
Computing Conference 2018

10-12 July 2018 | London, UK

1 | P a g e

Performance Evaluation of Resources Management in

WebRTC for A Scalable Communication

Naktal Moaid Edan

School of Science and Technology, The University of

Northampton

Northampton, United Kingdom

University of Mosul, Mosul, Iraq

naktal.edan@northampton.ac.uk

Ali Al-Sherbaz, Scott Turner

School of Science and Technology, The University of

Northampton

Northampton, United Kingdom

{ali.al-sherbaz, scott.turner}@northampton.ac.uk

 Abstract— Web Real-Time Communication (WebRTC)

offers peer-to-peer communications without any plug-ins.

However, WebRTC cannot provide scalability because of its

method that depends on a single server or due to the resource

limitations and network topology in the architectural of the

WebRTC. This paper aims to design a real environment using

MATLAB simulation tools to specify the limitations of resources

in WebRTC for bi-directional video conferencing, such as CPU

performance, bandwidth consumption and Quality of Experience

(QoE) using different topologies such as mesh, star and hybrid (a

combination of unidirectional/star & bi-directional/mesh).

Moreover, several CPU cores like i3, i5, i7, Xeon, i9 and Xeon Phi,

as well as bandwidths: 0.5, 1, 5, 10, 30, 50, 100, 500 and 1000 (Mb/s)

were considered to achieve and expand the scalability. In this

implementation, the factors of real-time implementation were

used. Thus, the utilized measurements were already validated

while MATLAB presents coefficient with 95% confidence bound.

Additionally, this paper highlights the obstructions are preventing

scalability in WebRTC using a centralized server. This illustration

is beneficial for interested developers who intend to use WebRTC

duplex video conferencing among undefined users and different

topologies. Furthermore, our simulation-based’ performance

evaluation shows the efficiency of the hybrid topology in

decreasing the bandwidth overhead and CPU load in WebRTC.

 Keywords— The Web Real-Time Communication (WebRTC);

Quality of Experience (QoE); Mesh topology; Star topology and

Hybrid topology.

I. INTRODUCTION

Web Real-Time Communication (WebRTC) was developed by

the World Wide Web Consortium (W3C) and Internet

Engineering Task Force (IETF) [1]. WebRTC is an open source

and a collection of protocols and standards [2]. It allows the

transportation of audio, video and data without plugins [3].

Several trials were produced to attain a scalability in WebRTC

to reduce the overhead, CPU usage, bandwidth consumption,

etc. Therefore, some developers used XMLHttpRequest

(XHR/polling) for video conferencing, but XHR leads to waste

of bandwidth and delay [4]. Moreover, it is active with

communication that does not need the full-duplex approach [5].

In contrast, other developers used SIP (Session Initiation

Protocol) with WebRTC to execute video calls. However, SIP

has a high bandwidth consumption and delay [6]. Different

approaches have worked towards using peer-to-peer (P2P)

overlay networks to accomplish a scalability and to allow end

users to help the website operator distribute the static objects

(e.g., images, videos, etc.) that make up web pages.

Nevertheless, these systems are built either using browser plug-

ins that the user must install or client-end software that must be

downloaded and run [7]. Furthermore, designing of P2P overlay

networks faces a lot of challenges. For instance, the scalability

and multidimensional data are considered as primary issues that

lead to raising the system complexity. In addition, a

configuration of P2P overlay networks on actual machines or

networks is not practicable. Therefore, they should be

implemented before applying and after development [8].

Consequently, most of the P2P methods do not scale well

because each query generates a significant amount of traffic [9].

A key difference between traditional P2P applications and a

WebRTC web application is the P2P inability to directly

establish connections to peers, despite knowing their public IP-

address [10].

Network topology in the architecture of WebRTC, CPU

performance and bandwidth consumption that are playing the

primary role in video conferencing. [11] illustrated that

choosing the suitable network topology in the architectural

design of the WebRTC application is considered as one of the

essential problems. Hence, it should select an appropriate

architecture for the application. In addition to [12] who

described that video conferencing demands to process power in

order to decode, encode and distribute video and audio in real

time. This CPU stress relies on different factors such as the

codecs used, the quality of both audio and video and video size.

