum vo luntary  isom etr ic  contractions produced in the control, 
200%  pain perception threshold conditions. Data are presented as mean ± SD

Table 6.1. Statist ical d ifferences between mean maximal vo luntary  contractions produced in 
the three experimental conditions w here  s ignif icance is accepted at p < 0.05.

Control 100% 200%
Control - p = 0.004 p = 0.005
100% p = 0.004 - NS
200% p = 0.005 NS

NS No significant difference

6.4.2 EMG VASTUS LATERALIS

The assumptions of normality were violated in the 100% condition, (D(20) = .24, p < 0.05),

200% condition, (D(20) = .28, p < 0.05), and control condition, (D(20) = .24, p < 0.05). No

appropriate transforms were found and therefore a Friedman's ANOVA was used to test the 
following:
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HI: Theie is a difference in VL EMG activity in an isometric knee extension task when pain 
induced contra-laterally via GPD.

HO: Theie is no difference in VL EMG activity in an isometric knee extension task when pain is 
induced contra-laterally via GPD.

There was a significant difference in VL EMG activity detected between the three conditions, 

CX2(2) -  23.05, p<0.05). Wilcoxon tests were used to determine where this difference existed. A 

Bonferroni correction was applied and so all effects are reported at a .0125 level of significance. 

A significant difference was found between control and 100% (z = -3.62, p = .000) and between 

control-200% (z = -3.78, p = .000), but not between 100%-200% (z = -2.0, p = .841). In 

comparison to control (median = 103.1, IQR = 24.6, range = 104.4% MVC) mean EMG activity 

reduced by 14.8% in the 100% condition (median = 87.8, IQR = 34.3, range = 122.9% MVC) and 

17.1% in the 200% condition (median = 85.5, IQR = 28.6, range = 119.0% MVC). There was no 

significant difference (p > 0.05) found between 100% and 200% (see Figure 6.2).
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Condition

Figure 6 .3 . Normalised EMG act iv ity  recorded in vastus la tera l is  during the control, 100% and
200% pain perception threshold conditions. EMG recordings corresponding to the peak MVC
produced over three t r ia ls  in each condition were selected. Data are presented as median, 1QR 
& range (n = 20).

Table 6.2. Statist ica l differences between normalised EMG activ ity  of the vastus lateralis  
recorded in the three experimental conditions where s ignif icance is accepted at p < 0.05.

Control 100% 200%

Control - p = 0.000 p = 0.000

100% p = 0.000 - NS

200% p = 0.000 NS -

NS -  No significant difference

6.4.3 EMG SEMITENDINOSIS

Data were found to be normally distributed in the control, (D(19) = 0.15, p > 0.05), 100%, 
(D(19) = 0.18, p > 0.05) and 200% condition, (D(19) = 0.15, p > 0.05). An analysis of variance 
with repeated measures (ANOVA) was therefore used to test the following:
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HI: There is a difference in ST EMG activity in an isometric knee extension task when pain 
induced contra-laterally via GPD.

HO: There is no difference in ST EMG activity in an isometric knee extension task when pain is 
induced contra-laterally via GPD.

Repeated measures ANOVA found there to be no significant difference in ST EMG activity

between the three conditions (F = .674, p > 0.05). In comparison to control (13.1 ± 8.3% MVC)

mean EMG reduced by 7.4% in the 100% condition (12.2 ± 8.1% MVC) and 3.1% in the 200% 
condition (12.7 ± 8.9% MVC) (see Figure 6.3).

0
Control 100% 200%

Figure 6.4. Normalised EMG act iv ity  recorded in the semitendinosus during the control, 100% 
and 200% pain perception threshold conditions. EMG recordings corresponding to the peak 
MVC produced over three tr ia ls  in each condition were selected. Data are presented as mean ± 
SD (n=19). No significant d ifferences between conditions were detected (p > 0 .05).

6.4.4 PAIN PERCEPTION (VAS)

Data were found to be normally distributed in the 100%, (D(19) = 0.16, p > 0.05), and 200% 

condition, (D(19) = 0.11, p > 0.05). An analysis of variance with repeated measures (ANOVA) 
was therefore used to test the following:

HI: There is a difference in pain perception reported via VAS during an isometric knee 
extension task when pain is induced contra-laterally via GPD.



HO: There is no difference in pain perception reported via VAS during an isometric knee 
extension task when pain is induced contra-laterally via GPD.

A significant difference in pain perception reported was found between the two conditions (F =

38.903; p < 0.05) in line with increased pressure exerted via GPD. In comparison to the 100%

condition (18.4% ± 11.8%) there was a 50.8% increase in pain perception in the 200% 
condition (37.4 ± 19.4%) (see Figure 6.5).
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Figure 6 .5 .  Pain perception as reported by partic ipants on a v isual analogue scale in the 100%
and 200% conditions. Data are presented as mean ± SD (n = 19) where * denotes a s ignificant 
increase compared w ith 100% condition (p < 0 .05 ) .

6.5 DISCUSSION

Muscular performance on a maximal isometric knee extension task was found to be inversely 

proportional to severity of pain induced by GPD contra-laterally, supporting the findings of 

Chapter 5. This is also in support of Farina et al. (2004) who determined a similar association 

between pain and muscle performance where hypertonic saline injections were used to induce 

pain. The present research used a non-invasive method of pain induction, the GPD, and in the 

current study pain was induced on the opposite limb to the one being measured for muscle 

performance. This means that the reductions in performance reported in this study could not 

be caused by mechanical or physiological changes to the muscle being tested as there was no 

interaction between the GPD and target muscle (Wing et al., 2011b) and thereby suggests
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neuronal mechanisms are responsible for the changes (see chapter 4). Further to this, as pain 

was not only induced remote from the target muscle but was also on the opposite lower limb, it 

is highly unlikely that the changes in neuromuscular performance reported were as a result of 

peripheral mechanisms. This therefore suggests that central mechanisms were responsible.

Whilst this study was able to rule out peripheral mechanisms, it was not the intention of 
the study give a precise location of the neuronal inhibition; this will require further work and 

more sophisticated techniques. As was discussed in chapter 5, the theory that best supports the 

findings presented is the adaptation to pain theory (Hodges & Tucker, 2011] as it proposes a 

non-uniform response to pain dependent upon the conditions of the task and region of muscle 

activity being measured. The findings reported in chapter 5 showed that as the severity of pain 

experienced by the individual increased, there was a related decrease in both muscle force 

pioduced and EMG activity within the agonist and antagonist. This study was able to replicate 

these findings, even though the pain stimulus was not on the limb carrying out the isometric 

knee extension task. 1 his means that even when the participant experienced pain on another 

region of their body where there could be no fear of the movement task causing further risk of 

injury or increasing pain, they still reduced the force output. The VAS data confirm that the 

pressure exerted by the GPD was perceived by the individual to be painful, and incrementally 

more painful as pressure increased, which means that the location of the GPD on the opposite 

limb did not appear to change the pain experienced by the participant. This would suggest that 

the performance losses reported were due to inhibition at a neuronal level, which supports the 
model proposed by Hodges & Tucker (2011).

