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Abstract. With the proliferation of complex computer systems, end users face a 

never-ending increase in the number of tasks, methods, inputs, passwords, 

usernames (and so on) when using online and standalone computer-based 

systems and applications. This paper examines a method and approach to 

measure how complex a system is to use, and how to reduce the complexity of 

such systems by minimising the requirement for human inputs as much as 

possible, in order to reduce the cognitive load for that user, or group of users. 

This paper addresses a study completed around using virtualised computer 

management systems interfaces of two well-known products AWS (Amazon 

Web Services), Oracle Cloud, and compares the complexity of the steps and 

interface for end users to a private cloud less well-known system called the IDE 

(Intelligent Design Engine). By using a set of derived formula, we examine how 

this can be applied to systems that have qualitative data feedback from the 

experiment process, and how to convert this effectively into quantitative data. 

This data is then analysed numerically using a unique approach to provide 

additional and meaningful results based of the original end user data. 
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1 Introduction 

 
1.1 Cognitive Load and End Users 

 

Every task a human being undertakes requires a certain amount of cognitive power, or 

mental effort, in order to carry it out to completion [1], [2]. As an example, this could 

be from a singular simple task, such as clicking a mouse button, to a set of activities 

that need to be carried out in a specific sequence in order to complete an overall task 

successfully, such as cooking a meal using a set of ingredients and following a recipe. 

The question that rises from this, is how can the complexity of a task or set of tasks be 

measured, and is it possible to understand the cognitive load for a user or group of 

users? 

 

The evidence from other studies and this work suggest it is possible to understand 

this, and other similar experiments in various experimental settings have provided 

evidence and results that demonstrate how to measure cognitive load [3], [4], [5]. 



 

 

 

 

 

Within the field of work, this method of study is generally referred to as Cognitive 

Load Theory (CLT) in relation to task orientated problem solving. One reason and 

requirement for making this feasible is because, like most processes, there is usually a 

start and an end, and a subsequent number of tasks in-between that are usually 

performed in a certain sequence. Once the process completes, this can result in a 

successful end and objective being met, or perhaps even in a full or partial failure. 

Understanding the sum of all the tasks in process is therefore essential to be able to 

measure the overall complexity load [6]. Some processes are simple, for example 

pressing a power on/off button on a Television (TV) remote control. You could 

consider that there are a few steps to this process, one locating the TV remote, two 

locating the correct button (power), and three physically pressing this button, to 

achieve the desired effect (e.g. switching the TV on/off). Conversely, other processes 

can be considered complex, such as the creation of a Virtual Machine (VM), due to 

the number of steps and the inherent know-how and technical expertise required to 

complete [7]. 

 

Further to existing studies, this paper examines how the cognitive load for a 

complex process (set of tasks) can be measured using a unique formula and method 

referred to as the Complexity Load Rating (CLR). The work examines the feasibility 

and challenges around recording qualitative feedback and results from end users and 

proposes a method to translate this into numerical or quantitative data [8], [9], [10]. 

The results are then calculated for each group of users, and are then evaluated to 

present evidence on how a complex process (such as VM provisioning) can be 

simplified as a result of the steps being developed with higher levels of automation 

and the use of pre-coded system intelligence [11], [12], [13]. 

 

1.2 Experiment Definitions 
 

The following experiment was performed to measure the CLR of volunteer human 

participants using the Intelligent Design Engine (IDE), AWS and Oracle Cloud 

systems to provision a Virtual Machine (VM). In terms of participants, a total of 

ninety end users were split into three broad technical capability groups of expert, 

experienced and novice; all users were given access to a web-browser interface 

(Chrome); the user types are described in the Table 1 below: 

 
Table 1. End User Evaluation Group Demographic. 

 

User Group 

  Type  
Definition Quantity of Users 

 

Novice Users 

A user with little or no formal training in 

computer science and no work 

experience in computing disciplines. 