Besides, the CPU limitations affect the user with the reduced

CPU usage [3]. Additionally, high processing offers higher

video resolution on the system, but this request leads to the

more significant congestion, resulting in video conferencing

services demanding to meet high CPU requirements [13]. CPU

has an essential impact on video conferencing, while it handles

a high load due to different sources sending and receiving the

videos at the same time. The CPU limitations affect only the

user with the reduced CPU usage [3]. Any communication

between peers needs to have a separated RTP (Real Time

Protocol) for the audio and video. Thus, each peer requires at

least four RTPs as follows: one RTP port for outgoing video,

Computing Conference 2018

10-12 July 2018 | London, UK

2 | P a g e

one RTP port for outgoing audio, one RTP port for incoming

video, and one RTP port for incoming audio [14][15].

Bandwidth consumption also plays a leading role in

communication, while it requires sustaining the overall session

grows for each new participant; therefore, different users will

have different bandwidths [16]. It can lead to a bottleneck on

the client end, and the performance may drop significantly [17].

Besides, [12] demonstrated that bandwidth availability and

latency rely on the differences between the variety of devices

and networks, so it leads to interrupt the conference while the

system is not able to react appropriately.

The primary objectives of this paper are to design a real

environment using MATLAB tools to identify the reasons that

impede a scalability in WebRTC using a centralized server and

to evaluate the impact of resources in WebRTC for duplex

video conferencing such as CPU performance, bandwidth

consumption, using different topologies and quality of

experience (QoE). Moreover, this test is applied using an

unlimited number of users in one and four groups to increase

and decrease communication links. This paper gives an

extensive explanation to support the concerned developers to

get the specifications of WebRTC resources on the scalability

and to determine the best topology that can be used in WebRTC

bi-directional video conferencing. This implementation used

the factors and measurements of real-time implementation as

described in [14][15][18].

This paper is organised and outlined as follows: Section II some

WebRTC related work. Section III describes the strategy along

with the architecture. Section IV, illustrates the

implementation. Section V, discusses the implementation

results. Section VI, presents the analysis and discussion.

Finally, Section VII has the conclusion with the future work.

II. RELATED WORK

Different developers attempted to manage scalability in

WebRTC for video broadcasting, video conferencing and audio

calls. However, most of them faced several issues over their

work. For instance, applying it to limited users utilises plug-ins,

they have not implemented their proposed mechanisms. They

used P2P overlay network that has some candidate problems:

(a) indirection/directional communication, (b) bandwidth

complicity, (c) a large number of peers and (d) lack of usage for

video conferencing [19]; and also used MCU (Multipoint

Control Unit), etc. The following describes and discusses some

of their mechanisms:

Designed a scalable communication in WebRTC based on

Chord algorithm using PeerConnecion over DataChannel

(POD). But, Chord was designed for a unidirectional network

and a WebRTC peer itself cannot immediately connect the

other peers, as well as this application used for chat

communication as messages while POD was used for back-

channel content such as images, text chat and game update

packets [20]. Furthermore, using CANs (Content Delivery

Networks) proposed a hybrid peer-to-peer network to aid video

chunks delivery. Nevertheless, this approach is useful for a

small number of peers and it does not guarantee the content

exchanged between peers [21]. Additionally, [22] implemented

WebRTC video streaming using XmlHttpRequests,

WebSockets and PeerJS server. This implementation used 32

peers as a maximum number, including using a pull-based

protocol over large-scale systems. However, the node requests

the package twice and using a push-based protocol is not

sufficient for streaming systems and due to the periodical

exchange of buffer-maps among the peers it has challenging

overhead [23]. In addition, proposed Peer-to-Peer audio and

video application using WebSocket and Node.js as a signalling

server. However, the system is assumed for two students at one

session and it offers unclear audio and echo [24].

Developed a web-based multimedia application, which has a

scalability to provide a low latency and high throughput. But,

this implementation was done between only two clients [25].

Furthermore, a developed protocol has been proposed for

decentralized conferencing with WebRTC using two

techniques like voice-activated switching and Load-balancing.

These techniques were used to solve the scalability problems

and video conferencing service. Nevertheless, the features in a

real-world application are entirely theoretical, so it needs to be

implemented [26].