The aim of this study was to determine whether peripheral mechanisms could be 

responsible for changes in muscle performance, which it determined was highly unlikely. As the 

current study was only intended to explore the possibility of these mechanisms being 

peripheral, fewer participants were used than previously (N=19), however this still produced 

significant results. It was decided that only two levels of pain severity would be tested as the 

intention of this study was to determine whether there was a relationship between pain 

severity and muscle performance; rather to examine whether similar relationships could be 

seen as when pain was induced on the same leg. It is interesting to compare the patterns 

evident between the two studies as they are very closely associated (see Figure 6.6).
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Figure 6 .6 .a) Normalised perceived pain reported via VAS in the 100% and 200%  pain 
perception threshold conditions by part ic ipants in Chapter 5 (N = 31) and Chapter 6 (N = 19). 
b) Normalised maximum vo luntary  isom etr ic  contractions produced in the control, 100%, and 
200% pain perception threshold conditions for Chapter 5 (N = 31) and Chapter 6 (N = 19).

Figure 6.6.a. shows that severity of pain reported in both the Chapter 5 and 6 studies increased 

in line with pressure exerted via GPD. There were slightly lower values reported on the VAS for 

Chapter 6 where pain was induced contra-laterally, perhaps because the mechanics of the task 

required the participant to push in the direction of where the pain was induced; therefore if it 

was induced on the opposite leg the participant did not have the fear component associated 

with pain (Pen & Fisher, 1994) in that there was no risk of them making the pain worse by 

completing the isometric knee extension task. This may have caused them to perceive the pain 
as less threatening and therefore not attach such a high value to the stimulus (Addison et al„ 

1998). Interestingly, whilst the severity of pain reported was lower in the current study, the 

amount of force produced was also lower across the two experimental conditions in comparison 
to the chapter 5 results despite the participants producing greater force output in the control
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condition initially (see Figure 6.6.b). However, this may have been due to the different

participants used within the two samples. There were only small changes between the results,

which given the number of participants may account for variance. An examination of the mean

differences between the three conditions shows that the pattern of reduction remains similar

when pain is induced contra- and ipsi-laterally, suggesting that the location of stimulus did not 
influence the participants' response to pain.

___________________________________ 6 .6 C H A P T E R  S U M M A R Y __________________________________

This study was able to demonstrate that peripheral mechanisms are unlikely to be responsible 

for reductions in performance experienced when pain is induced. In support of previous 

studies, the findings from this chapter suggest that the mechanism responsible for reducing 

neuromuscular performance is likely to be neuronal (see chapter 4) and that pain induced 

remote from the target muscle will reduce performance incrementally as severity of pain 

increases (see chapter 5). Further to this it was able to suggest that central, rather than 

peripheral mechanisms are the likely cause of those performance reductions. What remains 

unclear is at what level central mechanisms impair performance; spinal or supra-spinal, and this 
requires further investigation.



7 THE INFLUENCE OF EXPECTATION OF PAIN SEVERITY ON 
NEUROMUSCULAR PERFORMANCE IN A MAXIMAL ISOMETRIC

KNEE EXTENSION TASK

_________ 7.1 IN T R ODUCTION

Studies reported in Chapter 4 & 5 determined that reductions in muscular performance 

associated with the presence of pain are expected to be a result of neuronal inhibition which 

Chapter 6 proposed was likely to be central rather than peripheral inhibition. However, it is not 

cleai at what level this inhibition occurs; spinal or supra-spinal. It is suggested that pain stems 

from the detection of noxious stimuli signifying potential risks (Heil & Fine, 1999), however 

little neurological evidence can be presented to show that the stimuli itself is noxious (Pen & 

Fisher, 1994), instead it is proposed that every stimulation is simply carried as an impulse along 

a certain neuial pathway and it is only at the point of recognition or perception that these 

stimuli become recognised as painful (Melzack, 2005). This suggests that the individual may 

have some form of conscious control over the pain experience, which would be beneficial to

sport in which ability to endure pain is necessary to perform well if combined with 
psychological strategies to overcome or cope with the pain.

Little is currently known about the possible implications of anticipating pain and how 

this may influence muscle performance. The authors' previous work (chapter 5) has shown that 

when an individual is exposed to varying levels of pain whilst being asked to perform a maximal 

knee extension task, their ability to execute the task to maximum is compromised as severity of 

pain increases (Wing et al., 2011a) but what remains to be determined is whether there is an 

effect associated with the expectation an individual has that a task is going to be more or less 

painful and if this will influence muscular output. If there is a change associated with 

expectation of pain intensity, then it is likely that the mechanism by which this occurs is supra-
spinal rather than a reflex.

This study will contain a placebo and nocebo condition used to determine the influence 

of expectation of pain intensity. Research on the effects of placebos and nocebos suggests an 

important link between physiology and psychology (Geers et al., 2007) as they are believed to 

produce an effect in patients that result from intent rather than specific physical or chemical 

properties (Arnstein, 2003). Numerous psychological factors have been found to influence the 

placebo response (Pacheco-Lopez et al., 2006) including expectations (Benedetti et al., 2007) 

and the character of pain (Hauor, 2005). All of these factors can mediate the effect of a message 

that is being sent to the brain via interactions occurring between ascending and descending



pathways. If an individual has optimistic traits then this may modulate the message accordingly 
and they would be less prone to reporting pain for example (Geers et al., 2007).

The nocebo effect is the reverse of placebo; the individual has negative expectations of a 
situation and is therefore likely to act accordingly. At its most extreme, nocebo effects have 

been attributed to causing death (Voelker, 1996). In these cases it is thought to be the belief 

that you are going to die that will increase the risk of death. If a substance is believed to 

increase pain, then it seems feasable to believe that this changes expectations and also 

anticipatory anxiety (Weich, 2009). It does not have to be a substance that may alter pain 

perception. In a study by Bayer et al. (1998) participants were lead to believe that a sham 

stimulator would be passing electrical current through their heads and that they may 

expei ience a head ache as a result of this. It was found that in the absence of a painful stimulus, 

participants still reported pain. Therefore, this study seeks to determine if such a relationship 

exists between pain expectation and muscle performance.

______ ______________________ 7.2 R ESEA R C H  AIM______________________

To investigate the influence of expectation of pain severity on neuromuscular performance in a 
maximal isometric knee extension task.

_________ ______________________ 7.3 M ETHOD

7.3.1 PARTICIPANTS

Twenty-nine recreationally active male participants (mean ± SD; age = 22.8 ± 5.5 yr, height = 1.8 

± 0.2 m, mass = 84.1 ± 19.6 kg) volunteered for the study after giving written informed consent 

(see Appendix 1). The participants were free from any lower limb injury and were asked to 

refrain from any intense exercise or stimulant use for 24 hrs prior to testing. Ethical approval 

was granted from the School of Health's Ethics Committee in accordance with the declaration of 
Helsinki.

7.3.2 PROCEDURE

Equipment, measures and experimental protocol were as described in chapter 4 with all 

participants visiting the lab on two separate occasions for a familiarisation session and then 

experimental trial. Each participant undertook three MVCs in three conditions in a 

counterbalanced and randomised trial. The peak MVC in each trial was selected for
measurement.
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Figure 7.1. Tim eline of protocol undertaken by each of the participants during the 
experimental trials.

7.3.3 EXPERIM ENTAL CONDITIONS

Three conditions were performed within the trial in which participants were instructed to 

expect a certain level of pain: 100%, 200% or 300% of their pain perception threshold. 

However, in every case the actual percentage of pain threshold induced was 200%, thereby 

creating a nocebo condition in which participants received a level of pain lower than what they 

were expecting (told to expect 300%, received 200%), a placebo condition in which the level of 

pain experienced was greater than what was expected (told to expect 100%, received 200%) 

and a true condition in which they received the level of pain expected (200%). The GPD was 

strapped to the lower limb with the cleat positioned over the tibia one third of the distance from 

medial tibial epicondyle to medial malleolus. Pilot testing revealed that this site was the most 

sensitive area on the tibia accessible when the leg was positioned on the isokinetic 

dynamometer. The GPD was then inflated at 5 mmHg-s1 to the previously established pain 

threshold, considered as the lowest experience of pain that a participant would recognise 

(Loeser & Treede, 2008). The participant was then instructed to perform the MVC trials. 

