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The difference in sleep, sedentary behaviour, and physical activity between 

older adults with ‘healthy’ and ‘unhealthy’ cardiometabolic profiles: a cross-

sectional compositional data analysis approach 

Abstract  

Background: Studies have seldom used Compositional Data Analysis (CoDA) to map 

the effects of sleep, sedentary behaviour, and physical activity on older adults’ cardio-

metabolic profiles. This study therefore aimed to illustrate how sleep, sedentary 

behaviour, and physical activity profiles differ between older adult groups (60 - 89 

years), with ‘low’ compared to those with ‘high’ concentrations of endocrine cardio-

metabolic disease risk markers, using CoDA. 

Method: Ninety-three participants (55% female) wore a thigh-mounted triaxial 

accelerometer for seven consecutive free-living days. Accelerometer estimates of 

daily average hours of engagement in sedentary behaviour (SB), standing, light-

intensity physical activity (LIPA), sporadic moderate-vigorous physical activity 

(sMVPA, accumulated with bouts between 1 – 10 minutes), 10-minute moderate-

vigorous physical activity (10MVPA, accumulated with bouts ≥10 minutes), in addition 

to self-reported sleeping hours were reported. Fasted whole blood concentrations of 

total cholesterol, triglyceride, glucose, and glycated haemoglobin, and serum 

lipoprotein lipase (LPL), interleukin-6 (IL-6), and procollagen III N-terminal propeptide 

were determined. 

Results: Triglyceride concentration appeared to be highly dependent on 10MVPA 

engagement as the ‘low’ and ‘high’ concentration groups engaged in 48% more and 

32% less 10MVPA, respectively, relative to the geometric mean of the entire study 

sample. Time-use composition of the ‘low’ LPL group’s engagement in 10MVPA was 
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26% less, while the ‘high’ LPL group was 7.9% more, than the entire study sample. 

Time-use composition of the ‘high’ glucose and glycated haemoglobin groups 

appeared to be similar as both engaged in more Sleep and SB, and less 10MVPA 

compared to the study sample. Participants with a ‘low’ IL-6 concentration engaged in 

4.8% more Sleep and 2.7% less 10MVPA than the entire study sample. Time-use 

composition of the Total Cholesterol groups was mixed with the ‘low’ concentration 

group engaging in more Standing and 10MVPA but less Sleep, SB, LIPA, and sMVPA 

than the entire study sample. Conclusion: Older adults should aim to increase 

10MVPA engagement to improve lipid profile and vascular stiffness and decrease SB 

engagement to improve glucose profile. 
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Background 

 

Between 2011 and 2014, medication prescription for the prevention and 

treatment of circulatory diseases within the adult population increased 2.2 fold in 

England (1), with 62 – 95% of adults above the age of 55 years taking at least one 

prescribed drug per week for the treatment or prevention of any condition (2). These 

prescriptions included medications such as lipid lowering, anticoagulant and anti-

fibrinolytic drugs; critically, many of these drugs target metabolites that may be 

regulated by physical activity (PA) interventions (3-5). For example, in older adult 

cohorts (65 – 94 years), 3 х 60 min aerobic sessions per week, for 8 months, at 60 – 

80% of heart rate reserve was sufficient to reduce total cholesterol and triglyceride 

concentration (6). Additionally, emerging-evidence also suggests that changes in 

sedentary behaviour (SB) could affect metabolites, through physiological mechanisms 

that are different from those for PA (specifically of moderate to vigorous intensity 

[MVPA]) (7). In rodent modelling of SB, six hours of hind limb unloading in rats 

decreased oxidative skeletal muscle lipoprotein-lipase (LPL) activity by 50% relative 

to ambulatory controls, whereas, treadmill running (56 m∙min-1, 3.5 hr·day-1) did not 

increase oxidative muscle LPL activity above that of ambulatory controls but did in 

glycolytic muscle (7). It is suggested that SB targets post-transcriptional modification 

of LPL, as LPL mRNA expression remained unchanged during hind limb unloading 

(7). Even though SB and PA may act through independent mechanisms in the 

modulation of cardio-metabolic disease, ultimately, it is the end-point of the relevant 
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metabolite that is of most interest to the end-user. Therefore, it is argued that future 

studies should consider SB and PA together, not in isolation, to determine their 

cumulative effects on health status to reflect ‘real-world’ lifestyles.  

Previous approaches to Sleep, SB, LIPA, and MVPA analysis have treated 

these behaviours as independent risk factors for health status (8-10). Such isolation 

of the behaviours in statistical analysis is inappropriate, due to the co-dependent 

nature of time-use variables, and can lead to the under/overestimation of the effects 

of Sleep, SB, LIPA, and MVPA on health status (11). These issues can be overcome 

by using Compositional Data Analysis (CoDA) and presenting, for example, the 

geometric mean engagement in a behaviour (time-use component) as a standardised 

score, relative to the geometric mean of all engaged time-use components. This allows 

the standardised score of the engagement in a particular time-use composition by a 

sub-group to be presented as a log ratio, relative to the standardised score of the 

engagement in the same time-use composition intensity by the entire study sample 

(log ratio = ln[centred geometric mean of sub-group ÷ centred geometric mean of study 

sample]) (12-14). CoDA is normally used to compare the time-use composition of two 

or more groups, relative to the entire study sample and although a relatively new form 

of analysis in sleep, sedentary behaviour, and physical activity research, CoDA has 

provided interesting descriptive data. CoDA of the participants from the NHANES 

2005-06 cycle suggested those with a relatively low high-density lipid (HDL-C) 

concentration engaged in 9% less MVPA relative to the overall geometric mean 

composition. Whereas, those with a healthy HDL-C concentration engaged in 4% 

more MVPA relative to the overall geometric mean composition (12). 

