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Abstract

Many financial modeling applications require to jointly model multiple uncertain quantities to

present more accurate, near future probabilistic predictions. Informed decision making would

certainly benefit from such predictions. Bayesian Networks (BNs) and copulas are widely

used for modeling numerous uncertain scenarios. Copulas, in particular, have attracted more

interest due to their nice property of approximating the probability distribution of the data

with heavy tail. Heavy tail data is frequently observed in financial applications. The standard

multivariate copula suffer from serious limitations which made them unsuitable for modeling

the financial data. An alternative copula model called the Pair-Copula Construction (PCC)

model is more flexible and efficient for modeling the complex dependence of financial data.

The only restriction of PCC model is the challenge of selecting the best model structure.

This issue can be tackled by capturing conditional independence using the Bayesian Net-

work PCC (BN-PCC). The flexible structure of this model can be derived from conditional

independences statements learned from data. Additionally, the difficulty of computing con-

ditional distributions in graphical models for non-Gaussian distributions can be eased using

pair-copulas. In this paper, we extend this approach further using the minimum informa-

tion vine model which results in a more flexible and efficient approach in understanding the
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complex dependence between multiple variables with heavy tail dependence and asymmetric

features which appear widely in the financial applications.

Keywords: Bayesian Network, Copula, Directed Acyclic Graph, Entropy, Orthonormal

Series, Probabilistic Financial Modelling, Vine.

1. Introduction

n the recent years, the copula functions have gained popularity in constructing multivari-

ate distributions and survey dependency structures. One of the main advantages of the copula

function is to separate dependency structure from marginal distributions. Moreover, by using

copula function, some quantities such as tail dependency, which is the dependency between

extreme values of the variables, can be evaluated. Building higher dimensional copula is gen-

erally a challenging task, and choosing a parametric family for a higher dimensional copula is

rather more difficult and limited [16]. This drawback was tackled by applying a more flexible

multivariate copula known as vine copula (or PCC) model which has recently developed for

modeling multivariate dependency [4, 5, 12]. This modeling structure is based on a decompo-

sition of a multivariate density into a cascade of bivariate copula. Since the vines demonstrate

high flexibility and advantages in constructing multivariate distributions,they have recently

been used to describe the inner-dependence structure and build the joint distribution of port-

folio returns, and uncertain quantities in financial applications and risk analysis. One the

main issues with the vines is that the bivariate copulas are restricted to a particular paramet-

ric class (Gaussian, multivariate t, etc.)[1]. As a result, the potential flexibility of the vine

copula approach is not realized in practice.

There have been recently several attempts to tackle the drawback mentioned above for

the multivariate copula including the vine model. The proposed methods are mainly focused

on making the vine model more flexible and efficient using the non-parametric vine copula

models. Kauermann et al. [13] proposed a non-parametric model using the spline to estimate

multivariate copula density. However, the main purpose of this method was to tackle the curse

of dimensionality, but it fails to do so. The methodology was improved by using penalized

Bernstein polynomials and applied to the D-vine model, to estimate the bivariate copula
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density in each knot of the model [14]. However, the reported results are more promising,

but no clear model selection algorithm is suggested and its performance for modeling weak

dependency is still very poor. These methods were extended further in [21] by applying them

on the simplified vine copula models. They exhibited that the kernel-based non-parametric

estimators performed best, but its performance is worse than penalized B-spline estimators

when there is weak dependence and no tail dependence.

Bedford et al. [6] enhanced the flexibility and efficiency of the vine model by proposing

an alternative non-parametric method using the minimum information concept. A copula

based on the minimum information concept can be constructed by specifying dependency

constraints through the use of rank correlations/moments. It was demonstrated that a vine

structure can be used to approximate any given multivariate copula to any required degree of

approximation. They also illustrated that how this can be operationalized for use in practical

situations involving uncertain risks.

Another challenge of the vine models is the selection of the best model based on the

observed data. This issue has been recently addressed in [2, 3] by capturing conditional

independences in the data which results in a new model called Bayesian network vine (or

BN-PCC) model. This presentation provides more parsimonious model in different settings

and is structurally more flexible than vine model. However, the BN-PCC suffers from the

same drawbacks of the parametric vine models as discussed above. In this paper, we benefit

from the simplification algorithm using BN proposed in [2, 3] and efficiency of the density

approximation addressed in [6, 10] to approximate any non-Gaussian BN to any required

degree of approximation. We illustrate the proposed BN-PCC in this paper is more flexi-

ble and efficient in modeling multivariate dependencies of heavy-tailed distribution and tail

dependence as observed in the financial data and risk analysis domain, etc. The proposed

model is not restricted to use the limited parametric pair-copula models, and can provide a

precise approximation in the presence of the large/limited data and the restrictions imposed

by the data and problem under study. We formulate these restrictions using various basis

functions: Polynomial Series (PS); Orthonormal Polynomial Series (OPS); and Orthonormal

Fourier Series (OFS).

The present paper is organised as follows. In Section 2, we present the vine construction
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associated with the non-Gaussian BN of multivariate data. In Section 3, we first briefly study

the minimum information copula and show that how it can be used to approximate a bivariate

copula density. We then develop it further to approximate the non-Gaussian BN. We improve

this approximation in Section 4, using PS, OPS and OFS basis functions. In Section 5, we

examine the performance of the proposed model and compare it with the alternative models

given in [2, 3] by analysing the global portfolio data from the perspective of an emerging

market investor located in Brazil [19]. A simulation study is illustrated in Section 6, and

finally we conclude the paper in Section 7.

2. Pair-copula construction for non-Gaussian Bayesian Networks

Considering the above-mentioned vine’s drawbacks in modelling multivariate data, there

have been several attempts to develop a method through using the nice properties of both

graphical model and vine model, simultaneously. The main purpose is to benefit from the

conditional independence in the graphs and the simplified vine structure[11]. Simplified vine

copula models give rise to very flexible models which are often found to be superior to other

multivariate copula models [1]. Indeed, to make the model more tractable, one usually makes

the simplifying assumption that the pair-copula densities do not change with conditional

assumption [21].

A Bayesian network (BN) which is certainly the most common and applicable probabilistic

graphical model represents a set of random variables (r.vs) and their conditional dependencies

via a directed acyclic graph (DAG). The construction of a BN based on the assumption of a

joint Gaussian distribution is quite straightforward, but this assumption is not a realistic for

capturing the features of real world data such as tail behaviour and non-linear, asymmetric

dependencies. This gap was filled in [2] by introducing non-Gaussian graphical model by

combining useful properties of both pair-copula and DAG which was then called non-Gaussian

BN-PCC. In this paper, we only briefly introduce the BNs’ concepts required in this paper,

and the preliminary notations of the BNs and their detailed theory can be found in [9].

As mentioned above, the decomposition of a multivariate distribution can be efficiently

implemented be benefiting from the conditional independencies offered by a DAG. The density

function f(.) of n r.vs, (X1, . . . , Xn) can be decomposed as a product of n conditional density
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functions as follows:

f(x1, . . . , xn) =
n∏

i=1

f(xi|pa(xi)), (1)

where pa(xi) represents the parent set of xi. The density decomposition given in (1) illustrates

that once the value of pa(xi) is learned, knowing the value of the other preceding variables is

redundant.