Immediately following each MVC, pressure from the cuff was released, while the GPD remained 

in position between each trial to ensure reliability of the position of the device. Immediately 

after each trial the participant was asked to indicate their perception of how much pain they 

experienced using a visual analogue scale (VAS).

7.3.4 DATA ANALYSIS

In each condition the peak MVC trial was selected for analysis. All values were normalised to 

the ramped contractions and reported as percentages; all data are reported as mean ± SD where 

normally distributed, and as median, IQR and range where non-parametric. Data within each



condition were examined for normality using the Kolmogorov-Smirnov test. Where the raw 

data were not normally distributed appropriate data transformation was used. Where no 

suitable transformation could be found, non-parametric tests were used. Post-hoc t-tests with 

Bonferroni correction were used where statistical significance was established. Statistical 

significance was accepted at p < 0.05 (see chapter 4 for full explanation of data analysis).

_____________________________  7.4 R E SU LT S________ ________________________

Due to the number of hypotheses being examined within this study, the results have been 

divided up for ease of understanding into; isometric knee extensor moment, EMG of the vastus 

lateralis, EMG of the semitendinosus and pain perception (VAS). Each section first reports 

normality of the data being tested (using the Kolmogorov-Smirnov test) and then any significant 

differences (p < 0.05) found as well as showing where those differences lie where appropriate.

7.4.1 JOINT MOMENT (FORCE)

Assumptions of normality were violated in the 200% condition, (D(31) = 0.17, p < 0.05), and

300% condition, (D(31) = 0.14, p < 0.05). Normality was confirmed in the 100%, (D(31) = 0.07,

p > 0.05). No suitable data transforms could be found; therefore a Friedman's ANOVA was used 
to test the following:

HI: There is a difference in knee extensor moment in an isometric knee extension task when 

expected severity of pain induced via GPD is varied.

HO: There is no difference in knee extensor moment in an isometric knee extension task when 

expected severity of pain induced via GPD is varied.

No significant difference in force was found between the three conditions, (x2(2) = .452, p>0.05). 

In comparison to the 100% condition (median = 104.7, IQR = 37.2, range = 87.2% MVC) median 

force increased by 6% in the 200% condition (median = 111.0, IQR = 23.8, range = 107.8% 

MVC), but decreased by 4.7% in the 300% condition (median = 99.8, IQR = 19.7, range = 108.0% 

MVC). In comparison to the 200% condition mean force was reduced by 10.8% in the 300% 

condition (see Figure 7.1).
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Figure 7.2. Norm alised maximum voluntary isom etric contractions produced 
200% and 300%  conditions. Data are presented as median, IQR & range (n = 29). 
difference was detected between the three conditions (p>0.05).

in the 100%, 
No significant

7.4.2 EMG VASTUS LATERALIS

The assumptions of normality were violated in the 300% condition, (D(31) = .20, p < 0.05). 

Normal distribution was reported in the 100% condition, (D(31) = .16, p < 0.05), and 200% 

condition, (D(31) = .18, p < 0.05). No appropriate transforms were found and therefore a 

Friedman's ANOVA was used to test the following:

HI: There is a difference in VL EMG activity in an isometric knee extension task when 
expectation of pain severity induced via GPD is varied.

HO: There is no difference in VL EMG activity in an isometric knee extension task when 
expectation of pain severity induced via GPD is varied.

No significant difference in VL EMG activity was reported between the three conditions, (x2(2) = 

.452, p>0.05). In comparison to the 100% condition (median = 90.8, IQR = 39.3, range = 166.0% 

MVC) median EMG activity increased by 1.9% in the 200% condition (median = 92.6, IQR = 30.3, 

range = 170.6% MVC) and decreased by 3.3% in the 300% condition (median = 87.8, IQR = 30.8,
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range 193.8% MVC). There was a 5.2% reduction in the 300% condition in comparison to the
200% condition.

200“

»A
2150 -
a>
n !
(AD
tArs>100“
e>
s
UJ

50-

0-
I

100% 200%

Condition
r

300%

Figure 7.3. Norm alised EMG activity recorded in vastus lateralis during the 100%, 200%  and 
300% pain perception threshold conditions. EMG recordings corresponding to the peak MVC 
produced over three tria ls  in each condition were selected. Data are presented as median, 1QR
& range (n = 29). There were no sign ificant differences ( p>0.05) detected in EMG activity in the 
VL between all three conditions.

7.4.3 EMG SEMITENDINOSUS

The assumptions of normality were violated in the 100% condition, (D(31) = .21, p < 0.05),

200% condition, (D(31) = .15, p < 0.05), and 300% condition, (D(31) = .21, p < 0.05). No

appropriate transforms were found and therefore a Friedman's ANOVA was used to test the 
following:

HI: There is a difference in ST EMG activity in an isometric knee extension task when 

expectation of pain severity induced via GPD is varied.

HO: There is no difference in ST EMG activity in an isometric knee extension task when 

expectation of pain severity induced via GPD is varied.

There was no significant difference in ST EMG activity detected between the three conditions, 

(Xz(2) = .258, p>0.05). In comparison to the 100% condition (median = 7.2, IQR = 4.4, range = 

27.6% MVC) median EMG activity increased by 12.5% in the 200% condition (median = 8.1, IQR



5.8, range 24.0% MVC) and 6.9% in the 300% condition (median = 7.7, IQR = 3.8, range =

28.7 /o M\ C). Thei e was a 4.9 ^  i eduction in EMG activity in the 300% condition in comparison 
to the 200% condition (see Figure 7.4).
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Figure 7.4. Norm alised EMG activity recorded in sem itendinosus during the 100%, 200%  and
300% pain perception threshold conditions. EMG recordings corresponding to the peak MVC
produced over three tria ls  in each condition were selected. Data are presented as median, IQR
& range (n=29). No sign ificant differences were found in the EMG of the ST between the three 
conditions (p > 0.05).

7.4.4 PAIN PERCEPTION (VAS)

Data were found to be normally distributed in the 100%, (D(27) = 0.10, p > 0.05), 200% 

condition, (D(27) = 0.14, p > 0.05) and 300% condition, (D(27) = 0.13, p > 0.05). An analysis of 

variance with repeated measures (ANOVA) was therefore used to test the following:

HI: There is a difference in pain perception reported via VAS during an isometric knee 

extension task when expectation of pain severity induced via GPD is varied.

HO: There is no difference in pain perception reported via VAS during an isometric knee 

extension task when expectation of pain severity induced via GPD is varied.



There was a significant difference in pain perception reported across all three conditions (F =

27.971; p < 0.05). Post-hoc t-tests revealed a significant increase in pain perception between all

conditions compared with the 100%, and 200o/o conditions (p < 0.05). In comparison to the

100% condition (46.1% ± 26.58%) there was a 16.8% increase in pain perception in the 200%
condition (55.4 ± 22.9%), and 31.5% increase in the 300% condition (67.3 ± 21.1%). There

was a 17.7% increase in pain perception in the 300% condition in comparison to the 200% 
condition (see Figure 7.4).
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Figure 7.5. Pain perception as reported by participants on a visual analogue scale in the 
100%, 200%  and 300%  conditions. Data are presented as mean ± SD (n = 28). The location of 
significant differences is described in Table 7.1.

