
Automated test case generation from domain specific
models of high-level requirements

Oyindamola Olajubu
University of Northampton, UK

oyindamola.olajubu@northampt
on.ac.uk

Scott Turner
University of Northampton, UK

scott.turner@northampton.ac.u
k

Suraj Ajit
University of Northampton, UK

suraj.ajit@northampton.ac.uk

Scott Thomson

GE Aviation, Cheltenham, UK

scott1.thomson@ge.com

Mark Johnson
University of Northampton, UK

mark.johnson@northampton.ac
.uk

Mark Edwards
GE Aviation, Cheltenham, UK

mark.edwards4@ge.com

ABSTRACT

Model-based software development has been shown to improve

productivity and quality of software through automation. This

involves using abstractions or models at several stages of

development. This work reports on preliminary attempts to

automate the generation of test cases from software requirement

models using an industrial case study. The requirements are

represented using a modeling notation and test cases are

automatically generated using model to text transformation

techniques.

CCS Concepts

• Software verification and validation ➝Software testing and

debugging.

Keywords

Model-Based Testing, Domain Specific Languages

1. INTRODUCTION
Software Testing is one of the most crucial phases of development

that could account for more than 50% of the overall cost of

development [1]. The automation of this process could reduce this

cost in terms of time and effort. Validation approaches such as

requirement-based testing can be used to uncover faults and

defects in artefacts during early stage development. To aid

automated testing from requirements, software requirement

specifications need to be precise. In this work, we propose an

approach to automate test case generation from requirement

models. This paper reports on an industrial case study.

Requirement specification at GE Aviation Systems is primarily

done using textual “shall” statements in natural language. Natural

language is often used for requirement specifications due to its

ease of understanding and the need for no additional training.

Design models are then created based on these requirements for

modeling and simulation. These models are then refined and used

for automated code generation. The test cases developed against

the requirements and design are developed manually. The natural

language requirements are often ambiguous and manual testing

can be time consuming and prone to human error. This work

presents a requirement-based approach to automate the test case

generation process to increase productivity. The requirements are

represented as models and model-based approaches are applied to

automatically generate test cases.

Model-Based Software Development (MBSD) is an approach to

software development with models as primary artefacts. Models

or abstractions of the system at different levels are used at several

phases of development. Model-Based Testing (MBT) involves the

use of models in different formats as a basis for testing. In this

work, our MBT approach uses requirements represented using a

Domain Specific Language (DSL). DSLs are languages tailored to

a particular domain or built for a specific purpose. They can be

described as modeling languages whose constructs are based on

domain related concepts. The use of DSLs have been shown to

increase expressiveness of specifications by experts in a particular

domain [2]. A DSL is used in this work to bridge the gap between

ambiguous natural language specifications and rigorous formal

specifications.

Automation of development activities in MBSD is usually done

through a series of model transformations. Model transformations

involve taking models conforming to a metamodel as input and

generating development artefacts from them. With model

transformations, models used at any stage of software

development can be manipulated to generate a model or text used

in another phase. There are two types of model transformations:

Model-to-Model transformation (generation of models from other

models) and Model-to-Text transformation (generation of textual

artefacts from models). In this work, we apply Model-to-Text

(M2T) transformation to generate text-based test cases from

requirement models specified using the DSL. We present an

approach to automate generation of test cases from textual

requirement models expressed in a DSL. In this work, a M2T

transformation language is applied for test case generation from

requirement specifications expressed in a DSL. This paper is

structured as follows: Section 2 presents some related work. The

application of model transformations to test case generation is

described in Section 3 while Section 4 concludes the paper and

discusses future work.

2. RELATED WORK
There are several existing tools for automatic test case generation.

However, the model-based approaches have been based on semi-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.
RACS’15, October 9–12, 2015, Prague, Czech Republic.

© 2015 ACM. ISBN 978-1-4503-3738-0/15/10 …$15.00.

DOI: http://dx.doi.org/10.1145/2811411.2811555

mailto:oyindamola.olajubu@northampton.ac.uk
mailto:oyindamola.olajubu@northampton.ac.uk
mailto:scott.turner@northampton.ac.uk
mailto:scott.turner@northampton.ac.uk
mailto:suraj.ajit@northampton.ac.uk
mailto:scott1.thomson@ge.com
mailto:mark.johnson@northampton.ac.uk
mailto:mark.johnson@northampton.ac.uk
mailto:mark.edwards4@ge.com
mailto:Permissions@acm.org

formal notations (UML, SysML) and formal specifications. Test

cases have been generated from UML Activity diagrams

[3][4][5][6], Use Cases [7][8], State Charts [9] and Sequence

diagrams [10]. Our approach differs from these in that we use a

textual modeling notation similar to natural language rather than a

graphical notation. Although the modeling notation used for

requirement specification is not fully described in this work, our

work contrasts in its domain specificity compared to the

genericity of the UML approaches.

