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ABSTRACT

In order to streamline video content distribution on a myr-
iad of platforms over heterogeneous networks, HTTP Adap-
tive Streaming (HAS) is being increasingly adopted. In this
paper we pilot a bio-inspired HAS optimisation design with
the aim of maximising the overall user experience of a video
playback session. Evaluations conducted within a real-world
Internet environment, using quality indicators such as conver-
gence time, start-up delay, average video rate, stability, and
fairness, demonstrate the benefits of our design.

Index Terms— HTTP Adaptive Streaming, Adaptive Bi-
trate Selection, Buffer-based Player

1. INTRODUCTION

HTTP-based adaptive video streaming service ensures that
the quality of video each user receives is derived from con-
text dependant information, e.g. throughput, buffer level, etc.
This requires a client to continuously monitor and estimate
the resource availability. It then requests a chunk with the
highest video rate the estimated network and device capac-
ity can sustain. This unique mechanism allows HAS video
services to adapt to different environments and changes in
transmission channel states. The main challenge of design-
ing an adaptation scheme is to seek an optimal balance be-
tween a number of QoE factors such as video rate and sta-
bility or occurrence of re-buffering. Inspired by the study of
population dynamics in biology, this paper introduces a novel
HAS player that maximises user experience. Evaluations con-
ducted within a real-world Internet environment demonstrate
the benefits of our design with respect to fast convergence,
low start-up delay, maximum utilisation, high average video
rate, high stability, fairness to other players and video freeze
avoidance.

2. BACKGROUND

HAS services provide audio-visual content in one or multi-
ple adaptation sets of representations. Each representation is
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encoded using a specific encoding configuration (such as bi-
trate and native frame resolution). A representation of content
is stored in a series of chunks (segments). Using a manifest
file such as Media Presentation Description (MPD), a HAS
client progressively requests chunk of a certain bitrate, from
the selected representation, based on the level of available re-
sources measured at the client side. Such a streaming method
is also known as adaptive bitrate selection (ABR). The first
generation of ABRs select a chunk with the bitrate just below
the estimated throughput derived from a predefined number of
previously downloaded chunks [1, 2]. When there is a change
of the estimated throughput, the media playback buffer level
can be used as an indicator to determine whether to increase,
decrease or keep the current quality level in order to max-
imise the playback quality whilst avoiding buffer under-run
(i.e., re-buffering) [3, 4]. Many of the current HAS services
are found to suffer from unnecessary re-buffering [5], unde-
sirable fluctuations [6] and sub-optimal video quality [6]. In-
stead of solely relying on heuristic, it is shown in [7] that
incorporating a system model that captures the relationship
between buffer state changes and video rate can improve the
QoE performance of a HAS player. Based on this observa-
tion we were motivated to take a cross-disciplinary approach
towards the QoE modelling of ABR algorithms.

Population dynamics is a branch of mathematical ecology
that is mainly concerned with how the population of species
grows and shrinks as well as the processes that influence the
changes e.g. resource and competing specie [8]. This pa-
per focuses on the most well-known population model, the
Verhulst-Pearl logistic model. The model is very well under-
stood and is known to be stable and converges at the maxi-
mum carrying capacity. We then propose a buffer-based ABR
algorithm that uses the Verhulst-Pearl equation to drive its rate
evolution map.

3. VERHULST-PEARL BASED VIDEO RATE MAP

The video quality level is assumed to be a specie whose
growth we are interested in, and the playback buffer is con-
sidered to be its habitat. We assume that the rate at which the
incoming video chunks arrives is analogous to birth rate and
the rate at which a player consumes content from the play-



Fig. 1. Experimental Set-up

back buffer is assumed to be the death rate. It is known that
the rate of chunk arrival is c(ti)Q [5], where c(ti) is the through-
put of a link and Q is bitrate of the chunk being downloaded.
Please note that the consumption rate is constant at one sec-
ond of content every wall-clock second. Therefore, buffer
level changes Bt at any time t depends on these two param-
eter. AS in a natural habitat, the buffer size will determine
a limit on the maximum video rate qmax a player can down-
load. In our case, unlike in the wild, the maximum video rate
is given (as defined in the MPD), therefore our task is focused
on identifying the amount of the buffer required to guarantee
the maximum video rate. We now modify the Verhulst-Pearl
equation thus as:

dQ

dB
= αq(qmax − q) (1)

Equation (1) defines the only valid system state-space,
which is represented by the rate at which video rate changes
with respect to buffer state. With α being the growth con-
stant and q the requested video rate. To derive the rate map
we solve the differential equation (1) assuming that, like in a
natural context, there is a seed population that reproduces to
kick-start the growth. We call this the minimum video quality
level q0.

Q =
qmax

1 + [ qmax

q0
− 1]e−αqmaxBt

(2)

It is easy to show that equation (2) will always converge
at the maximum video rate, that is, limB→∞Q = qmax [7].

3.1. Implementation

A HAS player chooses video representations from a finite and
discrete set. We first restrict the player to switch between ad-
jacent video rates only so as to prevent high amplitude varia-
tions.

Assuming qk has been completely downloaded (please re-
call that we are starting with (qmin), we can use equation (3)
to calculate the buffer distance needed to change video rate.
Once ∆Bk+1 = 0 we move up the ladder of video rates. If
∆Bk−1 = 0, the video rate is switched down, else we main-
tain the current video rate.