 

30 

 
Experienced Users 

A user with some training in computing 

disciplines, up to A-level standard, with 

some formal training or 1-3 years’ work 

 
30 



 

 

 

 

 
 

 experience in the field  

 

 
Expert Users 

A user with training in computing 

disciplines, with a bachelor’s degree 

level or above, or with more than 5 

years’ work experience in the field 

 

 
30 

 

It should be noted, that end users were asked to categorise themselves into one of the 

three groups listed in Table 1. Once each category was filled (at a threshold of 30 

users), no further end users of this type were included in the experiment to attempt to 

achieve a wider and equal spectrum of feedback based on general end user expertise 

levels. Table 2 below features definitions of how the process analysis was broken 

down into the tasks and sub-task components. For the purposes of this experiment and 

calculating the user feedback, we acknowledge sub-components of tasks, but never 

ask the users to provide their results at this level of granularity; instead, we only deal 

with the qualitative result given at the task level. 

 
Table 2. Process, Task, Sub-component Definitions. 

 

Categorisation Definition 

 

 
Process 

 

A set of tasks which make up a complete process flow; for 

example the steps/tasks required for the building of a virtual 

machine 

 
Task 

An action, which is part of a process, such as creating an RSA 

public and private key pair for a user and then deploying it 

 

Sub-Component 

A task may be made up of sub-components, such as key 

generation, key distribution, and setting key permissions, and 

testing the private and public key handshake 

 
Furthermore, for each task, we now consider the definitions associated with the task 

complexity rating as per Table 3: 

 
Table 3. Task Complexity Definition. 

 

Task Type Definition Weighting 

  Score  

 

 

Simple 

Intuitive, no training required. An example of a 

simple tasks would be answering a question such as 

“What is your age?”, accessing a URL via a browser 

to load a website, or sending a 10-20 worded SMS 
(Short Message Service) message 

1 



 

 

 

 

 
 

 

 

 
 

Moderate 

Basic training required, some experience and know- 

how necessary to execute the task. An example of a 

moderate complex tasks would be following a recipe 

with 3-4 ingredients to prepare and make a meal, 

writing a BASIC computer program to calculate the 

Body Mass Index (BMI) value of a human being, or 

being able to describe and use Pythagoras theorem 

to calculate the length of the hypotenuse. 

3 

 

 

 

 

 
Difficult 

Advanced training required, experience essential on 

how to implement and complete the task. An 

example of a difficult task would be completing a 

residential home extension architectural drawing to 

conform to local government planning and building 

regulations, or being able to write a computer 

program to graphically draw a chessboard, or being 

able to explain in a classroom the full 

implementation of Internet Protocol version 4 

(IPv4), providing examples of network classes, 
subnets and network routing. 

5 

 

Finally, Table 4 defines the three possible Process Mechanism definitions we will 

allocate for each task: 

 

Table 4. Process Mechanism Definition. 
 

Task 

  Mechanism  

Definition 

 

Manual 
All sub-components of the task require 

manual user inputs 

 
 

Semi-Automated 

Some of the sub-components of the task 

require manual user inputs, some are 

automated 

 
Automated 

No sub-components of the task require any 

user inputs 

 

It is worth pointing out the fact, that if a certain task is automated fully, no matter 

how complex it is (and irrespective of the number of subcomponent tasks), it can 

never be recorded as anything other than a simple task from an end user perspective. 

The reason for this being that the complex or intelligent system has been designed and 

coded in such a way as to alleviate or negate the cognitive requirement (or load) away 

from the end user. 