Formal specifications have also been used for test case generation.

Tools such as Fastest [11] and Isabelle [12] have been used to

generate test cases from Z specifications. The authors of [13]

describe an approach to test case generation from Object Z

models. Formal models are mathematical-based notations for

concise specification of systems. The use of a formal method

requires a high learning curve while a DSL reduces it by the use

of domain related concepts. The high learning curve of formal

notations reduces its practical use in industry.

We take a less formal approach by using a DSL. It is expressive in

its use of domain terms and can also be manipulated with existing

model management tools for automatic generation of test cases.

Cucumber [14] is a testing framework that allows domain experts

(business managers) to specify tests in a plain language based on a

behavior-driven development style of Given, When, Then, which

any layperson can understand. These tests are then interpreted by

Cucumber into the specified programming language. However,

unlike our approach, it does not automate generation of test cases

from high-level requirement specifications.

3. TEST CASE GENERATION
In this section, we describe the approach taken to automate the

generation of test cases from textual specification models. The test

cases generated are high-level artefacts that can be used to

validate the resulting system against specified functional

requirements. The generated tests are not intended to replace low-

level unit tests. They are however aimed at automating the

development of test descriptions that are otherwise manually

written. The approach to test case generation is basically done

using templates. M2T transformation is a model manipulation

method for generating text from input models. Epsilon Generation

Language (EGL) [15], a template based language for M2T

transformation is used to develop EGL scripts for transforming

testable requirements into test cases.

Figure 1: Overview of test case generation approach

An overview of the template based test case generation process is

shown in Figure 1. The first step requires the textual models to be

loaded for transformation. The textual models are requirements

specified using a DSL, developed in collaboration with our

industry partner. The description of the DSL is not described in

this work and we have focused on the test case generation process.

The DSL supports description of functional and non-functional

requirements. The test cases generated are at a higher level

compared to unit tests. Non-executable tests are generated from

functional requirement models, assuming no knowledge of the

implementation code. The test generation coverage of this

approach is such that appropriate testing methods are applied to

the different classes of requirements. The aim is to generate

minimal effective tests rather than impractical exhaustive testing.

Table 1: Coordination file (.egx)

rule Logic2Text

transform logic: LogicRequirement{

template: "logic2text.egl"

target : "logic/" +logic.id+".txt"

}

rule Range2Text

transform range: RangeRequirement{

template: "range2text.egl"

target : "range/" +range.id+".txt"

}

The next phase includes coordination of the test generation by

invoking model transformation file listed in Table 1. Within this

coordination file, there are several rules specified for identified

testable requirements. Logic requirements and Range

requirements are examples of testable requirement types and are

described in the following subsections. Corresponding folders for

these requirement types are also created for population by

generated text (.txt) files. The output of the test case generation

for each requirement is written to the corresponding text file. This

ensures traceability from each test case to its originating

requirement. A test case is described in terms of a set of inputs

and expected behavior or results.

As shown in the listing, the logic2text.egl template is applied to

all identified logic requirements in the input specification model.

A similar rule is defined for range requirements and can be

extended for other types of requirements. In the example above, it

is also specified that a ‘range’ folder is to be created and the

range2text.egl template is applied to range requirements in the

input model. The EGL scripts used for the test case generation

have static and dynamic components. The dynamic components

are populated based on the variable values of each requirement.

Examples of these scripts are presented in the following

subsections.

3.1 Range requirements
Range requirements are requirements that can be used to specify

the upper and lower boundaries of a variable. It allows for the

specification of a range of accepted integer values for a defined

element or variable. Test case generation from range requirements

is done by the application of equivalence partitioning and

boundary testing. These types of requirements have defined upper

and lower boundaries with optional margin values. The

equivalence classes of range requirements are classified into lower

boundary, upper boundary and derived midrange values. A total

of nine test cases are generated for each requirement with three

test cases for each class.

Table 2: Snippet from range2text.egl

if(self.range.margin.isDefined()){

margin =self.range.margin.marginvalue.asReal();

}else{ margin = 1.0;}

 %]

Lower Boundary Tests

Test case 1:[%=param%]=[%=self.getMin()- margin%]

Test case 2:[%=param%]=[%=self.getMin().asReal()%]

Test case 3:[%=param%]=[%=self.getMin()+ margin%]

shows a snippet from the range2text.egl transformation template.