Bauer et al. [2], in the following theorem, illustrate that how the multivariate density given

in (1) can be represented in terms of the PCC model.

Theorem 1. . Let D = (V,E) be a DAG and let f be a multivariate density function on n

variables with marginal density fi and corresponding cumulative distribution function (CDF)

Fi, i = 1, 2, . . . , n. Then f is uniquely determined by its univariate margins fi, i = 1, 2, . . . , n

and its conditional pair-copula cvw|pa(v,w), vεV, wεpa(v) and f can be decomposed as follows:

f(x1, . . . , xn) =
n∏

v=1

f(xv)
∏

w∈pa(v)

cvw|pa(x,w)(Fv|pa(v,w), Fw|pa(v,w)). (2)

Proof. See [2] and references cited therein.

The above theorem gives us a constructive approach to build a multivariate distribution

given a DAG. In other words, by making suitable choices of marginal densities and pair-

copula functions, the above presentation given in (2) provides us an approximation for the

multivariate density. However, in practice, we have to use copula from a convenient class,

and this class should ideally be the one that allows us to approximate any given copula to an

arbitrary degree. In the following sections, we address this issue in more details.

3. Approximating Multivariate Density: A minimum information copula ap-

proach

This section outlines a multivariate density approximation approach using the minimum

information techniques in conjunction with the observed data or expert elicitation of ob-

servables [6]. This can be used construct a multivariate distribution using a Non-Gaussian

BN-PCC model. The method that will be described below is based on using the D1AD2

algorithm to determine the copula in terms of potentially asymmetric information about two

variables of interests.
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3.1. The D1AD2 algorithm and minimum information copula

We apply an algorithm, named DAD [6] to generate discretized minimum information

copula between two variables with given rank correlation. This method depends on this fact

that the correlation is specified by means of the symmetric function U1U2. A similar method

can be applied whenever the expectation of any symmetric function of U1 and U2 must be

determined.

We suppose that there exist two r.vs X1 and X2, with CDFs F1(.) and F2(·), respectively.

The main purpose is then to correlate these r.vs according to some constraints which can be

represented as the expected values of several functions. These functions should be selected

so that could illustrate various types of dependency between the r.vs. Let assume there

are l of these functions, i.e. g′1(X1, X2), . . . , g
′
l(X1, X2), and that we would like to compute

their expected values based on the observed data, denoted by β1, . . . , βl for the considered

functions, respectively. It should be noted that the mean values of the functions can be also

determined in terms of expert opinions [6]. The associated functions of the copula variables,

i.e. U1 ∈ [0, 1] and U2 ∈ [0, 1] can be simply specified and represented as follows:

gi(U1, U2) = g′i(F
−1
1 (U1);F

−1
2 (U2)), i = 1, . . . , l

where gi : [0, 1]2 → R, at which the mean values β1, . . . , βl can be specified that these func-

tions should simultaneously take. In addition, suppose that gi and gj are linearly independent

for any i 6= j. We then pursue a copula that possess these expected values. This optimisation

problem could be either impractical or undetermined. Therefore, given tractability of the

moment, a copula is considered to be minimum information (regarding the uniform distribu-

tion), which guarantees a unique and reasonable solution. The corresponding kernel is then

given by

A(u1, u2) = exp(β1g1(u1, u2) + . . .+ βlgl(u1, u2)), (3)

where u1 and u2 denote the realisations of U1 and U2, respectively.

For practical performances, the same approach as given in [6, 10] is used to discretise the

values of (u1, u2) such that the total space of the copula is covered. It is trivial to demonstrate

that the kernel A exhibited in (3) is a two-dimensional matrix, and the main difficulty is then

to specify the matrices D1 and D2. The following product then becomes a doubly stochastic
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matrix [6] which exhibits a discretised copula density

P = D1AD2. (4)

where P ∈ [0, 1]2.

We can use the D1AD2 method to uniquely approximate the joint density of the r.vs of

interests with uniform marginal distributions and based on the computed Lagrange’s coeffi-

cients , (λ1, . . . , λl). It can be shown that the set of all possible expected values (β1, . . . , βl)

satisfying in (5)

E[gi(U1, U2)] = E[g′i(F
−1
1 (U1);F

−1
2 (U2))] = βi, i = 1, . . . , l (5)

with respect to some probability distribution is convex. In addition, given all any values of

{βi}li=1 lie in the interior of this convex set, there is a unique density function [6, 10] with

parameters (λ1, . . . , λl) computed based on the constraints given in (5).

In order to approximate the copula density based on the D1AD2 algorithm, an iterative

algorithm is required which will be briefly explained here. We first discretise both (u1, u2) into

n grid-points, represented as {(u(i)1 , u
(j)
2 ), i, j = 1, . . . , n}. The grid points can be uniformly

selected over the copula domain, or chosen based on the purpose of study which will be

discussed further in Section 5. We can then define

A = (aij), D1 = diag(d
(1)
1 , . . . , d(1)n ), D2 = diag(d

(2)
1 , . . . , d(2)n ),

where aij = A(u
(i)
1 , u

(j)
2 ), d

(1)
i = D1(u

(i)
1 ), d

(2)
j = D2(u

(j)
2 ), and diag(d

(1)
1 , . . . , d

(1)
n ) stands for

a diagonal matrix with the diagonal entries, (d
(1)
1 , . . . , d

(1)
n ). The doubly stochastic matrix

presented in (4) will be then represented in the following forms

∀i = 1, . . . n,
∑
j

d
(1)
i d

(2)
j aij = 1/n, &

∀j = 1, . . . n,
∑
i

d
(1)
i d

(2)
j aij = 1/n.

The iterative numerical approach required for the D1AD2 algorithm is quite simple which

begins with selecting arbitrary positive initial matrices for D1 and D2, and these matrices will

be then successively updated by iterating the following maps

d
(1)
i 7→

1

n
∑

j d
(2)
j aij

(i = 1, . . . , n), d
(2)
j 7→

1

n
∑

i d
(1)
i aij

, (j = 1, . . . , n).
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It is trivial to illustrate the above iteration scheme will eventually converge in the geometric

rates to some matrices to achieve the approximation precision [6].

The next step is to find a suitable set of Lagrange’s coefficients, {λi}li=1’s associated

with the expected values {βi}li=1 at which these values are calculated with respect to the

copula density approximated using the D1AD2 given in (4). As a results, λi’s, satisfying

the constraints illustrated in (5), can be determined by solving the following set of nonlinear

equations:

Lk(λ1, . . . , λl) =
1

n2

n∑
i=1

n∑
j=1

P (u
(i)
1 , u

(j)
2 )hk(u

(i)
1 , u

(j)
2 )− βk, k = 1, 2, . . . , l. (6)

In this paper, we use the FMINSEARCH - MATLAB’s optimization tool which is developed

based on Nelder-Mead simplex method [6] to solve the above nonlinear system of equations.

The function to be minimized is then given by

Lsum(λ1, . . . , λl) =
l∑

k=1

L2
k(λ1, . . . , λl).

We can use a similar approach describe above to estimate a copula given the expected values

evaluated based on the experts’ opinions [6, 10].