 

 

 

 

 

1.3 Cognitive Load Rating 

 

How to measure the cognitive load of a task is based upon the following general 

conditions, described by the qualitative (subjective) terms below: 

 

1) The end user interpretation of the task as either simple, moderate or difficult 

2) Is the task (or set of tasks) which make up the process automated, semi- 

automatic, or manual 

 

It is important when collecting qualitative data, that not too many options are 

presented for the end user evaluation data outputs, based on their experience and the 

experiment process undertaken. For example, allowing human test subjects to input 

unstructured data such as free-text, or even handwritten text, makes the collation and 

analysis of data somewhat more difficult to interpret, simply because of the number of 

permutations and recognition of what the written data means [14]. 

 

Therefore, in the context of this study, when we refer to task complexity, this is 

defined or described (subjectively) by the end user as simple, moderate or difficult. 

Furthermore, each task undertaken has a process mechanism described as either 

automatic, semi-automatic, or manual. Of the three process outcomes, if a task is 

automated it requires no input, and is automatically set to simple; semi-automatic and 

manual task steps therefore require partial or full end user inputs and can receive a 

simple, moderate or difficult rating. 

 

It is natural that humans prefer providing qualitative feedback for some activity 

they personally take part in [15]. Simple statements of whether something was good 

or bad is often typical of how people relate their experiences [16]. By capturing all the 

tasks for a process, it is possible to begin to measure the results from the 

experimentation method by converting qualitative data into quantitative data, thus, in 

effect performing a translation of words into numbers [17]. This leads us to the next 

phase of the experiment framework of how to use these sets of parameter variables, 

for Task Complexity (Table 3) and Process Mechanism (Table 4), by creating a 

unique method for measuring the Cognitive Load Rating (CLR) for a task or set of 

tasks; in this study we examine the complete process, of how an end user would 

deploy a VM within a computer based cloud environment. 

 

1.3 Cognitive Load Rating Formula 

The proposed formula for measuring the complexity of a singular task is as follows: 

Where the Cognitive Load Rating (CLR) for one task stands for 𝛽 
Where Task Complexity stands for ∆ 
Where Process Mechanism stands for ∅ 

 
𝛽 =∆ x ∅ (1) 



∑ 

 

 

 

 

 

This general formula can be applied to any process type, or cumulatively to a set of 

processes, and is not just applicable to the field of computer science and VM 

provisioning. In order to apply this formula to a set of processes it is necessary to 

make this calculation able to measure the sum complexity of a set of tasks, 

represented as follows: 

 

Where 𝜆 stands for the CLR for a set (sum) of tasks 

Where n stands for the number of tasks 
Where t stands for the task identifier 

 

n 

𝜆  = ∑ (∆ x ∅) 
t=1 

 

 
(2) 

 

Additionally, the formula can then be adjusted to work out the mean average of a 

processes task complexity by using the following method (divides by the total number 

of tasks represented by n): 

 

Where 𝛫 stands for the CLR mean average for a set of tasks 
 

n 

Κ = t=1 (∆ x ∅) 

n 

 

 
(3) 

 

 

2 Measuring the CLR for the IDE, AWS and Oracle Cloud 
 

The question of how to measure the CLR for complex systems is a challenging 

proposition. The primary reason for this is that systems designed for human end users, 

typically receive subjective feedback, in the form of qualitative data. For scientists, 

this is not a straightforward thing to measure, as it is easier for most to work directly 

with quantitative data output sets, rather than qualitative results [18]. This does not 

mean, however, that it is unfeasible or impossible to work with such data, as much 

work has already been completed in the field to address various approaches, for 

example converting words into numbers. 

 

2.1 The 10-Step Sequence for Provisioning VM’s 

 

After building many basic VMs on various cloud platforms, using the standard 

interface offered through the IDE, AWS and Oracle web management portals, it was 

observed that the following sequence of steps were necessary to provide the required 

inputs to allow for each respective platform to provision a VM and make it accessible 

and therefore useable. By usable, we mean the point at which an end user can log in to 

the system and start using the VM. Table 5 explains the sequence in more detail: 



 

 

 

 

 
 

Table 5. 10-Step VM Provisioning Process 
 

Step 

No. 