The ‘if-else’ condition assigns the value of 1.0 to the margin

variable unless otherwise stated in the requirement. Three test

cases are generated from the lower boundary of range

requirements. The first test case subtracts the margin value from

the lower boundary. The second test case is based on the lower

boundary value itself and the third test case adds the margin value

to the lower boundary value. These steps are repeated for the other

equivalence classes, i.e., midrange and upper boundary values.

The behavior of test cases within the specified range is expected

to be normal while the system is expected to give some form of

negative feedback with out of range test cases. The output for

each requirement is a text based (.txt) file containing the test cases

automatically generated from that requirement.

3.2 Logic requirements
Logic requirements are behavior requirements, which define a

combination of one or more statements for elements or features.

The format of logic requirements is such that a decision is made

based on the output of the combination of multiple conditions and

Boolean operators. A condition can be defined as an expression

with no Boolean operators (e.g. FT_DOOR = open in the

example in Figure 1). A decision is composed of conditions and

zero or more Boolean operators. Logic operations could be

evaluated as logic truth tables with each combination as a test

case. This can however become exponential with increasing

number of input conditions (i.e. 2n, where n is the number of input

conditions). An example of a logic requirement specified in the

DSL is shown in Figure 2.

Figure 2: Example of logic requirement

The Modified Condition/Decision Coverage (MC/DC) criteria is

applied as a guide to generating test cases from this type of

requirements. This approach reduces the number of test cases by

identifying combinations of conditions that will affect the overall

decision. In [16], model checking was combined with MC/DC as

a white-box testing criteria. In our work, we apply MC/DC as a

black-box approach. The specifications used are models at a

higher level of abstraction with no knowledge of the

implementation code. The implementation of MC/DC is done

based on the work presented in [17]. The walking true pattern is

applied to requirements with only OR operators while the walking

false pattern is applied to decisions based on only AND operators.

The minimum number of test cases required to achieve MC/DC

for a single operator logic based requirement is (n+1), where n is

the number of conditions in the requirement.

Table 3: Logic table for logic-based requirement BREQ1

 FT_DOO

R = open

LGT_O

N = true

PWR_SDB

Y =true

HTR_ON =

false

 (Expected

Output)

TC1 T (1,1) T (1,2) T (1,3) T (1,4) T

TC2 F (2,1) T (2,2) T (2,3) T (2,4) F

TC3 T (3,1) F (3,2) T (3,3) T (3,4) F

TC4 T (4,1) T (4,2) F (4,3) T (4,4) F

TC5 T (5,1) T (5,2) T (5,3) F (5,4) F

There are four conditions with only AND operators in the

requirement in Figure 2. The total number of combinations and

resulting test cases that could be generated is 24 = 8, the

application of “walkingFalse” identifies 4+1=5 effective test

cases. To manually derive the test cases for this requirement, a

logic table is used as shown in Table 3. The following are

required to test decisions with only AND operators [16]:

 One test case where all inputs are true and expected

output set to true. This is addressed in TC1 in Table 3

 N test cases, where each input is exclusively false and

expected output set to false. Test cases (TC2 - TC5)

show each condition in the requirement set to false

exclusively.

Table 4: Code snippet of WalkingFalse operation in

logic2text.egl

[%

operation LogicRequirement walkingFalse():Map{

%]

The conditions in this requirement are:

[% for (c in self.getConditions()){%]

[%=c%] [%}

var table:Map;

 var keys = self.getKeys();

'Populating table with all true

values.........'.println;

for (k in keys){

 table.put(k,true);

}

var tbrseq = self.toBeReplacedByFalse();

 for(d in tbrseq){

 table.put(d,false);

 }

 'Walking false complete.....'.println;

return table; } %]

The egl script in Table 4 shows a method to automate the

generation of the test cases. The conditions in the requirement are

first identified and printed. A map is then used as a representation

of the resulting logic table. The keys of the map are generated by

the getKeys() operation. The keys are derived from the number of

condition (i.e. 4) and the total number of test cases (i.e. 5). The

keys for the map generated for this example are the values in

brackets in Table 3. The generation of the map keys is followed

by populating the map with true values. The keys of the map

whose values is to be replaced by the walking false is then

generated by the toBeReplacedbyFalse() method. This method is

used to calculate key values that produce the effect of a walking

false as shown in Table 3. The result of the

toBeReplacedbyFalse() method is a sequence of the following

map keys: (2, 1) (3, 2) (4, 3) and (5, 4). The corresponding map

values for these keys are then set to false. After the identified

values have been replaced, the expected value of each row is

calculated. Each row in the logic table is printed as a test case.

The ‘walkingTrue’ pattern, applied to requirements with only OR

operators is implemented in a similar manner. The map table is

initially populated with false values and then the values of certain

keys in the map are set to true.