The use of CoDA continues to grow within health research however, the 

majority of CoDA studies to date have focussed on adolescent to middle-age cohorts 
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(12, 13, 15-17). Studies that have applied CoDA to older adult cohorts have primarily 

focussed on adiposity, cardiorespiratory fitness, cholesterol and glucose (18, 19). 

Therefore, the aim of this study was to illustrate which time-use composition influences 

cardio-metabolic parameters in older adults (60 - 89 years) as cardiovascular-

metabolic complications are one of the leading causes of death in this age group (1). 

The objective of this study was to determine the difference in the time-use composition 

between older adults with ‘low’ and ‘high’ endocrine cardio-metabolic disease-risk 

(ECMDR) profiles using CoDA. It was hypothesised that time-use composition in the 

‘high’ ECMDR profile sub-groups would illustrate a greater engagement in SB and a 

lower engagement in PA relative to the entire study sample geometric mean, which 

has been shown in previous studies (12, 13).  

The current study fits within Research Area 3 of the VIRTUE Framework (11) 

as it addresses the need to “determine the prevalence of the optimal time-use balance 

among populations and specific population subgroups [and] identify the most common 

unhealthy time-use patterns in different populations” (11). This has been possible as 

our research group previously developed and utilised an accelerometer analysis 

package, which reported variable suitable for time-use analysis (11), thus fitting also 

within Research Area 1 of the VIRTUE Framework.”. 

Methods 

 

First Laboratory Visit 

 

The details of the first laboratory visit follows our previously published work (20, 

21). Briefly, older adults (60+ years) who did not suffer from an untreated 
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cardiovascular disease, had not sustained a mobility limiting injury within the last 3 

months, did not require a walking aid (e.g. Zimmer frame), were non-diabetic, and 

had/were not suffering from dementia or similar disease were recruited for the cross-

sectional epidemiology study, primarily from local community groups in Cheshire, 

United Kingdom, between January 2015 and June 2016. Study involvement was 

approved by the written informed consent of the participant and ethical approval was 

granted by the University Ethics Subcommittee. Participants provided hard copies of 

their most recent prescriptions to record which medications may be influencing their 

cardiovascular-metabolic disease risk, either directly or indirectly. These medications 

were categorised into blood pressure (BP) medication [mg∙day-1], lipid-lowering 

medication [mg∙day-1], directly targeting cardiovascular disease (CVD) medication 

[n∙day-1], (in)directly targeting CVD medication [n∙day-1], and inflammatory + (in)directly 

targeting CVD medication [mg∙day-1].  

 Participants were fitted with a commercially available tri-axial GeneActiv 

Original accelerometer (Activinsights Ltd, Kimbolton, UK) on the thigh of their 

dominant leg (anterior aspect at 50% of greater trochanter to femoral condyle 

distance) using two waterproof adhesive patches (Tegaderm Film, 3M, North Ryde, 

Australia). The accelerometer was worn for seven consecutive free-living days, during 

this time; participants self-reported their sleeping hours by recording the time they 

turned the lights off to go to sleep at night and what time they woke up to start their 

day within a sleep diary. The sleep diary was used to estimate the daily average 

sleeping hours of the participant, whilst the accelerometer estimated the daily average 

engagement hours for the other time-use components (see below for details).  
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 The accelerometer data was recorded at a 60 Hertz frequency and smoothed 

using 10-second epochs. In-house developed software, The Cheshire Algorithm for 

Sedentarism (CAS), was used to calculate the time spent engaging in each sleep, 

sedentary behaviour, and physical activity intensity using Residual G  (= √([standard 

deviation x axis]2 + [standard deviation y axis]2 + [standard deviation z axis]2)) cut-off 

points, which were developed from a sub-group (n = 20) of older adults from the 

current body of work (20-22). Behaviours were classified as SB or Standing by CAS if 

the participant was in the seated/reclined position or upright, respectively  (23), and 

produced a Residual G value, for at least one minute, below the SB-LIPA cut-off point 

(0.057 Residual G = 1.5 metabolic equivalent tasks). The Cheshire Algorithm for 

Sedentarism classified a behaviour as LIPA if the participant was upright and produced 

a Residual G value, for at least one minute, that was above the SB-LIPA cut-off point 

but below the LIPA-MVPA cut-off point (0.216 Residual G = 3 metabolic equivalent 

tasks). Any movements by the participant, whilst in the upright position, that produced 

a Residual G value that was equal to or above the LIPA-MVPA cut-off point, for at 

least one minute, was classified as MVPA by CAS. Moderate-to-vigorous physical 

activity was then further classified by CAS into sporadic MVPA (sMVPA, MVPA time 

accumulated using bouts that were between 1 - 10 continuous minutes), and 10-

minute MVPA (10MVPA, MVPA time accumulated using bouts of 10 continuous 

minutes or more). This splitting of MVPA was done to align with the 10-minute criterion 

in the 2011 UK physical activity guidelines for MVPA (24). Inclusion in statistical 

analyses required at least six 24-hour days of data from the accelerometer, as a result 

three participants were removed from statistical analyses owing to insufficient amount 

of data.  
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Second Laboratory Visit  

 

 Whole Blood Cardio-Metabolic Analysis 

 

Participants arrived to the laboratory in an overnight (>10 hours) fasted, 

hydrated state. Where appropriate, participants were asked to refrain from taking 

medication until testing had been completed. All participants refrained from taking 

medication prior to the completion of the laboratory tests and all provided a 10 mL 

venous blood sample. Whole blood analyses of fasting plasma glucose, total 

cholesterol, and triglycerides were performed immediately using an Accturend Plus 

(Roche Diagnostics Limited, Welwyn Garden City, UK) monitoring device and 

Accutrend test strips (Roche Diagnostics Limited, Welwyn Garden City, UK) (25). 