3.2. Approximating Multivariate Density by Non-Gaussian BN-PCC

In the last subsection, we demonstrate how the bivariate copulas as building blocks of the

given multivariate model can be approximated using bivariate minimum information copulas

which results in a a family of bivariate copulas with some nice features. Since, our main

aims is to build BN-PCC model in terms of multiple bivariate copulas, it is very crucial

to illustrate the mentioned family of bivariate (conditional) copula densities encompassed in

the multivariate distribution of interest must form a compact set in the space of continuous

functions defined over [0, 1]2. This would allow us to exhibit that the same family of copulas

(with finite parameter) can be applied to provide an approximation to every conditional

copulas with the same level of approximation.

In order to illustrate this, we need to accurately explain the method in which the densities

are approximated. It is plausible to assume all densities are continuous and uniformly bounded
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away from zero. We denote the space of continuous real valued functions on Z = [0, 1]p for

some p with C(Z). We define a norm on this space as follows

||f1...p|| = sup |f1...p(x1, . . . , xp)|.

where f1...p(.)’s are some real-valued functions on Z = [0, 1]p.

It is trivial to show that the above norm is finite, because Z is a compact set and the func-

tions defined over Z are continuous. We now present the set of all possible two-dimensional

copulas corresponding to f as

C(f) = {cij|i1...ip : 1 ≤ i, j, i1, . . . , ip ≤ n, i, j 6= i1, . . . , ip}. (7)

Any cij|i1...ip ∈ C(f) presents the copula of conditional density of (Xi, Xj) given {Xi1 , . . . , Xip}.
It should be noted that the set C(.) is not finite.

The next step is to exhibit that C(f) given in (7) is relatively compact in C([0, 1]2) consists

of all continuous real valued functions defined over [0, 1]2. This would help us to demonstrate

that the copula densities can be uniformly approximated. The best way to prove C(f) is

relatively compact would be to prove the compactness of the following two spaces: M(f)

and B(f). The former one, M(f) defines the set of conditional marginal densities, and B(f)

shows the set of conditional bi-variate densities. We illustrate these space as follows

M(f) = {fi|i1...ip : 1 ≤ i, i1, . . . , ip ≤ n, i 6= i1, . . . , ip},

B(f) = {fij|i1...ip : 1 ≤ i, j, i1, . . . , ip ≤ n, i, j 6= i1, . . . , ip},

where fi|i1...ip is the conditional density of Xi given Xi1 , . . . , Xir , and fij|i1...ip is the conditional

density of Xi, Xj given Xi1 , . . . , Xip .

The compactness of these spaces are illustrated in [6]. To prove the compactness of C(f),

any member cij|i1,...,ip ∈ C(f) can be written as

cij|i1,...,ip(ui, uj|xi1 , . . . , xip) =
fij|i1...ip(xi, xj|xi1 , . . . , xip)

fi|i1...ip(xi|xi1 , . . . , xip)fj|i1...ip(xj|xi1 , . . . , xip)
(8)

Now, if we consider a sequence of component in elements in C(f), we can then find comparable

sequences of components in M(f) and B(f). By knowing that M(f) and B(f) are relatively

9



compact [6], a convergent subsequence in M(f) would results in corresponding convergent

functions in B(f). This would result in convergence of the right-hand side of (8). That

means the components of C(f) associated with the considered sequence above have to be

converge to the same expression. This proves the compactness of C(f) (see also [6] for further

details). We can immediately conclude that LC(f) = {log(h) : h ∈ C(f)} ⊂ C([0, 1]2) is a

compact set. This is evident from the compactness of C(f) and this fact that all elements in

C(f) are positive and uniformly bounded away from zero.

We now combine the results derived above and introduced in the previous section to

approximate the copulas based on the sequences of functions in C([0, 1]2). Suppose g1, g2, . . . ,

is any arbitrary and and countable sequence in C([0, 1]2) with the following property which

any function h ∈ C([0, 1]2) can be illustrated in the following form

h =
∞∑
i=1

λigi

where λi ∈ R.

It is trivial to demonstrate that any finite set of basis components, g1, . . . , gn is linearly

independent. As a result, given a sorted basis g1, g2, . . . ∈ C([0, 1]2) and a desired approxi-

mation level, ε > 0, any component of LC(f) can be estimated to within the required rate

of approximation by a linear combination of g1, . . . , gl, where l is appropriately selected to

attain the required degree of approximation. The value of l is also dependent on the basis

functions which are used to approximate the copula density. In this paper, we only use PS,

OPS and OFS basis function to approximate the copula densities of the uncertain quantities

due to their nice properties.

However, we can get similar results for LC(f), but the number of basis functions used to

attain the requested order of approximation could be different. It should be also noted that the

proposed approximation for the copula of interest based on the linear combination,
∑l

i=1 λigi is

not totally approved to be a copula density itself. We now discuss how this approximation can

be at it can be slightly modified to achieve a copula which produces plausible approximation.

The adjustment can be done by weighting the derived density using the D1AD2 algorithm

as discussed in Subsection 3.1. Using this algorithm the approximated copula based on the

linear combination of the basis functions can be considered as a continuous positive real
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valued function denoted by A(u1, u2) on [0, 1]2 which could be not a density. In order to

make this a density, two continuous positive functions d1(u1) and d2(u2) exist, such that

d1(u1).d2(u2).A(u1, u2) becomes a copula density with uniform marginal distributions. We

denote this product by C(A) = d1(u1).d2(u2).A(u1, u2) which is also called a C-projection of A

.We can summarise the process of ensuring that approximating densities are copula densities

in the following lemma which also enables us to manage the precision level of approximating

a copula [6].

Lemma 1. Let h be a positive continuous copula density. Given the order of approximation

ε > 0, there exists a positive real value γ > 0 such that if ||h− f || < γ, then ||h− C(f)|| < ε.

It should be noted that the following relationships between the re-weighting functions can

be presented

d(1)(u1) =
1∫

d(2)(u2)f(u1, u2)du2
& d(2)(u2) =

1∫
d(1)(u1)f(u1, u2)du1

.

This also approves that these re-weighting functions possess the same differentiability prop-

erties as the function f being re-weighted.

Eventually, the equation presented in (2) can be used to demonstrate that good approx-

imation of each conditional copula would result in a good approximation of the multivariate

density represented by the BN-PCC.

4. Building approximations using minimum information distributions

In Section 3, we present a method that all conditional copulas in the BN-PCC model can

be approximated using linear combinations of basis functions. In this section, we provide

a practical guide for approximating the multivariate density of the observed data using a

minimum information BN-PCC. In order to approximate the joint density of several variables

connected through a DAG, the densities between any pair of variables are approximated

using the minimum information copulas as described in Section 3 based on the expected

values of the selected basis functions and the required approximation precision. Each copula

appeared in the representation of the multivariate density given in (2) is approximated, in

terms of the linear combination of the selected basis functions, {1, g1, . . . , gl} : [0, 1]2 → R, by
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A(u1, u2) = exp(
∑l

1 λigi(u1, u2)). The Lagrange coefficients {λi}li=1 are determined by solving

the set of nonlinear equations given in (6) as explained in Subsection 3.1. The final copula

density can be uniquely determined, by adjusting A(u1, u2) using the D1AD2 algorithm as

follows

d1(u1)d
2(u2) exp(

l∑
i=1

λigi(u1, u2)).