Table 7.1. Statistical differences in mean pain perception reported via VAS in each of the three 
pain conditions where significance is accepted at p < 0.05.
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7.5 DISCUSSION

Theie was a significant increase in the severity of pain reported by participants between the 

three conditions indicating that participants perceived there to be a difference in pain stimulus 

intensity, with the expected 100% condition recording the lowest perceived pain and the 

expected 300%  the highest. However, whilst participants reported experiencing pain of 

diffeiing severity, theie was no significant difference in the level of force exerted or the EMG 

within the agonist oi antagonist in all three conditions. This suggests that whilst it is possible to 

alter an individual s expeiience of pain, this in itself does not alter muscle performance; instead 

it is the absolute pain that is more likely to predict muscle performance.

In Chapter 5 the authors reported a decrease in muscle performance as pain severity 

increased using the same methods but where pain was induced to the true value stated to the 

participants (Wing et al., 2011a). In that study both moment and EMG activity were found to 

reduce as pain severity increased which is consistent with findings from Farina et al. (2004) 

who found pain severity to be inversely proportional to motor unit firing rate; thus indicating 

that higher levels of pain inhibit the performance of muscles, proportional to the level of pain 

induced. The mechanisms by which this occurs are unknown, but the pain adaptation model 

(Lund et al., 1991) and adaptation to pain theory (Hodges & Tucker, 2011) suggests that pain 

can cause a reduction in muscle activity as a protective mechanism to prevent further damage 

occurring, which has been supported by numerous studies (Arendt-Nielsen et al., 1996; Stohler 

et al., 1988). The pain adaptation model argues that there will be a decrease in agonist activity 

and increase in antagonist activity (Lund et al., 1991), however some studies report an increase 

in both agonist and antagonist rather than a converse relationship (Ervihla et al., 2004; Wing et 

al., 2011a) which may be explained by the location of muscle being examined or nature of the 

tasks (Hodges & Tucker, 2011). The series of studies conducted within this thesis reflect the 

current state of the literature well due to the varied nature of results when looking specifically 

at agonist and antagonist recruitment. Chapter 4 and 5 presented the finding that whilst EMG 

activity of the agonist increased when pain was induced so did EMG of the antagonist which is 

contrary to the Lund et al. proposal (1991). However the current study did find an increase in 

antagonist EMG in the presence of pain. This may lend further support to the Hodges & Tucker 

(2011) theory of a non-uniform response to pain where individual tasks and regions of the body 

may determine the way in which performance is altered.

The current study found a slight increase in antagonist EMG activity as pain increased 

from 100% to 200%  pain perception threshold, but it was not found to be a significant increase. 

Further to this there was a reduction in the percentage increase between 100% to 300% 

conditions rather than a further increase which one may expect to see if the antagonist is being



activated in order to protect the joint as suggested by the pain adaptation model (Lund et al.,

1991). However, it could also be suggested that the reason for inconsistency in the findings may

be as a result of the limited use of the antagonist in the isometric task used in this study (Wing

et al., 2011b). Both the pain adaptation model and adaptation to pain theory concern

themselves with the neural circuitry between the muscles and brainstem, suggesting that as a

result of a noxious stimulus there is an automatic, reflex-like, alteration in muscle activity (Peck,

2009). Whilst there is currently no theory that explains the relationship between severity of

pain and muscle perfoimance, it may be prudent to suggest that increased pain may cause the

effect of pain to be strengthened as a greater severity may indicate a higher level of danger and

consequently a larger reduction in performance which was found to be the case in Chapter 5 

(Wingetal., 2011a).

In the cuirent study, participants expected a change in the severity of pain induced 

between the thiee conditions due to the instructions they were given prior to the task which is 

evidenced by the significant differences found between each of the conditions as reported by 

VAS. This expectation caused them to alter the level of pain they reported experiencing which 

would suggest that they believed the pain stimulus was more or less painful that it actually was. 

In accordance with the study reported in Chapter 5 you would expect this to lead to a 

proportional decrease in performance if the mechanism by which muscle performance 

decreases is a conscious process; but it did not. Instead performance across all three conditions 

reduced from maximum, but did not differ significantly from one another, suggesting that 

neither placebo, nor nocebo effects altered muscle performance. It could be suggested that as 

the participants in the current sample group were ‘recreationally active' rather than athletes', 

they have less control over muscle performance when pain is induced (Scott & Gijsbers, 1980) 

and therefore conscious control would not be as high as one might expect from an athletic 

sample. Had an athlete group been tested then different findings may have been reported and 

this should be considered for future work.

The pain adaptation model suggests that there is an automatic reaction to a noxious 

stimulus causing an altered movement (Lund et al., 1991), however there is also suggestion that 

the circuitry between muscles and brainstem could be modulated by higher brain activity which 

could therefore override the pain adaptation (Peck, 2009). This could result from a number of 

factors such as the motivation or competitiveness of the participant (Sternberg et al., 1998) 

which could potentially allow the individual to continue with normal or near-normal muscle 

activity despite the fact they are experiencing pain. Alternatively, fear of pain and its 

consequences would be expected to produce a greater adaptation than normal according to the 

pain adaptation model (Peck, 2009). This was not evident in the current study where muscle 

performance remained stable throughout the conditions despite a change in the reported



perception of pain. Therefore alternative explanations for the relationship between pain and 

muscle performance should be sought. The current findings would suggest that the most likely 

theory to explain the performance changes is the Hodges & Tucker (20122) adaptation to pain 

model, but this has not been fully developed yet and should form the basis for further research.

It is not possible from this study to make the assumption that expectation of pain severity 

(placebo oi nocebo) cannot cause changes to muscle perfomance per se. The type of pain 

induced and the conditions in which this was carried out were inherently safe, thereby reducing 

any fear components of the pain experience (Finniss, 2005). In mainstream psychology 

literature, pain-i elated anxiety has been found to increase perceived intensity of a stimulus, 

whilst non-pain-related anxiety reduces it (Villemure & Bushnell, 2002) which is suggested to 

be as a result of motivational priming (Lang, 1995) or increased arousal (Logan et al., 2001), 

highlighting the impoitance of the emotional components of pain. In an applied setting where 

an athlete is experiencing pain, the type of pain experienced and the potential consequences of 

this (injury, fatigue, loss of performance) are not controlled and therefore would carry with 

them the associated emotional aspects of pain which may up-regulate an individual s sensitivity 

towards the stimulus and thereby alter their pain response (Weich, 2009). This may lead to 

different results to the ones reported in this study and should be examined further.

The type of participant recruited for this study should also be considered when discussing 

applicability to the athlete population. Participants were defined as recreationally active males 

which encompass those taking part in competitive sport, and those just exercising 

recreationally on a regular basis. Previous research has determined a significantly different 

mental attitude towards pain from normally active individuals and athletes (Nicholls & Polman, 

2007; Ord & Gijsbers, 2003) which may mean that different results would be found by using an 

athlete sample. The fact that athletes also have a better awareness and understanding of 

proprioceptive input (Ellison et al., 1975) also increases the likelihood that they would be able 

to distinguish between a true change in level of pain induced and the sham conditions as 

described in this study. This would be an interesting area for further study as one may expect to 

see better control of performance from the athlete population.