VM Provisioning Task Description 

1 Cloud Provisioning 

Access 

This is the task needed to access and authenticate to be 

able to use the cloud platform, typically 

username/password 

2 Configure Role Setting up role access-based controls, such as 

administrator 

3 Select compute as 

the option for VM 

deployment 

Public cloud offerings prefer to allow manual choices 

for other offerings such as Database as a Service 

(DaaS), Platform as a Service (PaaS), or Software as a 

Service (SaaS). This experiment only deals with 

Infrastructure as a Service (IaaS). 

4 Select the image you 

wish to use to install 

to the VM (usually 

the OS type/version) 

Typically, the OS version and software packages, add- 

on’s and any other supporting application software 

5 Select the VM CPU, 

Memory, and Disk 

Parameters 

VM Shell parameter definition phase 

6 Define VM 

Parameters 

Define, IP addresses, netmasks, OS version, packages 

and other such configurable parameters 

7 Define VM Storage Select type and amount of disk storage to use 

8 Add SSH Key, 

create a 

Private/Public key 

and upload the pubic 

key 

Generation of an appropriate SSH encryption key to 

secure communications and authentications 

9 VM creation process VM shell creation, install and boot process 

10 Accessing the VM 

via the internet, or 

via a remote network 

Access involves opening Firewall ports to access the 

system e.g. Transmission Control Protocol (TCP) 22 

Secure Shell (Unix type), or TCP 3389 Remote Desktop 
Connection (Windows) 



 

 

 

 

 

2.2 Provisioning System Values 

 

For each platform included in the experiment, the following system values in Table 6 

describe the observed level of automation for each step in the VM provisioning 

process. These are recorded as either manual, semi-automatic or automatic as defined 

in Table 4. The three system platforms for AWS, Oracle and IDE 10-step automation 

details are listed below. 

 
Table 6. Provisioning Systems (AWS, Oracle and IDE) 

 

Step 

No. 

VM Provisioning Task Oracle Step AWS Step IDE Step 

1 Cloud Provisioning 

Access 

Manual Manual Manual 

2 Configure Role Semi-Automatic Automatic Automatic 

3 Select compute as the 

option for VM 

deployment 

Semi-Automatic Semi-Automatic Semi-Automatic 

4 Select the image you wish 

to use to install to the VM 

(usually the OS 
type/version) 

Semi-Automatic Semi-Automatic Automatic 

 

5 
 

Select the VM CPU, 

Memory, and Disk 

Parameters 

Semi-Automatic Semi-Automatic Semi-Automatic 

6 Define VM Parameters Semi-Automatic Semi-Automatic Automatic 

7 Define VM Storage Semi-Automatic Semi-Automatic Semi-Automatic 

8 Add SSH Key, create a 

Private/Public key and 

upload the pubic key 

Manual Manual Automatic 

9 VM creation process Automatic Automatic Automatic 

10 Accessing the VM via the 

internet, or via a remote 

network 

Manual Manual Automatic 

 

 

The following weighting values described in Table 7 have been applied to the three 

types of automation method, manual, semi-automatic and automatic. 



 

 

 

 

 
 

Table 7. Weighting Automation Values 
 

Step Method Weighting Value 

Manual 10 

Semi-Automatic 5 

Automatic 1 

 

 
 

2.3 Calculation of User Results 

 

The CLR calculation for each user task results are derived in detail using the 

following formula. 