We summarise the steps required for approximating the multivariate data connected through

a BN with the density factorisation given in (2) using the proposed method in Algorithm 1.

Algorithm 1 Approximating a non-Gaussian BN using minimum information vine copula

model
1: Input:

1. Observed data X = (x1, . . . ,xp) ∈ Rn×p, where xi = (xi1, . . . , xin)T , for i = 1, . . . , p;

2. The approximation precision, ε.

2: Learn a DAG structure from the observed data;

3: Specify a basis family, as {g1, g2, . . .};
4: For each copula in (2) associated with the DAG, determine either

1. the expected values of the basis function, β1, β2, . . . or

2. the mean values, βm(ji | De) as the functions of the conditioning variables, for

m = 1, . . . , l.

5: Approximate each pair-wise copula in (2) using the minimum information method based

on the selected basis and computed β’s values.

6: Approximate the multivariate density associated with the BN by replacing the approxi-

mated copulas in (2).

4.1. The Basis Family

In approximating multivariate density presented above, the log-density of each pair-copula

appeared in (2) density is approximated by truncating the selected basis family at a point

determined in accordance to the required approximation error. The proposed approxima-

tion could be computed must faster with better fit to data by selecting more efficient basis
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functions [10]. We demonstrate that the orthonormal polynomial series and Fourier basis

function will outperform the approximation derived by using the ordinary polynomial series

using the proposed method and the alternative methods studied in [2, 3]. In the following sub-

sections, we introduce these basis families and briefly discuss their advantages and drawbacks

in approximating a multivariate density using the proposed method.

4.1.1. Ordinary Polynomial base

One of the simple basis that can be applied in minimum information copula is ordinary

polynomial basis. These basis was mainly used in Bedford et al. (2016) and can be defined

simply as follows:

ψ0(u) = 1, ψ1(u) = u, ψ2(u) = u2, ψ3(u) = u3, ψ4(u) = u4, . . . .

PS basis are very easy to determine and selecting it by expert judgement can be easier than

other basis.

4.1.2. Orthonormal polynomial base

Two polynomial functions g1 and g2 are called orthonormal on [0, 1], if∫ 1

0

g1(u)g2(u)du =

{
1 for g1(u) = g2(u);

0 for g1(u) 6= g2(u).

The orthonormal polynomial base (OPS) can be then constructed more conveniently than

some other natural basis using this definition. The main benefit of these basis function over

the OP basis is that the D1AD2 algorithm converges in a swifter manner. This is mainly

due to property of orthogonal basis family at which adding a new bases does not change the

already used Lagrange coefficients in A(u1, u2) = exp(
∑l

1 λigi(u1, u2)). This is not the case

for the OP bases where any new item in general has a non-zero projection on previous items.

It means that the already derived coefficients of the series expansion could be altered.

The most common orthonormal polynomial basis function is the Gram-Schmidt OPS which

can be defined over [0, 1] as follows

ϕ0(u) = 1

ϕn(u) =
un −

∑n−1
j=0

∫ 1
0 unϕj(u)du∫ 1
0 ϕ2

j (u)du
ϕj(u)

||un −
∑n−1

j=0

∫ 1
0 unϕj(u)du∫ 1
0 ϕ2

j (u)du
ϕj(u)||

n ≥ 1.
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4.1.3. Fourier base

Trigonometric or Fourier basis is the other type of orthonormal basis. The computational

speed of these basis function for the periodic data is much faster. The first six Fourier bassis

functions are defined as

φ0(u) = 1, φ1(u) =
√

2cos(2πu), φ2(u) =
√

2sin(2πu),

φ3(u) =
√

2cos(4πu), φ4(u) =
√

2sin(4πu),

φ5(u) =
√

2cos(6πu), φ6(u) =
√

2sin(6πu).

5. Application: Global portfolio data from the perspective of an emerging market

investor located in Brazil

In this section, we apply the approximation method presented in this paper using OP,

OPS and OFS basis families to approximate the multivariate distribution associated with the

selected BN-PCC structure corresponding to the global portfolio data from the perspective

of an emerging market investor located in Brazil. We then exhibit the potential flexibility of

our approach by comparing it with the method cited in [2, 3].

LBTBond

IMA

IBrx

ACI

Wldlg

WldSm

Figure 1: Selected DAG structure for six dimensional contemporaneous daily log-returns of the global portfolio

data from the perspective of an emerging market investor located in Brazil.
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We use the same data set as originally studied in [19] to illustrate the approximation

method introduced in this paper. The data consists of six dimensional contemporaneous

daily log-returns: 1) Arsenal composite index (ACI); 2) IMA-C index which represents the

Brazilian treasury bonds inflation; 3) IBRX, a stock index related to 100 biggest capitalization

companies; 4) WLDLg is an index of large world stocks; 5) WLDSm is an index of small

capitalization world companies; 6) LBTBond is an index of total returns on US treasury

bonds. The total of 1629 data are collected over the period 02-01-2002 to 20-10-2008.

The serial correlation in these six time series must be first removed, i.e. the observed

data of each variable must be independent over time. Thus, we respectively model the serial

correlation in the conditional mean and variance the AR(1) and GARCH(1,1) models [7]. The

following model for log-return of xi is then proposed:

xi,t = ci + αixi,t−1 + σi,tzi,t,

E[zi,t] = 0 and V ar[zi,t] = 1,

σ2
i,t = αi,0 + aiε

2
i,t−1 + biaσ

2
i,t−1,

where εi,t−1 = σi,t + zi,t [1].

The further analysis is performed on the standardized residuals zi. If AR(1)-GARCH(1,1)

models are successful at modelling the serial correlation in the conditional mean and the

conditional variance, there should be no autocorrelation left in the standardized residuals

and squared standardized residuals. We can use the modified Q-statistic and the Lagrange

multiplier test, respectively, to confirm this (see [1] for the details of these statistics). For

all series, the null hypothesis, ‘no autocorrelation left for the both tests’, cannot be rejected

with %5 significance. Since, we are mainly interested in estimating the dependence structure

of the risk factor, the standardized residual vectors are converted into the uniform variables

using the kernel method before any further modelling. We denote the converted time series

of ACI, IMA, IBrX, Wldlg, WLdSm and LBIBond by 1, 2, 3, 4, 5 and 6, respectively.

Here, we want to generate a BN-PCC approximation fitted to this data set using the

minimum information distributions based on the different basis functions described above.

The main challenge for this approximation is in linking DAG models to the vines. We first

need to learn DAG structure from the observed data. One approach is applying the structure
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learning algorithms, such as the PC algorithm (see [22] Section 5.4.2) to Φ−1(data), where Φ(.)

denotes the standard normal cdf. This transformation is needed, since the tests for conditional

independence performed by the PC algorithm (at the %5 significance level) are based on

the assumption of normality. As an alternative approach, expert knowledge is frequently

exploited to elicit the DAG structure (see [15], Chapter 5). There are also model structure

selection algorithms for the non-Gaussian data [3] which is based on the PC algorithm again.

We adopt the DAG structure presented in Figure 1 derived by applying the PC algorithm

introduced in [3] for non-Gaussian distributions. Given the derived DAG, we can decompose

the multivariate density of our data by applying Theorem 1 in order to derive BN-PCC model.