∆Bk±1 =

{
Q−1(qk+1) −Bt qk+1

Bt −Q−1(qk−1) qk−1
(3)

4. PERFORMANCE EVALUATION

The experimental set-up is shown in Figure 1. The client is
connected to the Internet either via an Ethernet switch or EE’s
3G networks in the UK. We use the web services located at

the Alpen-Adria-Universität, Klagenfurt, which hosts the Big
Buck Bunny dataset [9]. The player is implemented in Python
and uses Request package for HTTP request-response trans-
actions, and is tested on Ubuntu 12.04.2 LTS with 3.8 kernel.
The host that runs the player also hosts dummynet, tcpdump,
lsof, and wget as part of the experiment.

We conducted a “blue-sky” test in both wired and wireless
setting. Then varies the link capacity using dummynet. We
set Bmax = 200s, and the the growth constant α = 0.05
is used. Each experiment was conducted 10 times and the
average result is used. When more than one player is used
or when a player operates in the presence of a background
traffic, the experiment is conducted on the same machine for
the maximum portability.

4.1. Evaluation Metrics

There is a growing number of research in the field of QoE,
and no definite model has so far been established for adaptive
streaming [10, 11]. To evalaute the performance of our model,
we employ the following metrics which are widely recognised
as the key QoE indicators:

• Re-buffers: this is the total number of video freeze
event per streaming session.

• Average video rate: is calculated as t1q1+t2q2...tnqntn−t1 and
measured in kb/s [12].

• Stability: measures the degree of video quality oscilla-
tion as described in [13].

• Utilisation of available network resource: is calculated
by dividing the average video rate by the average net-
work capacity [14].

• Fairness: two or more services are said to be fair if
they divide the available resource among themselves
equally.

• Convergence time: is the time taken to settle at the sus-
tainable video rate.

• Startup Delay: in this paper we define startup delay as
the amount of time it takes for a player to download 15
chunks before the playback starts.

5. RESULTS
This section discusses the result of the various test-bed exper-
iments conducted.

5.1. Startup Period and Stability

In the first set of the experimentation we stream in both the
wired and wireless environments with the network link as is.
As can be see from Figure 2 the player is able to converge
at the maximum video rate in a very short time and without
a single instance of oscillation within the wired environment.
Furthermore, the start-up delay is minimal at 1.19s. A similar
performance is obtained when the player is run in a wireless
environment (see Table 1 the summary). It’s worth noting
that the player seems to be more cautious in a risky environ-
ment, delaying the video rate upgrade in order to maximises



Table 1. Adaptation for Variable Bandwidth
Environment Startup

Delay
(s)

Convergence
Time (s)

Maximum
Rate
(kb/s)

Wired 1.19 16 8000
Wireless 1.25 91 8000

Fig. 2. Blue Sky Test (Wired Network)

stability. As can be seen from Figure 4(b) there are only three
(3) instances where the player changes its video rate, with the
oscillation factor of only 2.0%, even though the network is
anything but stable as can be observed from Figure 4(a).

5.2. Responsiveness and utilisation

Next, we investigate how the propose player adapts in a net-
work with severe bandwidth fluctuation. Figure 3 clearly
demonstrates that the player is able to converge at exactly
the system capacity regardless of whether it is an upward or
downward convergence. Furthermore, when the link capacity
suddenly decreases, the player does not instantly over-react
like many other HAS player designs, rather because it senses
the buffer can sustain high video rate it takes a modest ap-
proach, and when it starts reducing the video rate it does that
linearly. As is summarised in Table 2, the design maximises
the utilisation of link capacity at 106% without causing any
video freeze or resulting in buffer dropping to a risky level.
This confirms the fact that with careful design, a player can
download above the link capacity, provided that some content
is pre-buffered, without affecting its QoE performance.

5.3. Fairness

Also investigated is how fair the player is to other HAS player
and background TCP traffic. A total of four players, all using
the same implementation, were run concurrently. We set the
maximum bandwidth to 6Mb/s, the hypothesis is that if the
players are fair to one another they should equally share the
available bandwidth (because all the players are connected to
the same network and are also running on similar device). As
can be seen from Figure 5(a) none of the players secures more
than 1.5Mb/s, a fair share of the available capacity. This is

Fig. 3. Responsive and Utilisation test

Table 2. Adaptation for Variable Bandwidth
Rebuffers Maximum

Video rate
(kb/s)

Average
Video
rate(kb/s)

Throughput
Utilisation
(%)

0 6000 3827 106

achieved with a high level of stability, as none of the players
observed more than three unnecessary oscillation of the video
rate.

Next, the background traffic (file downloading from the
same server) is started 30s after the start of the streaming ses-
sion. As can be seen in Figure 5(b), as soon as the background
traffic is started the video quality starts to gradually drop un-
til an equilibrium is reached. They fairly share the available
bandwidth, that is, each uses about 3Mb/s. Furthermore, it
is worth noting that the drop in video rate does not affect the
stability of players, start-up delay or other QoE factors.

6. CONCLUSIONS

HTTP adaptive streaming provides a great foundation for on-
line media streaming over heterogeneous networks. Recent
years have seen an increasing amount of efforts in the devel-
opment of adaptation algorithms with the shared objectives
of maximising the quality of user experiences. This paper pi-
lots a new approach that balances multiple key quality factors
using a bio-inspired mechanism. Evaluation results demon-
strate the effectiveness of the proposed design with respect to
start-up delay, convergence time, stability, network efficiency,
average video quality and fairness.
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(a) Blue Sky Test (wireless)

(b) Player Oscillation

Fig. 4. Four players streaming at the same time.

(a) Four Players streaming at the same time.
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