 
Where R is the derived result 

Where 𝜇 is the user input 

Where s is simple 

Where m is moderate 

Where d is difficult 

Where x is manual 

Where y is semi-automatic 

Where z is automatic 

 
R = 

( 𝜇 = ( s ∧ x ) → ( 1 × 10 )) ∨ ( 𝜇 = ( m ∧ x ) → ( 3 × 10 )) ∨ 
( 𝜇  = ( d  ∧  x)   → ( 5  ×  10 ))   ∨  ( 𝜇  = ( s  ∧  y ) → ( 1  ×  5 ))  ∨ 
( 𝜇  = ( m  ∧  y ) → ( 3  ×  5 ))    ∨  ( 𝜇  = (d  ∧  y)   → ( 5  ×  5 ))  ∨ 
( 𝜇  = ( s  ∧  z ) → ( 1  ×  1 ))  ∨  ( 𝜇  = ( m  ∧  z ) → ( 3  ×  1 ))  ∨ 

( 𝜇 = (d ∧ z) → ( 5 × 1 )) 

 
 

3 CLR Provisioning Results 

 
As part of the experiments undertaken, three principle sets of results for the end user 

demographic were collected. These include expert, experienced and novice user 

groups (as defined previously in Table 1). Each user was observed, and the result for 

the 10-step VM Provisioning process are listed in Table 5 recorded; this provides the 

output for 3 sets of users listed in figure1, 2 and 3 respectively. 



 

 

 

 

 
 

 

Fig. 1. CLR VM Provisioning Experiment – Expert Users. 

 

 
 

 
Fig. 2. CLR VM Provisioning Experiment – Experienced Users. 

 

 
 

 
Fig. 3. CLR VM Provisioning Experiment – Novice Users. 

 

As can be noted from the graph output results, the left-hand axis records the overall 

CLR for each user in their respective group, for provisioning a VM using the 10-Step 

process, for AWS, Oracle and the IDE. The bottom axis records the  numerical 

identity of each user in that particular group. 



 

 

 

 

 

4 Interpretation of CLR results 

 

The following chart in Figure 4 provides guidance on how to interpret the CLR for 

users of a particular system. As discussed earlier, the idea within the field of CLT is  

to capture the mental energy or power required for a user to perform a certain process. 

The actual CLR experiment provides a unique method for doing this, and by design is 

agnostic to the system/process that it is used to measure. Therefore, the mechanism 

used as part of this experiment can be applied to any process or system. 

 

Note, that the guide in Figure 4 provides insight on how much mental power is 

required for an end user, or group of users to use a system effectively. Interpreting the 

results is designed to be easy to understand, where a lower CLR score suggests that a 

system/process is easier for a user to perform or complete. The guidance categories 

fall into one of seven - either very-low (0-5), low (6-10), low-medium (11-15), 

medium (16-20), medium-high (21-25) and high (26-30) and very high (31+). 
 

Fig. 4. CLR Guide – Mental Power Requirement 

 

Based on the results in Figure 4, it consistently shows the same order of  

complexity for the Oracle, AWS and IDE systems. The order of complexity from high 

to low being Oracle, AWS, followed by the IDE as the simplest to use for end users to 

provision a VM using the 10-step sequence. Interestingly, it was observed that 

lowering the complexity for system usage is primarily based on the ability of making 

more steps in a process fully automated, therefore resulting the end to end process 

being considerably easier for the end users. 



 

 

 

 

 

5 Conclusion 

 
The data collected showed that of the three user groups, expert and experienced users 

had a similar set of results, despite the difference in technical/experience ability 

defined in Table 1; however, novice users showed an increased struggle to use the 

systems, and there was a noted increase in the CLR for this group. Lowering of the 

CLR for systems had a strong correlation to the number of tasks in the process that 

were fully automated. As highlighted in the study, any task in the process which was 

fully automated, had to be recorded as simple from the end user perspective, based on 

the fact that there is nothing for the user to actually do to progress that particular step 

towards the end objective. Therefore, it stands to reason that the CLR for users 

reduces dramatically as more steps are automated, and fewer human inputs are 

required. As a result of this study paper, it is the recommended that for those 

responsible for building any type of system consider carefully the following two 

principles to reduce the mental power/effort needed by end users to perform a process 

by: 

 
1) Reducing the requirement for human inputs wherever possible 

2) Enabling the automation of a process and its set of tasks 
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