In other words, given the DAG structure, Theorem 1 prescribes which pair copulas need to be

specified in the definition of our model. Note that variable 1(ACI) has three parents (2(IMA),

3(IBrX), 5(WldSm)) as the order of the parents based on the heuristic rule of modelling strong

bivariate dependences prior to weak dependences. Our decision was based on τ̂ of Kendall’s

estimates between the variables: τ̂15 = 0.209, τ̂13 = 0.197, and τ̂12 = 0.127. Similar rule can be

applied for variables 3(IBrX) and its parents (2(IMA) and 4(WLdLg)) based on τ̂32 = 0.0858,

and τ̂34 = 0.424. The τ̂ ’s Kendall estimates between 5(WldSm) and its parents (3(IBrX) and

4(WIdIg)) are: τ̂53 = 0.402 and τ̂54 = 0.75. Based on these ordering, the resulting multivariate

density decomposition is:

f1,...,6(x1, . . . , x6) =
6∏

i=1

fi(xi)× c15(F1(x1), F5(x5))× c45(F4(x4), F5(x5))× c46(F4(x4), F6(x6))

×c34(F3(x3), F4(x4))× c13|5(F1|5(x1|x5), F3|5(x3|x5))× c23|4(F2|4(x2|x4), F3|4(x3|x4))

×c35|4(F3|4(x3|x4), F5|4(x5|x4))× c12|35(F1|35(x1|x3, x5), F2|35(x2|x3, x5))
(9)

We now derive the minimum information copulae in association with some moment constraints

between copula variables 1, 2, 3, 4, 5, 6 in the density decomposition (9) . We initially

construct minimum information copulas for unconditional copula c15, c46, c34, c45. Now, is

essential to decide which bases should be taken and how many discretization points should be

used in each case. We start to outline our procedure for the unconditional copula c15. Other

unconditional copula c46, c34, c45 can be followed in a similar way.

We could simply choose basis functions based on the method described in [10] i.e. starting
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with simple bases, and moving to more complex ones, and including them until we are satisfied

with our approximation. Our OP basis functions are as follows,

ψ1(.)ψ1(.), ψ1(.)ψ2(.), ψ2(.)ψ1(.), ψ1(.)ψ3(.), ψ3(.)ψ1(.),

ψ2(.)ψ2(.), ψ2(.)ψ3(.), ψ3(.)ψ2(.), ψ1(.)ψ4(.), ψ4(.)ψ1(.),

ψ1(.)ψ5(.), ψ5(.)ψ1(.), ψ2(.)ψ4(.), ψ4(.)ψ2(.), ψ3(.)ψ3(.), . . .

OPS basis function constructed using Gram-Schmidt process

ϕ1(.)ϕ1(.), ϕ1(.)ϕ2(.), ϕ2(.)ϕ1(.), ϕ1(.)ϕ3(.), ϕ3(.)ϕ1(.),

ϕ2(.)ϕ2(.), ϕ2(.)ϕ3(.), ϕ3(.)ϕ2(.), ϕ1(.)ϕ4(.), ϕ4(.)ϕ1(.),

ϕ1(.)ϕ5(.), ϕ5(.)ϕ1(.), ϕ2(.)ϕ4(.), ϕ4(.)ϕ2(.), ϕ3(.)ϕ3(.), . . .

and then considered OFS basis functions are:

φ1(.)φ1(.), φ1(.)φ2(.), φ2(.)φ1(.), φ1(.)φ3(.), φ3(.)φ1(.),

φ2(.)φ2(.), φ2(.)φ3(.), φ3(.)φ2(.), φ1(.)φ4(.), φ4(.)φ1(.),

φ1(.)φ5(.), φ5(.)φ1(.), φ2(.)φ4(.), φ4(.)φ2(.), φ3(.)φ3(.), . . .

Following the explanations to select basis function in an optimal manner, we add the basis

functions by using stepwise method in [10]. In this method, at each stage, we propose to assess

the log-likelihood of adding each additional basis function. We then include the function which

produces the largest increase in the log-likelihood. Also, according to [10], in order to get

optimal results, first four bases have been considered.

We are now able to construct the minimum information copula density C15 with respect to

the uniform distributions given the corresponding OP, OPS and OFS constraints above, using

the method described in this paper. We first need to determine the number of discretization

points (grid size). Simply, a larger grid size will provide a better approximation to the

continuous copula, but at the cost of more computation time. Similarly, the approximation

will become more precise, if we run the D1AD2 algorithm in more iterations. Indeed, this

would cost us more computation time. It can be concluded that the number of iterations

will depend on the grid size. We consider the approximation errors in the range 1× 10−1 to
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1×10−24. Thus, the larger the number of grid points used, the larger the number of iterations

are needed for convergence which is true over all error levels. The grid sizes all follow the

same pattern with large increases in the number of iterations needed for improved accuracy

initially and smaller increases when the error is smaller. We choose a grid size of 200 × 200

throughout of this example.

Based on the information given above regarding the grid size, number of iterations and

error size, we can derive the minimum information copula C15 associated with the chosen

constraints. Expectations β of the selected basis, Lagrange multiplies values (parameter

values) λ and Log-Likelihood are summarized in Table 1. Log-Likelihood (L) for PS, OPS,

and OFS basis are 93.49, 98.59, and 38.76, respectively. The corresponding copulas in terms

of the OP, OPS and OFS bases are plotted in Panels (a), (b), and (c) in Figure 2, respectively.

Method Base (β1, β2, β3, β4) (λ1, λ2, λ3, λ4) L

PS (ψ1ψ1, ψ2ψ1, ψ5ψ5, ψ1ψ2) ( 0.27,0.18,0.04,0.19) ( 14.2,-7.9,3.5,-4.1) 93.49

OPS (ϕ1ϕ1, ϕ2ϕ2, ϕ4ϕ2, ϕ2ϕ4) ( 0.29,0.13,0.08,0.07) ( 0.31,0.09,0.08,0.04) 95.59

OFS (φ2φ2, φ1φ1, φ3φ2, φ3φ4) ( 0.16,0.08,0.07,0.07) ( 0.16,0.08,0.07,0.04) 37.76

Table 1: The minimally informative copula given moment constraints for OP, OPS, and OFS bases between

1 and 5

(a) (b) (c)

Figure 2: The minimally informative copula given moment constraints between variable 1 and 5; Panel (a):

PS basis, Panel (b): OPS basis, and Panel (c): OFS basis
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Note that, the minimum information copula in BN-PCC structure can be also computed

by choosing the grid points such that more points are included in the tail of the distribution

instead of the uniform grid points. This could result in outperforming the Gaussian models

by the non-Gaussian models approximated based on the proposed method. To verify this

claim, we have used Chebyshev points for our grid in copula approximation using minimum

information method instead of uniform grid. The main reason behind choosing the Chebyshev

points is that they allow for more points in the tail or boundaries of our approximation which

are very important, particularly in the Financial applications. Chebyshev points are roots of

Chebyshev polynomial which full discussion with some details are presented in [18]. In order

to compare uniform grid points with Chebyshev ones, we use the same information given to

compute the minimum information copula of interest based on the Chebyshev grid points.

Figure (3) shows the minimum information copula C15 illustrated over the Chebyshev grid.