Whole blood analysis of glycated haemoglobin (HbA1c) was performed on a sub-

group of participants (n=33) using boronate fluorescence quenching (HbA1c 501 

device and test cartridges, HemoCue, Ängelholm, Sweden). HemoCue 501 has shown 

good reliability (Coefficient of Variation [CV] <5.0%) and validity (Bland-Altman: 4.4 

[95%CI -7.3, 16.2] mmol∙mol-1) compared to high performance liquid chromatography 

ion exchange (26).  

Remaining blood samples were stored on crushed ice for less than two hours 

before centrifugation at 1687 G for five minutes (Z380, Hermle, Gosheim, Germany). 

Serum was harvested and stored at -20 ºC in 1.00 mL aliquots (Eppendorf Ltd, 

Hamburg, Germany) until further analyses.  
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 Serum Cardio-Metabolic Analyses 

 

Commercially available enzyme-linked immunosorbent assay kits were used to 

determine the concentration of serum lipoprotein lipase (LPL) (Cell Biolabs Inc., 

California, USA), procollagen III N-terminal propeptide (PIIINP) (Biomatik, Delaware, 

USA), and interleukin-6 (IL-6) (high-sensitivity, Bio-Techne, Minnesota, USA) using a 

two-fold sample dilution. Manufacturer reported LPL intra-assay CV was 4% whereas 

it reached 13% in house. For PIIINP, manufacturer sample intra-assay CV was <10%, 

which coincided with in house data (6.5 - 9.6%). IL-6 manufacture intra-assay CV was 

7.8% whereas in house it ranged from 7.4 – 9.2%. ELISA data were derived using a 

96-well spectrophotometer (EL808, BioTek, Vermont, USA) connected to a computer 

running Gen5 v 1.11 software (BioTek, Vermont, USA). 

 

Statistical Analyses 

Demographics 

 

SPSS version 22 (IBM, New York, USA) was used for statistical analysis. 1×5 

independent analysis of variance (ANOVA) and bonferroni correction (Kruskall-Wallis 

and Mann-Whitney U for non-parametric data) was used to see whether participant 

demographics differed between lustrums of age and determine whether CoDA needed 

to be performed for age sub-groups or pooled study sample. Data are presented as 

mean (standard deviation [SD]) or median (interquartile range [IR]) if rules of 

parametricity are violated. Statistical significance was set at p<0.05. 
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Compositional Data Analysis 

 

Participants were grouped into ‘low’ or ‘high’ concentration groups for each 

cardio-metabolic parameter based on whether they were less than or equal to, or 

above the recognised threshold concentration for the respective cardio-metabolic 

marker (table 1). Where threshold concentrations from previous research could not be 

applied, the median (PIIINP) and mean (HbA1c) concentration of the study sample 

were used as the threshold. The HbA1c threshold of 6.5% (27) could not be applied 

to the study sample as the participants did not display diabetic symptoms and 

therefore every participants’ HbA1c percentages fell below 6.5%. Similarly, the 4780 

pg·mL-1 threshold (28) could not be applied as every PIIINP concentration within the 

current study was below this threshold.  

Table 1. Cardio-metabolic threshold values used to determine participant groupings into ‘low’ and ‘high’ 

endocrine concentration. 

Cardio-metabolic Parameter Threshold 

Glucose 6.0 mmol∙l-1 (27) 

Total Cholesterol 5.0 mmol∙l-1 (27) 

Triglyceride 1.7 mmol∙l-1 (27) 

HbA1c 5.29%* 

LPL 63.5 pg∙mL-1 (29) 

IL-6 2.29 pg∙mL-1 (30) 

PIIINP 229.215 pg∙mL-1* 

*Mean % HbA1c used as the threshold. Median PIIINP concentration used as the threshold. 

 



11 
 

Using Excel 2013 (Microsoft, Washington, USA), the geometric mean (hrs∙day-

1) was calculated for each time-use composition for the entire study sample. The grand 

geometric mean was further calculated for the entire time-use composition data (Sleep 

+ SB + Standing + LIPA + sMVPA + 10MVPA) of the entire study sample. The study 

sample data were centred (ceno) by dividing the geometric mean for each time-use 

composition by the grand geometric mean of the study sample and then dividing by 

the available time in a day (24 hours). These steps were then performed on the cardio-

metabolic parameter sub-groups (ceni) (‘low’ and ‘high’). The centred data for each 

time-use composition, for each sub-group, was divided by the centred data for the 

respective time-use composition of the entire study sample as a log ratio (ln[ceni ÷ 

ceno]). The log ratio represents the sub-group’s engagement in a time-use composition 

relative to the entire study sample’s standardised engagement in the same time-use 

composition (12, 13). 

 

 Handling Covariates 

 

Analysis of covariance (ANCOVA) was performed using SPSS version 22 (IBM, 

New York, USA) to determine whether covariates, previously shown to be associated 

with cardio-metabolic parameters (31-34) (BP medication [mg∙day-1], lipid-lowering 

medication [mg∙day-1], directly targeting CVD medication [n∙day-1], (in)directly targeting 

CVD medication [n∙day-1], and inflammatory + (in)directly targeting CVD medication 

[mg∙day-1]), influenced the concentration of the cardio-metabolic parameters within the 

current study (table 2). LPL was found to be influenced by inflammatory + (in)directly 

CVD targeting medication (p<0.05). LPL data were adjusted for the aforementioned 
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covariate and the participants were regrouped before CoDA was performed. No other 

cardio-metabolic parameters were influenced by the aforementioned covariates. 