If a substance is believed to increase pain, then it seems feasable to believe that this 

changes expectations and also anticipatory anxiety (Weich, 2009) which according to Peck 

(2009) would cause there to be a greater adaptation to the movement. However this was not 

the case in the current study where it appears the physical stimulus overrode the psychological 

aspect of expectation. The mechanisms by which this occurred remain unknown, but in light of 

the previously established suggestion that the mechnism is likely to be neurolonal rather than 

physiological (see Chapter 4), that it is not thought to be at peripheral level (see Chapter 6) and 

the apparent lack of conscious control able to influence performance in the current study, it



could be suggested that the location of any neuronal inhibition is likely to be at spinal level 

where a sub-conscious response would be responsible for alterations to muscle performance.

________________________ 7.6 CHAPTER SUMMARY

This study demonstrated that absolute pressure pain rather than expectation of pain severity 

influenced muscle performance in an isometric knee extension task. Muscle performance (as 

measured by foice exerted and EMG activity) did not change significantly between the three 

conditions, consistent with actual pressure exerted by the GPD. However perception of pain 

lepoited by participants increased significantly in line with the severity of pain they were told 

to expect. Thei efore it is clear that expectation of pain can be manipulated through verbal cues, 

however this does not lead to a change in muscle performance. Instead, muscle performance 

more accurately traces changes in absolute pain. It has been previously proposed that the 

changes in performance associated with pressure pain are as a result of neuronal inhibition, but 

where this occurred could not be determined (see Chapter 4). This study suggests that 

reductions in performance are likely to be as a result of neuronal modification at a supra-spinal 

oi spinal level, but not cortical. It is likely that sub-conscious mechanisms are responsible for 

changes in neural drive rather than any conscious control exerted by the individual.



8 SYNTHESIS OF FINDINGS

___________________________8.1 KEY FINDINGS _______________

A series of progressive studies within this research demonstrated that the GPD is a 

method by which pain can be induced reliably without causing any mechanical or physiological 

changes to the muscle (chapter 3.2). The highly controllable nature of the GPD also makes it a 

useful tool in investigating changes associated with different severities of pain (chapter 3.5). 

Using the GPD to induce pain it was determined that even at very low levels pain reduces 

maximal muscle per for mance in the lower limb whether the stimulus was induced ipsi-laterally 

(chapter 4) or contra-laterally (chapter 6), suggesting that the mechanisms responsible for 

inhibition of muscle performance are unlikely to be at peripheral level. Inducing pain at 

perception threshold level produced a reduction in maximal force on an isometric knee 

extension task by 9 %  and 6 %  in chapters 4 and 5 respectively where pain was induced ipsi- 

laterally, and by 11%  in chapter 6 where pain was induced contra-laterally. When the amount 

of pressure exerted by GPD was doubled from the previously established pain perception 

threshold of the individual, a further reduction in maximal force was reported, with an 18% 

decline reported, and subsequently a 21%  reduction when pressure exerted was tripled from 

pain perception threshold (chapter 5).

The studies conducted did not only measure changes in isometric force, but also 

examined EMG activity within the vastus lateralis and semi-tendinosis in order to help establish 

possible mechanisms associated with force changes by tracing levels of neural activation. It was 

reported that where force declined in the presence of pain, there were also concomitant 

reductions in EMG activity within the target muscles, which coupled with the non-invasive 

methods used to induce pain, suggests that performance reductions may be associated to neural 

inhibition. The foundations of this research were based on the finding that pain induced by 

hypertonic saline injection reduced muscle performance in a range of tasks (Farina et al., 2002; 

Ervihla et al., 2004, 2005), however the level of pain could not be carefully controlled using 

these methods. In the current research pressure pain was induced at perception threshold level 

in studies 4, 5 and 6. This is the lowest stimulus perceived by an individual to be painful and yet 

it was possible to show a 6-11% decrease in performance associated with this low level of pain 

(chapters 4, 5 & 6).

A further variable considered important within the current research was how painful 

participants perceived the conditions to be. VAS scores were taken immediately following every 

painful trial in order to establish how painful the stimulus was perceived to be by the



participant relative to the pressure exerted via GPD. The GPD was able to accurately measure

the amount of pressure exerted on the cleat which caused the pain stimulus, and thereby a

baseline thieshold level could be established. To date there has been no research evidence

available to suggest what the relationship between pressure exerted and perceived pain

intensity is which is important to this type of research. It was possible however to demonstrate

that the amount of pressure exerted and the level of pain perceived by the individual were very

closely associated and therefore the GPD appears to be a reliable method of inducing pain of 

varying severity (chapters 3, 4 & 5).

A major benefit of doing progressive studies using the same methods is that the results 

can be compared across studies rather than viewing them in isolation. Of particular interest 

was data collected in chapter 5 and chapter 7. Chapter 5 examined the difference in 

performance when three different pain severities were induced, whilst chapter 7 in essence 

replicated this, but rather than the pain severities changing, they remained constant whilst the 

participants’ expectation of severity was manipulated. The rationale for the chapter 7 study 

was to determine the level of conscious involvement within the neuromuscular response to 

pain. If there was little conscious input one would expect the performance scores to be 

relatively stable and not change between conditions (as the stimulus actually remains constant). 

If there is conscious involvement then one would expect to see the performance scores decrease 

as expectation of pain increases (as was the case in chapter 5 when actual pain and expectation 

of pain severity were aligned). It was found that scores did not change between conditions, 

despite participants reporting higher or lower pain severity following the placebo and nocebo 

conditions. Chapter 7 demonstrated that it was possible to manipulate the pain severity a 

participant perceived through giving them false expectations; however this in turn did not alter 

motor response. It is unlikely therefore to be a conscious response as expectation did not 

influence performance output and is therefore not likely to be cortical. However, at what level 

this inhibition lies is as yet unknown and requires further investigation. More sophisticated 

techniques utilising MRI or EEG measures may be best placed to help understand brain activity 

and thereby conscious involvement in the response.

An interesting finding observed between the VAS data presented in chapters 5 and 7 

was that the scores reported by participants for the 200%  and 300% conditions in both studies 

were very similar (3%  and 1%  difference respectively) despite the fact that in the first study the 

absolute pain matched expectation of pain severity, whereas in the proceeding study absolute 

pain remained constant whilst expectation was manipulated to make participants believe pain 

severity would be higher or lower than it was. There is no data currently available in the sports 

setting that suggests how large a change one would have to report in order for there to be a



functional change in muscle performance, however (ackson et al. (2005) suggest that in order

for there to be a clinical difference in terms of VAS reported and functional response in patients,

there needs to be a minimum 13% change in VAS scores. Chapter 5 and 7 report very little

difference in VAS scores reported in the 200% and 300%  conditions and so based on the 13%

minimum requirements stated by Jackson et al. (2005) one would not expect to see a change in

muscle peiformance between the two studies; however a difference was found. An increase in

absolute pain severity resulted in a decreased force output (chapter 5), but an increase in

expected pain severity did not (chapter 7). An examination of the use of VAS scores in this type

of leseaich and what constitutes a functional difference in sport would be beneficial for future 

investigations.

Participants reported very similar perceptions of pain severity in both studies (indicated 

by the closely aligned VAS scores); however this did not appear to influence performance in the 

two studies. In contiast, the VAS scores reported for the 100% condition in each study were 

sepai ated by 22%; participants perceived the severity of pain to be greater in chapter 7 than 

they did in chapter 5, which according Jackson et al. (2005) would suggest there should be a 

difference in performance between the two. This was found to be true. A possible explanation 

as to why there was a disparity between the severity of pain participants identified at 100% 

when absolute and expected pain severity did not match, but not in the 300% condition, could 

be due to perception of pain intensity being more sensitive to change at lower levels. It would 

appear that participants were more able to distinguish between actual and expected pain 

severity when the pressures exerted were lower than when they were set at higher levels which 

is in contrast to the suggestion of Kelly (2001a) who reported that there was no difference in 

minimal clinically significant difference of VAS scores within varying levels of pain severity 

(mild, moderate and high). It is clear that this finding cannot be fully explained at the present 

time, but it is felt that this is an important area for further research as the experience of pain is 

thought to be determined by both psychological and physiological influences (Hirsch & Liebert, 

1998) and without a clear understanding of both of these components, effective strategies to 

overcome the deficits experienced in muscle performance as a result of pain cannot be 

developed.