As mentioned above, by including more points in the tails, the copula density with the heavy

tails can be more accurately approximated as illustrated in Figure 3.

Figure 3: The minimum information copula C15 using Chebyshev grid.

One of the main advantages of using OPS and OFS bases over the ordinary polynomial

series (studied in details in [6]) is that the D1AD2 algorithm converges much faster using

these bases. This is because of the following nice property of these two bases that adding a

new basis to the kernel defined in (3) and used to construct the minimum information copula,

does not change the Lagrange multipliers of the already used in the kernel. But, this is not

the case when one is applying the PS bases [6] to calculate the minimum information copula.
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In this situation, we need to run the D1AD2 algorithm each time a new basis is added to the

already chosen bases, and the parameter values are changing accordingly. Therefore, more

iterations are required for the D1AD2 algorithm to converge. The optimisation time required

for the D1AD2 algorithm using the OPS bases is 9.83 seconds and for the OFS bases is 8.89,

while this time for the PS bases is 29.87 seconds which is almost twofold of the former one

and almost two and half times more than the latter one.

The other unconditional copula in the decomposition (7) i.e. C46,C34, and C45 could be

calculated in the similar way. Using the stepwise method, we select the four PS, OPS and

OFS bases that along with their corresponding constraints, resulting Lagrange multipliers,

and Log-Likelihood (L) are given in Table 4. The approximated minimum information copula

for these unconditional copula in terms of the PS, OPS and OFS bases is shown in Panels of

Figure 4.

Copula Base (β1, β2, β3, β4) (λ1, λ2, λ3, λ4) L

PS:(ψ1ψ1, ψ5ψ5, ψ5ψ1, ψ1ψ4) ( 0.23,0.02,0.06,0.08) ( 1.4,6.5,-4.7,-4.6) 44.19

C46 OPS:(ϕ1ϕ1, ϕ2ϕ2, ϕ4ϕ2, ϕ5ϕ5) ( -0.18,0.13,-0.06,0.06) ( -0.18,0.12,-0.06,0.06) 51.03

OFS:(φ2φ2, φ1φ1, φ2φ4, φ4φ2) ( -0.11,0.1,-0.08,-0.07) ( -0.11,0.1,-0.08,0.02) 30.37

PS:(ψ1ψ1, ψ1ψ2, ψ2ψ5, ψ2ψ1) ( 0.29,0.21,0.08,0.21) ( 36,27.5,10.4,-5.3) 379.02

C34 OPS:(ϕ1ϕ1, ϕ2ϕ2, ϕ5ϕ3, ϕ1ϕ2) ( 0.57,0.35,0.1,-0.07) ( 0.73,0.23,0.09,0.01) 392.4

OFS:(φ2φ2, φ1φ1, φ4φ2, φ2φ4) ( 0.35,0.3,0.19,0.01) ( 0.4,0.3,0.2,-0.003) 245.49

PS:(ψ1ψ1, ψ5ψ5, ψ1ψ2, ψ1ψ4) ( 0.32,0.07,0.23,0.15) ( 144,-18.4,-96.3,42.3) 1479.6

C45 OPS:(ϕ1ϕ1, ϕ2ϕ2, ϕ3ϕ3, ϕ3ϕ1) ( 0.88,0.78,0.67,-0.01) ( 2.8,0.73,0.67,-0.01) 1506.3

OFS:(φ2φ2, φ1φ1, φ2φ4, φ3φ1) ( 0.8,0.7,0.1,0.09) ( 1.6,1.2,0.52,-0.001) 1366.1

Table 2: The minimally informative copula given moment constraints for C46, C34, and C45

Now, the conditional copulas C13|5, C23|4 and C35|4 can similarly be approximated using the

proposed approach. We only illustrate construction of the conditional minimum information

copula, C13|5, and the other two copulas, C23|4 and C35|4 can be similarly approximated. In

order to calculate this copula, we divide the support of 5 into some arbitrary sub-intervals

or bins and then construct the conditional copula within each bin. To do so we select bases

in the same way as for the unconditional copulas and fit the copula to the calculated mean
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: The minimally informative copula given moment constraints, Panel (a):C46 for PS basis, Panel

(b):C46 for OPS basis, Panel (c):C46 for OFS basis, Panel (d):C34 for PS basis, Panel (e):C34 for OPS basis,

Panel (f):C34 for OFS basis, Panel (g):C45 for PS basis, Panel (h):C45 for OPS basis, and Panel (i):C45 for

OFS basis.
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values or constraints. Here, we use four bins so that the first copula is for 13|5 ∈ (0, 0.25).

The other bins are 13|5 ∈ (0.25, 0.5), 13|5 ∈ (0.5, 0.75), and 13|5 ∈ (0.75, 1). We can follow

this process again for the remaining bins. Tables 3 show the mean values or constraints

(denoted by βi) and corresponding Lagrange multipliers (λi) required to build the conditional

minimum information copula between 1|5 and 3|5 for PS, OPS and OFS bases, respectively.

The log-likelihood of the approximated copula in each bin is also reported in these tables.

The Log-Likelihood over all bins for C23|4 and C35|4 for (PS, OPS, OFS) basis are (16.13, 39.1,

38.63) and (223.69, 345.15, 246.99), respectively.

Interval Bases (β1, β2, β3, β4) (λ1, λ2, λ3, λ4) L

PS:(ψ1ψ1, ψ1ψ2, ψ1ψ3, ψ1ψ4) (0.12,0.06,0.03,0.02) (38.1,-115,129.7,-44.3) 35.9

0 < M < 0.25 OPS:(ϕ1ϕ1, ϕ4ϕ3, ϕ1ϕ4, ϕ5ϕ1) (0.51,-0.15,-0.2,0.12) (0.4,-0.08,-0.1,0.02) 52.99

OFS:(φ5φ5, φ1φ1, φ2φ2, φ2φ3) (0.09,0.12,0.2,0.08) (0.15,0.09,0.18,-0.05) 18.21

PS:(ψ2ψ1, ψ1ψ3, ψ1ψ5, ψ1ψ4) (0.13,0.08,0.04,0.05) (2.5,40.7,57.9,-98.4) 5.4

0.25 < M < 0.5 OPS:(ϕ1ϕ1, ϕ2ϕ3, ϕ5ϕ4, ϕ1ϕ4) (0.12,-0.06,0.08,0.04) (0.12,-0.08,0.1,-0.05) 9.2

OFS:(φ2φ5, φ5φ5, φ1φ1, φ2φ2) (-0.12,-0.01,0.06,0.06) (-0.1,-0.01,0.05,-0.01) 6.7

PS:(ψ5ψ5, ψ4ψ5, ψ1ψ1, ψ3ψ4) (0.04,0.05,0.32,0.07) (7.4,4.3,2.1,-10.3) 7.19

0.5 < M < 0.75 OPS:(ϕ3ϕ3, ϕ1ϕ1, ϕ3ϕ1, ϕ2ϕ3) (0.07,0.1,0.1,0.07) (0.06,0.13,0.16,-0.05) 10.3