 

Table 2. Influence of medication on cardio-metabolic parameters. 

Medication Cardio-metabolic Parameter 

 Glucose Triglyceride 
Total 

Cholesterol 
HbA1c LPL IL-6 PIIINP 

BP 0.71 0.93 0.57 0.53 0.14 0.95 0.70 

Lipid-lowering 0.36 0.47 0.84 0.63 0.46 0.81 0.53 

Directly 

targeting CVD 

0.94 0.06 0.69 0.27 0.89 0.24 0.59 

(in)directly 

targeting CVD 

0.64 0.32 0.90 0.68 0.31 0.76 0.35 

Inflammatory + 

(in)directly 

targeting CVD 

0.47 0.92 0.09 0.19 0.00* 0.71 0.88 

Data presented as p value. * Bold - Covariate has a significant effect on a cardio-metabolic 

endocrine parameter concentration (p<0.05). 

 

 Handling ‘Essential’ Zeros  

 

Within CoDA, there are rounded zeros, which represent data that could not be 

measured due to the sensitivity of the equipment used, and there are essential zeros, 

which represent real values for a parameter. In the current study, essential zeros were 

common in time-use composition data, as many participants did not engage in 

10MVPA. It is not possible to log transform zeros or calculate geometric means, 

therefore they need to be accounted for so they still carry weight in the analyses. One 
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method is to remove all the participants who have essential zero data, which has been 

performed in previous studies (12, 13). However, given the sample size of the current 

study (n=93), removal of participants would severely reduce the power of the study 

and thus, is not deemed an appropriate approach. Therefore, 0.1 was added to every 

data point, then 0.1 was subtracted from the geometric mean calculations (35) so the 

essential zeros still carried weight in the analysis.  

 

 Sleep, Sedentary Behaviour, and Physical Activity Co-dependence 

 

To determine the co-dependence between time-use components, a variation 

matrix was used. A variation matrix displays the variance in the study samples’ log-

ratios for each time-use composition comparison (Additional File 1, Table 1). A 

variance close to zero would imply the amounts of time spent in the corresponding 

behaviours are highly proportional and therefore, suggest a change in engagement of 

one of those time-use compositions would likely result in a change in engagement in 

the corresponding time-use composition.  

 

 

Results 

 

The demographics of the 93 older adults who participated in the study (73.6 

[7.17] years, 55% female) are displayed in table 3. Notably, there was no difference 

between lustrum age groups for any of the cardio-metabolic, time-use composition, or 
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covariate parameters. This therefore allowed follow up CoDA with pooled data. For 

results on the variation matrix of time-use components please see Additional File 1,  

table 1. 

Table 3. Participant demographics displayed per lustrum of age. Data presented as Mean(SD), 

Median(IR), or geometric mean. 

Please insert Table 3 here. 

 

Whole Blood Cardio-Metabolic Parameters 

 

The time-use composition for ‘low’ and ‘high’ whole blood cardio-metabolic 

parameter sub-groups is displayed in figure 1A-D. Triglyceride concentration appears 

to be highly dependent on 10MVPA engagement as the ‘low’ triglyceride concentration 

group engaged in 48% more 10MVPA relative to the geometric mean of the entire study 

sample (figure 1A). It also suggests that reducing 10MVPA engagement may result in 

a change to a ‘high’ triglyceride profile more readily than the opposite. Indeed those 

with a ‘high’ triglyceride concentration only engaged in 32% less 10MVPA than the 

geometric mean of the entire study sample, whereas those with a ‘low’ triglyceride 

concentration required a 48% greater engagement in 10MVPA compared to the entire 

study sample (figure 1A). It appears that differences in total cholesterol profile may be 

influenced by most time-use components as those with a ‘low’ total cholesterol profile 

engaged in less sleep (3.0%), SB (2.9%), LIPA (7.1%), sMVPA (6.0%), and more 

standing (7.9%) and 10MVPA (4.4%) than the entire study sample. The opposite time-

use composition was true for the ‘high’ total cholesterol concentration group (figure 

1B). The composition of the ‘high’ glucose and HbA1c groups appeared to be similar 

as both engaged in more sleep and SB, and less PA (excluding sMVPA) compared to 

the entire study sample (figure 1C-D). 
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Please insert Figure 1 here. 

 

Serum Cardio-Metabolic Parameters 

 

Before correcting for covariate effects, LPL was heavily influenced by 10MVPA, 

with a large difference in engagement compared to the entire study sample (‘low’ LPL: 

27% less 10MVPA, ‘high’ LPL: 11% more 10MVPA) (figure 2A). Whereas the difference 

from the entire study sample for the other time-use components did not exceed 2.2% 

(figure 2A). Following normalisation for inflammatory + (in)directly targeting CVD 

medication, the ‘low’ LPL group’s engagement in 10MVPA was 26% less while the 

‘high’ LPL group was 7.9% more than the entire study sample (figure 2B). Sleep 

appeared to be a main determinant of IL-6 concentration as those in the ‘low’ and 

‘high’ IL-6 group engaged in 4.8% more and 3.1% less sleep compared to the entire 

study sample, respectively. Whereas the other time-use components had a lower 

difference in engagement compared to the entire study sample (figure 2C). The results 

suggest that bouts of MVPA above 10 mins are sufficient to stimulate an inflammatory 

response as the ‘high’ IL-6 group engaged in 2.7% more 10MVPA and 2.2% less 

sMVPA compared to the entire study sample (figure 2C). PIIINP followed a similar 

composition to IL-6, with sleep displaying the greatest difference from the entire study 

sample in both ‘low’ (6.2%) and ‘high’ (5.9%) groups compared to the other time-use 

components.  