4. CONCLUSION AND FUTURE WORK
This paper presents the work done to automate generation of test

cases from domain specific models. A M2T transformation

approach is applied to automate test case generation from

requirement specifications in input models. A template-based

approach is taken to generate test cases using EGL transformation

scripts. Boundary testing with Equivalence classes is applied to

range requirements with upper and lower boundary values. Test

generated from single operator Logic Requirements was done

using the MC/DC criteria. This is a work-in-progress paper and

future work would involve extending the MC/DC approach to

generate test cases from multiple operator logic requirements.

This approach is to be extended to cover test case generation from

other requirement types and also its application to larger models

to evaluate its scalability.

5. ACKNOWLEDGMENTS
Many thanks to our industry partner GE Aviation and the

University of Northampton for the joint sponsorship of this

research project.

6. REFERENCES

[1] A. Pretschner, W. Prenninger, S. Wagner, C. Kuhnel, B.

Sostawa, R. ZoIch, and T. Stauner, “One evaluation of

model-based testing and its automation,” in Proceedings.

27th International Conference on Software Engineering,
2005. ICSE 2005., 2005, no. 2, pp. 392–401.

[2] A. Raja and D. Lakshmanan, “Domain Specific

Languages,” International Journal of Computer
Applications, vol. 1, no. 21. pp. 105–111, 2010.

[3] D. Kundu and D. Samanta, “A Novel Approach to

Generate Test Cases from UML Activity Diagrams.,”

The Journal of Object Technology, vol. 8, no. 3. p. 65,
2009.

[4] L. Wang, J. Yuan, X. Yu, J. Hu, X. Li, and G. Zheng,

“Generating test cases from UML activity diagram based

on gray-box method,” in Proceedings - Asia-Pacific

Software Engineering Conference, APSEC, 2004, no.
60233020, pp. 284–291.

[5] C. Mingsong, Q. Xiaokang, and L. Xuandong,

“Automatic test case generation for UML activity

diagrams,” in Proceedings of the 2006 international

workshop on Automation of software test - AST ’06,
2006, p. 2.

[6] M. F. T. Boghdady, Pakinam N., Badr, Nagwa L.,

Hashem, Mohamed, and Tolba, “A Proposed Test Case

Generation Technique Based on Activity Diagrams,” Int.

J. Eng. Technol., vol. 11, no. 3, 2011.

[7] B. Hasling, H. Goetz, and K. Beetz, “Model Based

Testing of System Requirements using UML Use Case
Models,” pp. 367–376, 2008.

[8] C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jezequel,

“Automatic test generation: a use case driven approach,”

IEEE Trans. Softw. Eng., vol. 32, no. 3, pp. 140–155,
2006.

[9] R. Swain, “Automatic Test case Generation From UML
State Chart Diagram,” vol. 42, no. 7, pp. 26–36, 2012.

[10] E. G. Cartaxo, F. G. O. Neto, and P. D. L. Machado,

“Test case generation by means of UML sequence

diagrams and labeled transition systems,” 2007 IEEE Int.

Conf. Syst. Man Cybern., pp. 1292–1297, Oct. 2007.

[11] M. Cristiá, P. Albertengo, and P. Monetti, “Fastest: a

model-based testing tool for the Z notation,” in

Mazzanti, F., Trentani, G. (eds.) PTD-SEFM, Pisa, Italy,
pp. 3-8 (2010).

[12] S. Helke, T. Neustupny, and T. Santen, "Automating test

case generation from Z specifications with Isabelle." in

ZUM '97 Proceedings of the 10th International

Conference of Z Users on The Z Formal Specification
Notation, pp. 52-71, Springer-Verlang, 1997.

[13] A. Ashraf and A. Nadeem, “Automating the Generation

of Test Cases from Object-Z Specifications,” 30th Annu.
Int. Comput. Softw. Appl. Conf., pp. 101–104, 2005.

[14] A. Bowers and J. Bell, “Automated testing with

Selenium and Cucumber Write , batch , and run

automated tests on your RIAs,” , pp. 1–15, 2013,[online]

Available at:

http://www.ibm.com/developerworks/library/a-

automating-ria/a-automating-ria-pdf.pdf [Accessed 15
Aug 2015].

[15] L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. C.

Polack, “The epsilon generation language,” in Model

Driven Architecture--Foundations and Applications,
2008, pp. 1–16.

[16] S. Rayadurgam and M. P. E. Heimdahl, “Coverage based

test-case generation using model checkers,” Proceedings.

Eighth Annu. IEEE Int. Conf. Work. Eng. Comput. Based
Syst. 2001, pp. 83–91, 2001.

[17] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L.

K. Rierson, A Practical Tutorial on Modified

Condition/Decision Coverage. National Aeronautics and

Space Administration, Langley Research Center, 2001.