OFS:(φ4φ2, φ5φ3, φ1φ3, φ2φ4) (0.14,0.03,0.05,0.07) (0.13,0.04,0.06,-0.04) 6.3

PS:(ψ1ψ1, ψ5ψ5, ψ2ψ1, ψ5ψ2) (0.4,0.09,0.3,0.14) (11.7,0.65,-10.3,2.7) 30.5

0.75 < M < 1 OPS:(ϕ1ϕ1, ϕ2ϕ5, ϕ4ϕ1, ϕ1ϕ5) (0.4,0.12,0.06,0.06) (0.4,0.09,0.06,0.07) 40.5

OFS:(φ2φ2, φ4φ2, φ3φ1, φ2φ4) (0.2,0.14,0.09,0.09) (0.14,0.13,0.08,-0.01) 17.58

Table 3: Minimally informative copula, C13|5, given the moment constraints between (1, 3) given 5

We can obtain the conditional minimum information copula, C12|35, similarly by dividing

each of the conditioning variables’ supports into four bins. Then the minimum information

copulas for 1|35 and 2|35 are calculated on each combination of bins for 3 and 5 which makes

16 bins altogether for it. The bins, bases and log-likelihoods associated with each copula

based on the PS, OPS and OFS basis are given in Table 4.

The log-likelihood of the overall Non-Gaussian BN-PCC model using the PS, OPS and

OFS bases, derived by adding the log-likelihoods of the copulas constructed above, are 2390.44,

2669.69 and 2093.75, respectively. Since the comparison based on comparing the log-likelihood

of presented non-parametric model in this paper and the parametric model given in [2] is not
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Interval Bases (PS,OPS,OFS) L(PS,OPS,OFS)

0 < 3 < 0.25 &

0 < 5 < 0.25 (ψ1ψ1, ψ3ψ1, ψ2ψ4, ψ5ψ2), (ϕ1ϕ1, ϕ3ϕ3, ϕ3ϕ1, ϕ3ϕ5), (φ2φ2, φ1φ1, φ4φ5, φ5φ2) (19.2,16,8)

0 < 3 < 0.25 &

0.25 < 5 < 0.5 (ψ3ψ5, ψ2ψ3, ψ4ψ4, ψ5ψ4), (ϕ5ϕ5, ϕ3ϕ5, ϕ2ϕ3, ϕ2ϕ4), (φ4φ4, φ1φ2, φ5φ4, φ2φ1) (0.9,8.5,3.6)

0 < 3 < 0.25 &

0.5 < 5 < 0.75 (ψ4ψ1, ψ1ψ5, ψ2ψ3, ψ5ψ5), (ϕ1ϕ5, ϕ2ϕ4, ϕ2ϕ1, ϕ2ϕ3), (φ2φ4, φ5φ1, φ1φ3, φ1φ4) (2.6,16.4,14.9)

0 < 3 < 0.25 &

0.75 < 5 < 1 (ψ1ψ1, ψ1ψ2, ψ1ψ4, ψ5ψ1), (ϕ4ϕ5, ϕ4ϕ3, ϕ5ϕ2, ϕ2ϕ2), (φ3φ3, φ3φ5, φ3φ4, φ4φ1) (0.53,4.4,5.3)

0.25 < 3 < 0.5 &

0 < 5 < 0.25 (ψ1ψ3, ψ2ψ2, ψ5ψ5, ψ1ψ5), (ϕ1ϕ1, ϕ4ϕ2, ϕ3ϕ4, ϕ2ϕ5), (φ2φ2, φ4φ2, φ3φ1, φ3φ3) (9.1,8.8,6)

0.25 < 3 < 0.5 &

0.25 < 5 < 0.5 (ψ1ψ1, ψ2ψ1, ψ3ψ1, ψ5ψ2), (ϕ4ϕ5, ϕ5ϕ3, ϕ1ϕ1, ϕ3ϕ4), (φ4φ2, φ1φ2, φ1φ3, φ3φ1) (4.4,10.5,4.9)

0.25 < 3 < 0.5 &

0.5 < 5 < 0.75 (ψ3ψ5, ψ1ψ1, ψ2ψ3, ψ1ψ2), (ϕ4ϕ2, ϕ3ϕ5, ϕ1ϕ2, ϕ5ϕ1), (φ4φ2, φ4φ1, φ5φ2, φ1φ2) (2.4,5.5,3.8)

0.25 < 3 < 0.5 &

0.75 < 5 < 1 (ψ5ψ1, ψ1ψ2, ψ2ψ2, ψ4ψ1), (ϕ2ϕ1, ϕ3ϕ5, ϕ5ϕ2, ϕ1ϕ1), (φ2φ4, φ1φ2, φ4φ2, φ1φ1) (4.9,7.9,2.9)

0.5 < 3 < 0.75 &

0 < 5 < 0.25 (ψ5ψ5, ψ4ψ3, ψ2ψ1, ψ1ψ1), (ϕ1ϕ5, ϕ4ϕ3, ϕ5ϕ5, ϕ5ϕ2), (φ2φ4, φ1φ2, φ5φ4, φ5φ1) (3.7,7.5,3.7)

0.5 < 3 < 0.75 &

0.25 < 5 < 0.5 (ψ3ψ5, ψ1ψ3, ψ2ψ4, ψ1ψ1), (ϕ2ϕ3, ϕ3ϕ2, ϕ5ϕ1, ϕ5ϕ5), (φ4φ2, φ4φ1, φ5φ2, φ1φ2) (2.8,7.1,3.8)

0.5 < 3 < 0.75 &

0.5 < 5 < 0.75 (ψ1ψ2, ψ5ψ4, ψ4ψ4, ψ5ψ3), (ϕ1ϕ1, ϕ2ϕ4, ϕ3ϕ5, ϕ5ϕ5), (φ2φ2, φ3φ3, φ1φ4, φ3φ1) (4.5,6,4)

0.5 < 3 < 0.75 &

0.75 < 5 < 1 (ψ1ψ1, ψ1ψ5, ψ1ψ4, ψ1ψ3), (ϕ1ϕ5, ϕ1ϕ1, ϕ2ϕ2, ϕ2ϕ3), (φ2φ4, φ1φ2, φ4φ2, φ1φ1) (2.6,3,2.9)

0.75 < 3 < 1 &

0 < 5 < 0.25 (ψ5ψ1, ψ1ψ1, ψ3ψ1, ψ1ψ2), (ϕ2ϕ4, ϕ4ϕ3, ϕ5ϕ2, ϕ2ϕ1), (φ1φ2, φ2φ5, φ4φ3, φ4φ2) (1.2,7.2,1.7)

0.75 < 3 < 1 &

0.25 < 5 < 0.5 (ψ5ψ3, ψ3ψ1, ψ5ψ5, ψ2ψ3), (ϕ4ϕ5, ϕ2ϕ4, ϕ3ϕ3, ϕ1ϕ5), (φ5φ5, φ1φ4, φ4φ4, φ5φ2) (0.99,2.3,3)

0.75 < 3 < 1 &

0.5 < 5 < 0.75 (ψ5ψ5, ψ2ψ5, ψ1ψ4, ψ5ψ1), (ϕ4ϕ2, ϕ1ϕ5, ϕ5ϕ1, ϕ2ϕ1), (φ4φ2, φ3φ1, φ5φ2, φ3φ4) (2.2,6.5,6.9)

0.75 < 3 < 1 &

0.75 < 5 < 1 (ψ3ψ2, ψ1ψ5, ψ2ψ3, ψ1ψ1), (ϕ2ϕ1, ϕ1ϕ2, ϕ5ϕ1, ϕ1ϕ5), (φ1φ1, φ3φ2, φ4φ3, φ2φ3) (6.7,5.7,2.2)

Table 4: The minimum information copula, C12|35 for the given moment constraints between (1, 2) given (3, 5)
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Type of copula AIC

Bauer et al [2] method -3078.62

Minimum information copula using OFS base -4187.24

Minimum information copula using PS base -4780.88

Minimum information copula using OPS base -5339.38

Table 5: Comparison between the models proposed in this paper and the ones given in [2, 3].

sufficient, and the model complexity measured by the number of parameters is left without

consideration. Therefore, we compare these methods based on the Akaike information criteria

(AIC) which includes the model complexity. The AIC of the overall Non-Gaussian BN-PCC

model using the PS, OPS and OFS bases are -4780.88, -5339.38 and -4187.24, respectively.