Please insert Figure 2 here. 
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Discussion 

 

The findings of this study confirmed our hypothesis as time-use composition in 

the ‘high’ ECMDR sub-group illustrated a greater engagement in SB and a lower 

engagement in PA relative to the entire study sample geometric mean. Whereas the 

‘low’ ECMDR sub-group engage in more PA and less SB relative to the entire study 

sample geometric mean which, in agreement with previous studies (12, 13). However, 

the hypothesis was not confirmed for IL-6 and PIIINP (when a median grouping 

threshold was used), as participants within the ‘high’ sub-groups in fact engaged in 

less SB and more PA. 

 

Lipoprotein – LPL Axis 

 

Lipoprotein lipase was one of the first identified cardio-metabolic markers to 

illustrate “independent” effects of SB and MVPA (7). It was suggested that prolonged 

SB targets oxidative skeletal muscle LPL activity whereas; MVPA appears to primarily 

target glycolytic muscle LPL activity (7). LPL is responsible for the hydrolysis of 

triglyceride into glycerol and fatty acid. Pre-heparin serum LPL (measured in the 

current study) primarily represents inactive LPL as a dimer bound to isolated remnant 

lipoproteins (36), which, in the presence of active LPL, augments triglyceride 

hydrolysis and the uptake of very low-density lipoproteins and cholesterol esters (37). 

Therefore, reduced serum LPL concentration, similar to muscle LPL activity, may lead 
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to increased circulating triglyceride concentration (38). The comparison of time-use 

composition between triglyceride and LPL groups supports the LPL-triglyceride-PA 

complex as those in the ‘high’ LPL concentration and ‘low’ triglyceride concentration 

groups both displayed a greater engagement in 10MVPA (7.8% and 48.4%, 

respectively) compared to the entire study sample. In addition, 10MVPA had the 

greatest difference from the entire study sample, compared to the other time-use 

components, for both LPL and triglyceride, suggesting that these cardio-metabolic 

markers are influenced more by 10MVPA rather than any other time-use composition. 

This finding supports that of a previous SB break study, which found 30 mins of MVPA 

(which would be classified as 10MVPA in the current study) maintained plasma 

triglyceride concentration (relative to baseline) following ingestion of a high fat meal 

(35%) (39). In addition, Engeroff, Füzéki (39) reported that short bouts of MVPA 

(representing sMVPA in the current study) were not sufficient to prevent an increase 

in triglyceride concentration following meal ingestion. This was also notable in the 

present study, as engagement in sMVPA in the ‘low’ and ‘high’ triglyceride groups only 

deviated 2.3% and 1.9% from the entire study sample, respectively, suggesting that 

sMVPA has little influence on circulating triglyceride levels.  

The pattern of time-use composition for total cholesterol is not as clear within 

the current study. This is likely due to total cholesterol containing lipoproteins that have 

opposite responses to inactivity. Both triglyceride and low-density lipids (LDL-C) 

increase in concentration, whereas high-density lipids (HDL-C) decrease in 

concentration, during detraining (38). Therefore, it is difficult to ascertain 

whether/which behaviour(s) are affecting LDL-C and HDL-C profile. Future research, 

should conduct CoDA with total cholesterol segregated into HDL-C and LDL-C to 
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provide a more precise understand of the effects of sleep, sedentary behaviour, and 

physical activity. 

Overall, our results suggests that engagement in 10MVPA influences 

triglyceride concentration by possibly targeting LPL pathways. This finding advocates 

the need for older adults to be ‘physically active’ in terms of attaining sufficient 

10MVPA, as defined in the UK government PA guidelines, especially as LPL is already 

reduced in older adults, compared to young adults (40). 

 

Glucose Metabolism 

 

The prevalence of physical inactivity and SB, even in acute episodes, has a 

marked influence on insulin insensitivity and subsequently on reduced glucose uptake 

(41-43), predominantly in skeletal muscle tissue (44). Our results support this concept 

as those with a ‘high’ glucose concentration engaged in more sleep and SB, and less 

PA (excluding sMVPA), compared to the entire study sample. This increased 

circulating glucose concentration is thought to be due to the reduced translocation of 

glucose transporter type 4 (GLUT4) to the skeletal muscle cell membrane (45) and 

reduced expression of carbohydrate metabolism genes during bouts of reduced 

muscle contractile activity (Sleep and SB) such as, cytoplasmic dynein light chain 1 

(DYNLL1) (46) which, plays a role in GLUT4 translocation (47). Our results may also 

suggest that habitual higher SB and lower PA engagement can have a chronic effect 

on glucose homeostasis, as participants with a ‘high’ HbA1c percentage also engaged 

in more sleep and SB, and less 10MVPA, compared to the entire study sample (with 

other PA apparently having little effect on HbA1c), when a mean HbA1c percentage 
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grouping threshold was used. HbA1c represents a 1-3 month average of blood glucose 

concentration (48) and can be used in the diagnosis of diabetes mellitus if blood tests 

exceed 6.5%. The results of the current study are consistent with previous findings in 

older English adult populations (≥ 60 years), which found HbA1c percentage increased 

as objective SB time increased from 8.45 – 9.52 hrs∙day-1 to >9.52 hrs∙day-1 (5.8 [0.8], 

6.0 [0.8]%, p=0.01, respectively) and reduced (0.13% [95%CI -0.24, -0.03]) per 0.5 

hrs∙day-1 increase in MVPA engagement (49). Interestingly, in line with our results, 

Stamatakis, Davis (49) also reported that LIPA was not associated with HbA1c. Our 

results therefore support that PA has to be of at least moderate intensity in order to 

maintain increased insulin sensitivity and subsequently glucose uptake, post-exercise 

(50). 