This research has supported the findings of previous studies in which hypertonic saline 

injections were used to induce pain (Ervilha et al., 2004, 2005; Farina et al., 2004) in 

demonstrating that pain has a detrimental effect on muscle performance. Further to this it was 

able to establish that severity of pain experienced was proportional to performance deficit and 

suggests that there is a relationship that moves beyond a simple stimulus response. Whilst 

mechanisms could not be established using the current methods, it was possible to suggest that
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there is a central response to pain and that neuromuscular performance is likely to be limited

through neuronal inhibition in the presence of pain. This is also thought to be a subconscious 
response.

A fui ther finding from this research was that the response to pain does not appear to be 

uniform. Whilst the methods employed within the studies remained largely similar, there were 

diffeiences in the neuromuscular activity reported between studies which suggests a non- 

unifoim response is most likely. Lund et al. (1990) proposed the pain adaptation model to 

explain performance deficits wherein neuromuscular activity is re-ordered to protect the joint. 

Heie the agonist is expected to decrease EMG activity in the presence of pain, whilst the 

antagonist increases. This was supported by findings reported in chapter 4, however not in the 

subsequent studies (chapter 5, 6 & 7) where EMG in the antagonist also decreased when pain 

was induced. This suggests that the adaptation to pain model proposed by Hodges & Tucker 

(2011) may be a moie suitable explanation for the association between pain and neuromuscular 

performance. Within this theory greater flexibility is afforded to the pain response, suggesting 

that muscle activation may increase, decrease or remain constant but that recruitment 

strategies may change to adapt to the painful condition. The current research was not able to 

demonstrate changes in recruitment strategy as this was beyond the scope of the investigation. 

Only two muscles were monitored, which was adequate for the purposes of this project but does 

not allow for recruitment strategy to be examined. However future work should consider what 

measurements are required to gain the best understanding of muscle activation and thereby 

develop the theory further to enable its use to predict likely muscle responses in specific tasks. 

This would then allow opportunity for intervention strategies to be effectively employed to help 

improve performance.

__________________ 8.2 STRENGTHS AND LIMITATIONS

This research used a non-invasive method of pain induction that could be carefully 

controlled and induced remote from the target muscle which is a great strength of this work. 

This means that the results reported can be said to be due to the presence of pain rather than 

any physiological or mechanical changes to the muscle properties (Wing et al., 2011a). This is a 

clear difference to the previous studies reporting pain related changes to muscle performance, 

where invasive methods were used (Ervilha et al., 2005; Farina et al., 2004, 2005) and yet it 

supported their findings to show that pain can inhibit motor performance. The fact that the 

pain induced via GPD is transient in nature and non-invasive makes it an ethically appealing 

method to use for pain research. The findings from the current studies support its use for 

future work and demonstrate its versatility and reliability.



An examination of the effects of pain severity could be made due to the methods used,

however the precise relationship between pressure exerted and perceived pain requires further

examination if it is to be used as a way of quantifying severity. This research only investigated

thiee different severities of pain up to three times the pain perception threshold (chapter 5) and

therefore whether the similarity between scores would continue at higher severity remains

unknown, as does the sensitivity to which this applies; for example if 150% pain perception

thieshold pressure was induced would this be distinguishable from 200%? In order to

maximise the potential of this method of pain induction further research should be conducted 
related to this issue.

This was a laboratory based study and carefully controlled, meaning the findings cannot

be diiectly applied to sports performance as the relationship between changes in force detected

in laboratory testing and changes in a performance environment are not currently known

(Paton & Hopkins, 2006). However they do provide evidence that pain is an important

pei formance factor that warrants further investigation. The methods used in the current study

were non-invasive and transient in nature (Ryan & Kovacic, 1966). In high performance sport

the pain associated with performance in also transient (assuming there is not occurrence of

injury). For example, if one were to stop cycling, running or rowing, the pain would subside

almost instantly, therefore the participant is in effect in control of how much pain they tolerate

and for how long. This method is therefore applicable to these types of events where pain is

induced by performance itself, but less applicable to injury pain or DOMS which is more chronic 
in nature.

In order for movement to be functional it involves the co-ordination of multiple joints. 

The current study only investigated isolated muscle groups around the knee in order to be able 

to minimise the number of potentially confounding variables influencing the force output. This 

is not unusual in sports research where typically studies exploring determinants of explosive 

force production assess single joints such as the elbow flexors (Barry et al., 2005), knee 

extensors (Aagaard et al., 2002a; Andersen & Aagaard, 2006; de Ruiter et al., 2004) or ankle 

plantarflexors (Gruber et al., 2007; Del Balso &, Cafarelli, 2007) due to the need to control 

confounding variables. The applications of this task to the real performance environment and 

the mechanisms resulting in performance reductions need to be fully understood in order to 

develop intervention strategies to improve performance in the presence of pain. This could be 

achieved through manipulation of the task to include dynamic elements and subsequently 

further investigations carried out in a more realistic sports environment.



A furthei consideration is that of the participants recruited. Tlie studies only 

investigated male participants which means that result cannot be directly applied to females 

(Fillingham et al., 1995; Hall & Davies, 1991; Riley et al., 1998). The participants were also 

defined as recreationally active' meaning that they participated in some form of exercise for a 

minimum of 2 hours per week which was thought to give an adequate sample group for an 

exploiatory study. The type and level of participation was not part of the inclusion criteria for 

participating. Whilst studies have determined there to be a difference between non-athletes 

and athletes (Giesbrecht et al., 2005; Hall & Davies, 1991; Janal et al., 1994; Ryan & Kovacic, 

1966), level of athlete (Scott & Gijsbers, 1981), and type of sport (Nideffer, 1978; Pen & Fisher, 

1994; Williams, 1978) this research was exploratory in nature and it was therefore decided that 

type of athlete was not important at this stage. However, as pain perception has been found to 

be different amongst athletes in comparison to normally active controls (Tesarz et al., 2012) 

this could have important implications on the applicability of the findings to an athletic 

population. Future work should seek to replicate the methods in order to draw comparisons 

between athletes, non-athletes and type of sport and thereby gain a more comprehensive 

understanding of the mechanisms underpinning performance.

8.3 APPLICATION OF THE CURRENT RESEARCH AND FUTURE DIRECTIONS

This research has demonstrated that the presence of even low level pain significantly reduces 

neuromuscular performance (chapter 4, 5 & 6) which is in support of previous studies 

conducted using different methods to induce experimental pain (Farina et al., 2002; Ervilha et 

al., 2005; Ciubotariu et al., 2007). Furthermore it was able to show that as severity of pain 

increases there is a greater decline in performance (chapter 7). This has important implications 

to training and recovery strategies adopted in performance sport as it would suggest that by 

reducing the level of pain experienced by an athlete you would expect to see a performance 

improvement. High level sport requires an athlete to train at an intensity that often results in 

muscle soreness and therefore can cause limitations on their ability to perform on subsequent 

days as they will be experiencing pain. A number of strategies are already in use within elite 

sport to combat the effects of muscle soreness such as stretching, ultrasound, massage, 

antioxidant supplementation or use of anti-inflammatory drugs (Cheung et al., 2003). In order 

to compete at top levels athletes need to be able to train on consecutive days at a high intensity, 

therefore strategies enabling them to perform optimally on each of these training days and 

thereby reduce recovery time could be hugely beneficial and further investigation into their use 

should be undertaken.