These values are considerably less than the AIC of the fitted Non-Gaussian BN-PCC models

to the data using Bauer et al [2] method (with AIC equals to -3078.62). We illustrate the

corresponding results in Table 5.

6. Simulation study

We now discuss the simulation of data from the presented minimum information BN-PCC

and make comparisons between correlations in the simulated and observed data in terms

of 2000 simulations. The simulation method is simple and is based on sampling from the

CDFs [15]. The same methodology has been used in [3] to draw sample from the parametric

BN-PCC. This simulation strategy is explained in the following steps:

1. Draw n samples from two independent r.vs distributed uniformly on [0, 1], the samples

are shown by {(u(i)1 , u
(i)
2 ), i = 1, . . . , n};

2. Compute the values of the original variables using the following equations:

x
(i)
1 = u

(i)
1 , x

(i)
2 = F−12|1 (u

(i)
2 |x

(i)
1 ),

where x
(i)
j is realization of Xj.

3. Repeat this to any copula in BN-PCC model given in (2) by appropriately taking into

account the order of the child and parents variable in this simulation.
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It can then be recognised that the dependence pattern of the simulated and original data

are similar. Table 6 displays the rank correlations between the interested variables calculated

from the original observed data, and based on the simulated data taken from the fitted BN-

PCC through minimum information copula based on OPS basis. Other base to shorthand

and to prevent a repeat procedure in the simulation has been removed. By comparing the

computed correlations, it can be accomplished that there is a strong consistency between the

mentioned correlations. A similar comparison can be implemented between the minimum in-

formation BN-PCC derived based in the OPS basis functions and the parametric counterpart.

The presented results shows stronger consistency between the estimated correlations based

on the proposed method and the observed ones.

7. Discussion and Conclusions

One of the applications of Gaussian distributions are in modeling and computing financial

asset returns, risk assessment of capital allocation by banks, and estimating risks associated

with financial portfolios in actuarial science. However, the existing internal Gaussian models

are limited when it comes to inference from tails. As opposed to normal Gaussian distribu-

tions, copulae are known to be a suitable and powerful means for overcoming the flaws in

the existing techniques. An example for the application of copula in the above-mentioned

areas, would be the claim allocations and fees’ assignments for investigators, experts, etc. as

part of Allocated Loss Adjustment Expense (ALAE) processes. An additional case for the

application of copula, would be risk assessments conducted by banks and credit institutions

for credit and market evaluations and judgements; an existing flaw with many of the existing

techniques, known to be internal bottom-up approaches, for such risks assessments, is that

those techniques are not capable of modeling joint distribution of non-identical risks.

There are non-identical approaches to inference in multivariate distributions. Bayesian

networks and copulae are generally very suitable for modeling such probability distributions.

In the applications where tail properties are important for predictive probabilistic modeling,

many of the existing techniques are limited and inadequate. One of the well-known tech-

niques that can appropriately infer from tail properties is the multivariate Gaussian copula.

As stated above, many of the current techniques used for financial application modeling, as-
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Original

LBTBond IMA IBrX WldSm Wldlg ACI

LBTBond -0.069 -0.373 0.596 0.571 -0.465

IMA 0.112 0.024 0.022 0.211

IBrX 0.197 0.197 0.435

WldSm 0.938 -0.080

Wldlg -0.093

Parametric BN-PCC

LBTBond IMA IBrX WldSm Wldlg ACI

LBTBond -0.054 -0.360 0.458 0.479 -0.453

IMA 0.110 0.020 0.019 0.185

IBrX 0.240 0.223 0.342

WldSm 0.924 -0.088

Wldlg -0.117

Minimum information BN-PCC

LBTBond IMA IBrX WldSm Wldlg ACI

LBTBond -0.066 -0.366 0.526 0.513 -0.458

IMA 0.112 0.022 0.020 0.197

IBrX 0.207 0.212 0.417

WldSm 0.933 -0.083

Wldlg -0.102

Table 6: The rank correlation coefficients calculated from the observed data & simulated from the proposed

method
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sume a normal Gaussian distribution of events for simplifying the complex nature of financial

scenarios [6, 8, 23]. The proposed methodology for utilising vine structure for approximation,

would enable the modeller to establish non-constant conditional correlations, and minimise

the chance of risk underestimation.

In this paper, we have developed a novel method to approximate the complex dependence

between several variables using the BN-PCC model. In order to approximate a multivariate

distribution for the observed data, one only needs to specify a DAG structure, a basis family,

and the expected values for the certain functions associated with some of the constraints on

each pairwise copula. We have considered a wide range of computationally efficient basis

functions including PS, OPS and OFS bases. Using either OPS and OFS bases, the den-

sity approximation can be implemented much faster due to the suitable properties explained

above. The functions used in our method can be altered to other suitable functions fitted

for other applications. For instance, frequent runs of complex codes/function for specifying

the minimum information distribution could be computationally very expensive, one could

use Gaussian process emulators or Kriging models as a way to speed up the computations.

Moreover, the Gaussian process can be used for estimating fully conditional vines and making

the computation of the density approximation more tractable [17].

The existing methods, such as the Bayesian logic program, relational dependency net-

works, relational Markov networks, Bayesian networks build a graph to represent the con-

ditional dependence structure between random variables. However, they tend to force the

local quantitative part of the model to take a simple form, but the complex dependencies

between high-dimensional variables are difficult to capture. We have already illustrated that

the proposed method would be very efficient in understanding the complex dependence be-

tween the multiple variables, with moderately large sizes as discussed in Section 5, with tail

dependence and asymmetric characteristics which appear widely in the financial applications.

In future research, we wish to explore and illustrate the potential of the proposed method for

modeling complex dependence between a set of high-dimensional variables which is a critical

but challenging problem in many financial applications including financial markets, driving

complex market movements, portfolio return and risk, etc. One approach to tackle the curse

of dimensionality for the BN-PCC model is to construct a BN structure from the simplified
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vine model. However, this issue is not explicitly addressed in [2, 3], but there have recently

been some interests in connecting BN’s with the simplified vine for the similar purposes of

this paper. The simplified vine could be developed based on limited number of parents and

truncated vine copulas under reasonable conditions [20] or through truncated partial regular

vine copula model [23].
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