 Overall, the current study suggests that reduced SB and increased PA could 

lead to acutely reduced blood glucose concentration in older adults. However, to 

maintain a ‘healthier’ chronic glucose homeostasis, PA may have to be of a moderate-

vigorous intensity. Therefore, we urge older adults to minimise SB engagement and 

attain a ‘physically active’ lifestyle to increase the likelihood of a ‘healthy’ glucose 

profile.  

 

Inflammation and Vascular Stiffness 

 

In older adults, IL-6 serum concentration is greater compared to young adults 

(51) and is associated with an increased risk of CVD (52). The current study suggested 

that a greater engagement in sleep and SB could be beneficial towards the reduction 

in inflammation as those with a ‘low’ IL-6 concentration engaged in 4.8% and 3.8% 
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more sleep and SB, respectively, compared to the entire study sample. This is in 

agreement with previous older adult findings, which suggested that IL-6 concentration 

reduced by 2.0 pg∙mL-1 with a >1.5 hour reduction in total awake time (53). However, 

it was previously illustrated that an hour increase in SB could increase IL-6 by 0.24 

(95%CI 0.13, 0.35) pg∙mL-1 in older adults (54). The discrepancies between Henson, 

Yates (54) and the current study may lie in the type of analysis. Henson, Yates (54) 

used a multiple linear regression model, which does not account for the influence of 

other behaviour(s) on IL-6 in the same way that CoDA does, and may under-estimate 

the magnitude and direction of associations, when all other time-use compositions are 

not accounted for (15). It is thought that increases in serum IL-6 is a result of increased 

IL-6 concentration within the muscle, which occurs during repeated muscular 

contraction (55). Therefore, it is possible to postulate that an elevated amount of sleep 

engagement may be necessary for older adults to manage the inflammatory response, 

as reduced engagement in sleep is associated with an increase in IL-6 concentration 

and subsequently increased pain ratings within healthy middle-aged adults (56). This 

relationship between pain and IL-6 may also explain why the ‘low’ IL-6 group engage 

in more SB as qualitative evidence stated that older adults’ main determinant for 

engaging in SB is to reduce sensations of pain (57). However, given that those within 

‘high’ ECMDR groups (total cholesterol, triglyceride, glucose, and HbA1c) appear to 

engage in more SB, compared to the entire study sample, within the current study; it 

would be advised that older adults engage in more sleep than SB to improve IL-6 

profile. 

Increased PIIINP concentration is a marker of vascular stiffness in older adults 

(28). Within sleep, sedentary behaviour, and physical activity research, there is an 

apparent lack of investigations into changes in PIIINP with sleep, sedentary behaviour, 
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and physical activity (excluding resistance training). To the author’s knowledge, only 

one study exists, which suggested 10-weeks of LIPA and MVPA were not sufficient to 

cause a change in middle-older adults’ (51 – 71 years) PIIINP concentration (58). Our 

results suggest that those with a ‘low’ PIIINP concentration engage in a longer duration 

of all time-use compositions (excluding 10MVPA), most noticeably sleep, compared to 

the study sample and vice versa for the ‘high’ PIIINP group, when a median 

concentration grouping threshold is applied. The current study, therefore suggests that 

future research should examine the associations between sleep, sedentary behaviour, 

and physical activity and PIIINP in older adults to confirm or refute whether sleep, 

sedentary behaviour, and physical activity interventions can help reduce vascular 

stiffness through PIIINP pathways. 

Public Health Implications 

The key findings of this study suggest that older adults who have a healthy 

cholesterol and glucose profile engage in more 10MVPA and less SB than the entire 

study sample, respectively. This adds to the evidence base which supports the 

inclusion of the 10-minute threshold within the UK moderate intensity PA guideline. 

However, given such a low percentage of older adults achieve the moderate intensity 

PA guidelines (when measured with accelerometery) (59), our secondary finding offers 

hope that older adults could be able to improve health status by reducing SB, possibly 

a more palatable option for the population and recommended in the 2019 Chief 

Medical Officers’ UK Physical Activity Guidelines (60). Recently, physical activity 

guidelines for Canada and Australia have moved to considering 24-hour time-use 

composition for children and young people. As CoDA research continues to grow 

within adult-older adult populations, it appears likely that there will also be a shift to 

24-hour guideline, which will provide end-users with a variety of options to improve 
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their health-status and thus partially remove the more common one-size fits all 

approach physical activity guidance.  

There appeared to be a pattern across ECMDR variables where a sub-group who 

engaged in more 10MVPA also engaged in less sMVPA and vice versa. It seems 

unlikely that this apparent pattern between sMVPA and 10MVPA is due to co-

dependence as the variation matrix suggested a low co-dependence. Furthermore, 

without, any direct insight through an experimental manipulation of the two time-use 

components, it is difficult to put forward a definitive argument to explain why sMVPA 

and 10MVPA appear to have opposing relationships with cardiometabolic health 

markers. We can only speculate that some markers are upregulated by the HIIT (high 

intensity interval training) type stimulus (sMVPA) and downregulated by the more 

continuous type of stimulus (10MVPA), whilst other markers show the opposite 

sensitivity. In our data pooling, we categorised activities by threshold so it may be that 

the absolute amount of energy utilisation may have been higher within the MVPA 

spectrum in the sMVPA bouts, and lower within this MVPA spectrum in the 10MVPA 

bouts. In this event, the fuel utilisation (hence endocrine) profiles of sMVPA and 

10MVPA would differ significantly (61). 