The cui rent findings lend support to the rationale behind strategies such as ice baths 

(Dolan et al., 1997; Rheinecker et al., 1998) and ciyotherapy treatment (Eston & Peters, 1999; 

Howatson & van Someren, 2003) which aim to reduce the effects of delayed onset muscle 

soreness experienced by athletes following periods of intense training or competition 

(Sellwood et al., 2007). Whilst this research was not DOMS related, it does support the research 

aheady conducted which has used DOMS as the method of pain induction (Dannecker et al., 

2008) so similarities can be drawn from it provided caution is exercised with regard to 

geneialisability. Evidence for the effectiveness of these techniques to speed up physiological 

lecoveiy is equivocal (Sellwood et al., 2007), however there is evidence to suggest that cold 

theiapy following exercise can reduce the perception of muscle soreness up to 48 hours post 

exercise (Bailey et al., 2007; Eston & Peters, 1999; Howatson & van Someren, 2003) which may 

then allow athletes to train at a higher intensity than they would without any form of recovery 

strategy. Further work is needed to determine what strategies are effective in reducing the 
severity of pain experienced and thus allowing optimal performance.

Studies examining what constitutes a worthwhile gain in performance within various 

sports have reported that marginal gains are considered beneficial. An improvement of 0.3- 

0.5% in track athletics (Hopkins, 2005), 0.9-1.5% in field athletics (Hopkins, 2005), -0 .5%  in 

triathlon (Paton & Hopkins, 2005) and 0.5-0.6% in track cycling (Paton & Hopkins, 2006) are 

thought to have an impact on performance, which further supports the rationale for this project 

as it demonstrates how small a change can be significant. The current research suggests that 

the presence of pain reduces muscle performance in an isometric knee extension task by a 

comparatively large figure (6-11%) which one would expect to influence sporting performance. 

However one would not expect to see a reduction of 6-11% as there are many other factors 

responsible for sports performance other than maximal force generation which were not 

accounted for in this study.

An alternative application of the current work relates to rehabilitation from injury. It is 

common for patients to experience pain as a result of injury and this can in turn limit range of 

motion around a joint (Geisser et al., 2000; Hopman et al., 1997; Onder et al., 2006) and thereby 

inhibit normal daily functioning, or in the case of an athlete recovering from injury, limit ability 

to perform in their sport (Wilk et al., 2002). It is therefore beneficial to the individual to regain 

normal range of motion as soon as possible following injury. Recreational and competitive 

sports people are highly likely to experience injury (Kraus et al., 1984) as a result of their 

involvement in sport. According to the current research, strategies that could help to deal with 

the pain associated with movement would help to speed up this process. The findings reported 

in this research have demonstrated that in the presence of pain there is a reduction of EMG
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activity in the agonist which supports the pain adaptation model (Lund et al, 1991) and

adaptation to pain theory (Hodges & Tucker, 2011) but there were no uniform responses

reported. It is therefore important that further work is carried out to understand the

implications of this and what mechanisms are responsible so that they can be overcome and 
allow the athlete to train and perform optimally.

This research was able to demonstrate that an increase in severity of stimulus will 

inhibit muscle performance; however where expectation of pain severity increased but stimulus 

intensity remained the same there was no change in performance. This suggests that changing 

an individual s perception or expectation of pain may not have any effect on their ability to 

perform a task; instead an actual reduction in pain is required. This study did however 

demonstrate the ease with which an individuals' expectation of pain severity could be 

manipulated, which is consistent with work within a clinical setting (Bucknall et al., 2001). This 

is an important implication for practice, as those working with injured athletes can have a 

significant impact on the way in which the athlete perceives their injury and therefore their 

i esponse to 1 ehabilitation. Further work to establish methods whereby pain can be reduced 

should be carried out, as well as establishing if perception can alter physical response. 

Currently extended use of anti-inflammatory drugs following injury is likely to be the most 

effective strategy allowing the individual to regain full range of motion but this comes with

associated risks or re-injury and ethical issues. Therefore psychological techniques should be 
investigated further.

The involvement of psychology within the pain experience warrants further 

investigation (Addison et al., 1998; Porro et al., 2002; Wing et al., 2011b). More sophisticated 

methods in which neuronal activity can be monitored and measured should be employed in 

future research to further understanding of these processes. The current work suggested that 

there was little conscious involvement in determining performance within the trials. However 

this was based on the role of manipulating expectations and then measuring performance, there 

were no interventions employed to help individuals overcome pain or investigations into the 

subjective experience of the individual. The affective dimension of pain is thought to be an 

important determinant of the pain experience (Hirsch & Liebert, 1998) and therefore something 

that should not be dismissed. For example, the meaning an individual attaches to a particular 

stimulus has been shown to alter the pain they experience (Arntz & Claassens, 2004) but how 

this may influence physical performance is unknown and would be an interesting topic for 

further examination. Psychological coping strategies have been employed within sport to help 

reduce negative effects of pain (Schomer, 1987), had one of these been implemented within the



current research this may have impacted the results and would be an interesting study in the 
future.

The studies conducted within this project were all carried out in a laboratory setting 

which was important as it enabled careful control of the variables under investigation and lead 

to some intei esting findings that would not have been possible by other means. The pain 

induced within this study was experimental and therefore remains fundamentally different to 

non-experimental pain as the danger elements are limited (Hudson et al, 2006) and therefore 

the task lequirements may have been deemed inherently safe by participants (Pen & Fisher, 

1994). This may have altered the response they gave to the pain stimulus as the pain 

experience in highly controlled conditions do not carry the same threat as those within the field 

and this can change the overall experience and therefore response given (Friedman etal., 1985; 

Hudson et al., 2006). As well as the perception that this was a safe environment for the 

participants, it is also not possible to infer performance changes from a laboratory experiment 

such as this where there were only limited measurements taken (force & EMC). This does not 

account for other variables influencing sports performance such as technique, competition and 

environmental factors. Whilst a 6-11% decrease in muscle performance was reported in the 

studies conducted using pain at perception threshold level, this is only in one muscle group and 

doing a very simple task involving effort only around one joint. If the individual were to do a 

more complex, multi-joint task which is more realistic to the sports environment there may 

have been different results. Therefore similar studies in which simulated competition 

environments and more sport specific tasks are investigated would increase the validity of 
findings to sport.

________________________ 8.4 CHAPTER SUMMARY

The studies presented within this thesis have supported the findings of previous work 

investigating the effect of pain on muscle performance (Farina et al., 2002; Farina et al., 2008; 

Madeleine et al., 2006). However what makes this project unique is the technique of pain 

induction utilised that does not interfere with physiological or mechanical properties of the 

muscle. This means that the performance reductions reported were most likely due to the pain 

stimulus itself. Furthermore the controllable nature of these methods enabled investigation of 

the influence of pain severity on muscle performance and demonstrated that as severity 

increases performance decreases. The scope of the research did not seek to determine exact 

mechanisms by which performance is inhibited, but exploratory work was conducted which 

suggested mechanisms are likely to be centrally controlled and sub-conscious. Future work 

should build on these Findings in establishing where inhibition of neuromuscular activation
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occuis and whether this is applicable to different settings and in other tasks. It is hoped that

this will allow foi interventions to be developed within sport to help athletes cope with pain and

overcome its limiting effects, but this can only be achieved when the mechanisms are better 
understood.
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Consent Form
For Participating in the Study o f:

Pain and Exercise: Is there a relationship?