Study Strengths & Limitations 

 The strengths of the study include: the use of an ‘objective’, posture recognising 

accelerometer that utilised older adult-relevant sleep, sedentary behaviour, and 

physical activity intensity cut-off points from SB through to MVPA. In fact, these cut-

off points were developed using a sub-sample of the current study’s participants. 

Another strength is the use of CoDA, which took into account the co-dependence of 

sleep, sedentary behaviour, and physical activity; and a third strength, the application 
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of time-use composition within older adult populations, which has seldom been carried 

out.” 

Nonetheless, the main limiting factor of the current study is the sample size, which 

constrained the analyses to descriptive group comparisons rather than the more 

statistically powered compositional regression analysis. Although, the current study 

provided descriptive comparisons of the time-use composition of ‘healthy’ and 

‘unhealthy’ sub-groups, the findings are limited to our sample of participants. Future 

research is needed with larger sample sizes, statistical difference testing, and 

longitudinal data from older adults to provide a comprehensive evidence base for 

generalisation at a population level. Whilst our study sample was too small to do this, 

and previous studies similar to ours did not attempt this either (12, 13), we would 

recommend that future studies using larger sample size should statistically determine 

the significance of differences between sleep, sedentary behaviour, and physical 

activity of the healthy compared to unhealthy groups. It is possible that the differences 

look large but are actually not statistically significant. Such an approach would ideally 

utilise a modification of the bootstrapping method as used in previous work (14). 

 

Conclusion 

 

CoDA revealed that all time-use components play a role in the maintenance of 

cardio-metabolic profile. For a ‘healthy’ lipid profile, our results suggested that older 

adults should attain a ‘physically active’ status, as 10MVPA engagement was greater 

in the ‘high’ LPL concentration group and subsequently greater in the ‘low’ triglyceride 

concentration group. For glucose homeostasis, the current study recommended that 
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older adults should reduce their engagement in SB by engaging in PA. In addition, it 

was suggested that being ‘physically active’ may contribute to chronic glucose 

homeostasis, as shown by the HbA1c results. Finally, a 4.8% (approximately 25 

minsday-1, based on the geometric mean of sleep for our study sample) increase in 

the amount of sleep engagement may be essential for older adults to reduce 

inflammation, especially in episodes of pain, which has been associated with 

increasing IL-6 concentration.  

Overall, the current study recommends that older adults should aim to be 

‘physically active’ by engaging in prolonged bouts of MVPA. However, in the remaining 

hours of the day, they should aim to reduce SB (in spite of the apparent benefit for IL-

6), where possible (to minimise pain), by engaging in low intensity PA (standing and 

LIPA), as these behaviours are highly co-dependent. 

   

 

 

List of Abbreviations 

 

CoDA – Compositional Data Analysis 

PA – Physical Activity 

SB – Sedentary Behaviour 

LIPA – Light Intensity Physical Activity 

sMVPA – Sporadic Moderate – Vigorous Physical Activity 

10MVPA – 10-minute Moderate – Vigorous Physical Activity 

LPL – Lipoprotein Lipase 
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IL-6 – Interleukin 6 

PIIINP – Procollagen III N-terminal Propeptide 

LDL-C – Low Density Lipoprotein 

HDL-C - High Density Lipoprotein 

HbA1c – Glycated Haemoglobin  

CAS – Cheshire Algorithm for Sedentarism 

CVD – Cardiovascular Disease 

ECMDR - Endocrine Cardio-Metabolic Disease-Risk 
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Sleep, Sedentary Behaviour, and Physical Activity  Co-dependence 

This file displays the variation matrix findings, illustrating the co-dependence 

between time-use components. 

 

Figure Legends 

 

Figure 1. Compositional geometric mean bar plots displaying the difference in time-use composition 

between ‘low’ and ‘high’ cardio-metabolic parameter sub-groups. A) triglyceride (n ‘low’: 39, ‘high’: 50) 

https://www.gov.uk/government/publications/physical-activity-guidelines-uk-chief-medical-officers-report:
https://www.gov.uk/government/publications/physical-activity-guidelines-uk-chief-medical-officers-report:
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B) total cholesterol (n ‘low’: 30, ‘high’: 59), C) glucose (n ‘low’: 57, ‘high’: 32), and D) HbA1c (n ‘low’: 13, 

‘high’: 20). A positive Log Ratio indicates that a group engaged in more of a behaviour, in comparison 

with the entire study sample. A negative Log Ratio indicates that a group engaged in less of a behaviour, 

in comparison with the entire study sample. 

 

Figure 2. Compositional geometric mean bar plots displaying the difference in time-use composition 

between ‘low’ and ‘high’ cardio-metabolic parameter sub-groups. A) LPL (n ‘low’: 26, ‘high’: 57), B) LPL 

normalised for inflammatory + CVD (in)directly targeting medication (n ‘low’: 21, ‘high’: 55), C) IL-6 (n 

‘low’: 33, ‘high’: 52), and D) PIIINP (n ‘low’: 36, ‘high’: 37). A positive Log Ratio indicates that a group 

engaged in more of a behaviour, in comparison with the entire study sample. A negative Log Ratio 

indicates that a group engaged in less of a behaviour, in comparison with the entire study sample. 

 

 Age Group (years) 

Variable 

n 

Female (%) 

Pooled 

93  

55 

60 – 65 

10  

90 

66 – 71 

19  

47 

72 – 77 

31  

54 

78 – 83 

24  

54 

84+ 

9  

33 

Covariates 

Directly CVD Meds  

(n∙day-1)† 

1.17  

(1.52) 

0.30  

(0.48) 

0.74  

(1.37) 

1.39  

(1.61) 

1.39  

(1.53) 

1.78  

(1.92) 

(In)directly CVD Meds  

(n∙day-1)‡ 

1.62  

(1.81) 

0.70  

(0.67) 

1.05  

(1.51) 

1.81  

(1.97) 

2.04  

(1.92) 

2.11  

(1.96) 

Inn+ (In)directly 

CVD Meds  

(mg∙day-1)¥ 

157.86 

(486.49) 

293.40  

(797.89) 

54.71  

(73.39) 

93.19  

(293.99) 

136.67  

(323.71) 

494.88  

(1085.38) 

BP Meds  

(mg∙day-1) 

9.81  

(50.79) 

3.50  

(6.73) 

5.47  

(13.29) 

2.35  

(4.89) 

8.05  

(16.71) 

53.00  

(154.35) 

Lipid-Lowering Meds 

(mg∙day-1) 

8.12  

(16.58) 

11.00  

(16.63) 

9.41  

(15.60) 

3.57  

(10.96) 

13.33  

(23.09) 

4.44  

(13.33) 

Cardio-metabolic Parameters 

Triglyceride  

(mmol∙l-1) 

1.77  

(0.81)m 

2.09  

(0.86)m 

1.51  

(0.84)m 

1.73  

(0.68)m 

1.88  

(0.56)m 

1.89  

(0.57)m 
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Total Cholesterol  

(mmol∙l-1) 

5.44  

(1.39)m 

6.06  

(0.95) 

5.64  

(1.08) 

5.45  

(1.07) 

5.64  

(0.89) 

5.27  

(0.66) 

Glucose  

(mmol∙l-1) 

5.72  

(1.10)m 

5.81  

(0.81)m 

5.85  

(1.35)m 

5.60  

(1.33)m 

5.65  

(1.38)m 

6.00  

(1.11)m 

HbA1c  

(%) 

5.29  

(0.31) 

5.18  

(0.22) 

5.30  

(0.22) 

5.34  

(0.36) 

5.24  

(0.33) 

5.38  

(0.32) 

LPL  

(pg∙mL-1) 

113.02 

(147.80)m 

174.35  

(277.28)m 

119.13  

(127.16)m 

83.41  

(123.97)m 

117.88  

(147.07)m 

247.58  

(332.56)m 

IL-6  

(pg∙mL-1) 

2.72  

(2.77)m 

3.11  

(1.85)m 

2.39  

(2.85)m 

2.55  

(3.29)m 

2.36 

(2.98)m 

4.14  

(6.00)m 

PIIINP  

(pg∙mL-1) 

229.21 

(247.97)m 

205.05  

(239.21)m 

229.21  

(208.30)m 

316.92  

(228.81)m 

167.19  

(248.76)m 

256.99  

(406.27)m 

       

sleep, sedentary behaviour, and physical activity parameters 

Sleep  

(hrs∙day-1) 

8.43  

(0.77) 

8.40g 

7.88  

(0.83) 

7.84g 

8.49  

(0.53) 

8.48g 

8.41  

(0.73) 

8.35g 

8.62  

(0.79) 

8.58g 

8.50  

(1.04) 

8.45g 

SB  

(hrs∙day-1) 

9.65  

(1.33) 

9.56g 

9.81  

(1.31) 

9.73g 

9.34  

(1.38) 

9.25g 

9.61  

(1.36) 

9.53g 

9.59  

(1.29) 

9.51g 

10.49  

(1.15) 

10.44g 

Standing  

(hrs∙day-1) 

1.09  

(0.41) 

1.02g 

1.19  

(0.30) 

1.14g 

1.16  

(0.43) 

1.08g 

1.11  

(0.39) 

1.03g 

1.08  

(0.43) 

1.00g 

0.89  

(0.43) 

0.81g 

LIPA  

(hrs∙day-1) 

1.97  

(0.63) 

1.86g 

2.11  

(0.49) 

2.05g 

1.86  

(0.59) 

1.78g 

2.06  

(0.63) 

1.95g 

1.99  

(0.68) 

1.88g 

1.73  

(0.77) 

1.57g 

sMVPA  

(hrs∙day-1) 

2.57  

(0.64) 

2.49g 

2.68  

(0.58) 

2.62g 

2.86  

(0.56) 

2.80g 

2.55  

(0.59) 

2.49g 

2.53  

(0.69) 

2.42g 

2.07  

(0.67) 

1.96g 

10MVPA  

(hrs∙day-1) 

0.08  

(0.20)m 

0.06g 

0.06  

(0.16)m 

0.07g 

0.15  

(0.29)m 

0.13g 

0.08  

(0.21)m 

0.05g 

0.09  

(0.22)m 

0.07g 

0.07  

(0.13)m 

0.03g 

10MVPAᵜ  0.48  0.53  0.47  0.54  0.39  0.28  
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(hrs∙day-1) (0.36) 

0.40g 

(0.30) 

0.43g 

(0.22) 

0.43g 

(0.51) 

0.43g 

(0.17) 

0.35g 

(0.09) 

0.27g 

† Participants are currently prescribed an amount of medication that reduces the risk or treats CVD (i.e. statins, 

warfarin). ‡ Participants are currently prescribed a medication that may affect the cardiovascular system either 

directly or as a side effect. ¥ Participants are currently prescribed a medication that may affect the cardiovascular 

system either directly or as a side effect, including inflammatory medication. ᵜ Excluding 49 participants who 

accumulated < 10 minutes of 10MVPA in a week (variable not used in CoDA).  m Median (IR). g Geometric mean. 

       

 