(Details of project can be found in attached letter and information sheet)

Please tick the boxes

]

I have read the study information sheet and understand 
what is involved.

fes

C
No

} r
I understand that the information I disclose will remain 
confidential and that my data will be destroyed or 
returned to me after being collated. □
I understand that I can withdraw my participation at 
any time. □
I am willing to participate in the Pilot Studies* r □

Study 1 * |□ □
Study 2 * |□ □
Study 3 * I□ □

I confirm that I do not have and never have had any 
bone diseases or injuries to my lower leg that may □
affect my participation within this study

I confirm that I do not have and never have had any 
respiratory diseases or circulatory diseases that may 
affect my participation within this study

If you have been affected by any of the conditions above please give details in the space 
provided below (including details of which leg was affected with regard to leg 
injuries/bone disease)

Signed: ............................................................... Date:

* If you agree to take part in any of the above studies you are still able to withdraw at any time 
point.
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Visual Analogue Scale
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No pain Worst pain 
imaginable

No pain Worst pain 
imaginable

No pain Worst pain 
imaginable

No pain Worst pain 
imaginable

I V





Are you interested in being a participant in a study
involving pain and exercise?

Are you aged 18 or above with no previous injuries to
your lower legs?

I am a Postgraduate research student at the University of
Northampton and am completing a series of studies
looking into the link between pain and exercise. I am
looking for healthy male volunteers to take part in my 
studies.

If you are aged 18+ and would be interested in taking part 
then please contact me for further information.

Annika Wing

University of Northampton
Park Campus 

Boughton Green Road
Northampton

NN2 7AL

Email: ton.ac.uk
Tel: 01604 892934
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My name is Anmka Wing and I am a research student at the University of 
ort ampton in the School of Health. I am looking for healthy male volunteers to 

take part in my study investigating the effects of pain when exercising.

Are you interested in being a participant in a study involving pain and exercise? Are 
you aged 18 or above with no previous injuries to your lower legs? If so then please 
contact me for more information about what would be involved.

I can be contacted at:

University of Northampton 
Park Campus 
Boughton Green Road 
Northampton 
NN27AL

Email: annika.winq2@northampton.ac uk 
Tel: 01604 892934

Thank you for taking the time to read this 

Regards,

Annika Wing
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PARTICIPANT INFORMATION SHEET

About The Researcher:

I am currently undertaking a PhD in the School of Health at the University of 
Northampton. As part of my research I am carrying out a number of studies relevant 
to my thesis in the study of pain tolerance within sport and exercise. I am being
supervised in this project by Dr. Peter Jones of Moulton College and Professor Jackie 
Campbell from the University of Northampton.

Study Title:

Pain and Exercise: Is there a relationship?

Aim of Study:

This study will look at:

• How people feel pain and how this relates to sport
• How we can measure pain accurately for the purposes of sports research

What the study involves:

In this initial study I hope to undertake tests on a group of individuals to help 
validate the use of the equipment that is needed for this research project. If you 
were to volunteer to be a participant you would be asked to come in to the 
University of Northampton to take part in a trial which will last no more than an 
hour. This trial will involve testing your pain perception threshold (the point at which 
a stimulus is recognised as pain rather than simply a sensation) through pressure 
being applied to your tibia (shin bone).

Taking part in the study will involve doing three isometric knee contractions (this 
means it is a static contraction rather than your joint actually moving) whilst the 
amount of electrical activity in your leg is measured to show what percentage of 
your muscle fibres are being used. When pain is being tested a "Gross Pressure 
Device" will be used which is essentially a shin pad with a block of wood attached 
that gets pressed onto your shin bone using a blood pressure cuff. This does not 
cause any long term damage and as the participant you would have a release valve 
so that the pressure could be released by you at whatever point you wanted. As 
soon as the pressure is released the pain stops, there is no lasting effect.

There are a number of studies planned in this project. The studies will take place at 
the University in the biomechanics lab. Future studies would involve participants 
(perhaps not you) being required to attend more than once for different trials. In 
these cases it would be necessary for you to come at the same time of day on the 
same day of the week each time as it has been shown that time of day can affect 
your ability to tolerate pain.

The information required:

You will be asked to supply information regarding your age, gender and ethnicity for 
research purposes. However all information will remain anonymous and will not be 
shared with any parties not directly involved in the research project.

x



As this study is looking to determine tests of pain it is necessary to induce pain. 
However the type of pain being induced is very temporary in nature and will not 
result in any long term harm. As the research is trying to establish pain perception 
threshold rather than tolerance, this means that the level of pain will be minimal and 
will be dependent upon the participant. The participant will control when they start 
to feel uncomfortable and the test will then stop immediately by the participant. As 
the participant you will also be given a quick release valve so that you yourself can 
stop the trial at any point by releasing the pressure.

Can anyone take part?

As this study involves pain, there are certain restrictions on who can take part. The 
Gross Pressure Device that will be used puts pressure on to the shin bone. Therefore 
anyone that has had any injuries to their lower leg is unable to take part. This may 
be something like a broken bone or any large cuts. The Gross Pressure Device also 
uses air pressure to push the wooden tablet on to the bone. This is done by inflating 
a blood pressure cuff which surrounds the leg, thereby restricting the blood flow 
around the lower leg. Whilst the restriction is likely to be minimal and very 
temporary in nature, it is still important that anyone taking part in the study does 
not have any health issues that may make this problematic. For this reason anyone 
that has had, or does have, any circulatory problems or respiratory problems should 
not take part in this study. This may include lung disease, heart disease or problems 
with blood pressure.

What will happen to the information?

All information gathered will be stored in a locked cabinet and only researchers 
involved in the project will have access to it. Participants will be referred to by 
number so that names remain anonymous; this means that no one will be able to 
see your results. There will be a list of names against numbers stored separately 
from the rest of the data to identify participants; however this will only be accessed 
by the researcher and will be kept in a locked cabinet. Any data stored electronically 
will be password protected and encrypted so that no one can obtain access to it 
other than the researcher. On completion of the research project any personal 
information will be destroyed with the exception of data required for published 
articles which will be kept for a further three years post publication and then 
destroyed.

Not sure about participating?

If you are not willing to participate that is fine. There is no obligation to complete 
the trial even if you do agree to participate, so it is not a problem if you change your 
mind. You will be free to withdraw at any point, no matter how far into the process 
you are. Whether you participate or not will not affect your studies in any other way.

Your valued input:

There is no gain for you as an individual participant in this study. Your participation 
would be on a purely voluntary basis, however it would be helping towards a better 
understanding of pain within sport and all publications emerging from this project 
would be made available to you.



Contact the Researrlw:

I hope that the above information is useful to you and gives you an understanding of
what I am studying. If you are interested in the study and would like some more
detailed information about the study or what is involved in participating then please
do not hesitate to contact me. I will be happy to answer any questions you may 
have.

I can be contacted at:

University of Northampton 
Park Campus 
Boughton Green Road 
Northampton 
NN2 7AL

Email: annika.wina2(Q)northampton.ac.uk 
Tel: 01604 892934

Thank You

Thank you for your interest and support. If you would like to participate in the
research please complete and return the consent form in the stamped addressed 
envelope provided.