Based on the current works as many P2P systems are not

accurate and a key reason for the lack of fully-distributed P2P

systems is the difficulty in designing highly robust algorithms

for large-scale dynamic P2P networks [27], and that includes

the various articles of the related work as shown above. The

implementation of this paper demonstrates an explanation that

helps to recognise most of the resources limitations for

scalability in WebRTC for video conferencing. In addition, it

extends the number of participants in several topologies to be

more than 140 peers in bi-directional video conferencing using

the same server, analyses CPU performance, bandwidth

consumption, QoE, etc.

III. STRATEGY AND ARCHITECTURE

a) Strategy

It is divided into five parts as follows:

1) Using various topologies, such as the star (one-to-many)

bi-directional communication, mesh (many-to-many) bi-

directional communication and hybrid based on simple

system (one-to-one unidirectional/bi-directional), star

topology (one-to-many unidirectional) and mesh topology

(many-to-many bi-directional) communication. The hybrid

was achieved between broadcaster-to-broadcaster (bi-

directional) and broadcaster-to-viewer unidirectional).

2) Using undefined number of users divided into one and four

groups

3) Using several CPU cores: i3, i5, i7, Xeon, i9 (18 core)[28],

and Xeon Phi (72 cores)[29]

4) Using different bandwidths (Mbps): 0.5, 1, 5, 10, 30, 50,

100, 500 and 1000 (1G)

5) Using Quality of Experience (QoE) based on the

interconnection between CPU loads and bandwidth

conditions. In addition, using Mean Opinion Score (MOS)

as a measure in the domain of QoE resulting in a score

Computing Conference 2018

10-12 July 2018 | London, UK

3 | P a g e

between 1-5 with 1 being very bad, 2 being bad, 3 being

fair, 4 being good and 5 being excellent.

b) Architecture

Core i7 & RAM 8 GB computer; and MATLAB software were

used to design the GUI (Graphical User interface) of this

environment. The mentioned topologies can be applied

individually so each topology can be run based on its nature as

clarifying below, except for the hybrid, which has a particular

mechanism. Figure (1) shows the architecture of the actual

model.

Fig 1, Presents an actual model using different topologies

• Star topology

In this topology, the network relies on an initiator so if the

initiator goes down, the whole communications will go down.

On the other hand, participants do not need a high capacity of

CPU or high bandwidth [11], as long as they cannot

communicate among themselves [15]. In contrast to what has

been said, this implementation has applied the number of users

in one group, and the evaluation of CPU loads and QoE has

only focused on the initiator side. Therefore, it should specify

the initiator’s CPU, participants CPU and the number of nodes

as shown in figure (2), but to gain QoE, we should limit the

bandwidth as well.

Fig 2, illustrates the flowchart of star in this implementation

• Mesh topology

In mesh topologies, any conference member can invite another
user to participate or leave at any time without affecting the
remaining participants. It uses many links among users to
transfer data and all peers connect among themselves
simultaneously [30]. In this implementation, grouping the
number of users into one and four groups has been applied, and
each group has undefined users, different CPUs and several
bandwidths. Figure (3) shows that an initiator should select the
kind of group and specify CPU with bandwidth, as well as
finding out CPU loads or QoE for each group individually.

Fig 3, demonstrates the flow chart of mesh in this implementation

• Hybrid topology

According to real-time implementation, a host peer should

initiate and starts its browser to allow any user to participate in

the session so using different systems allowing all peers to

connect with each other as viewers and/or broadcasters. Figure

(4) indicates that when attempting to discover CPU loads, there

are different equations that should be used as one defined for

broadcasting and another one specified for a viewer. Moreover,

the same strategy should be used when finding QoE after

selecting the bandwidth.

Fig 4, presents the flowchart of mesh in this implementation

Computing Conference 2018

10-12 July 2018 | London, UK

4 | P a g e

IV. IMPLEMENTATION

Using Fermi-Dirac distribution which is a special case of

Boltzmann’s equation that gives the best curve fitting and

MATLAB tools based on the factors of real-time execution,

which achieved using CPU core i5, i7 and Xeon via Wired of

LAN (Local Area Network) and WAN (Wide Area Network)

as detailed in [14][15][18], various equations to calculate CPU

loads for broadcasters and/or viewers in all mentioned

topologies have been created and also finding out Quality of

Experience (QoE) by using CPU loads and bandwidth

conditions as presented:

A. An equation of CPU loads

Different variables were used where x = number of nodes, a &

b = curve fitting for measuring and factor (f) = a specific value

of each CPU that is found by using MATLAB tools and

according to the real-time implementation as shown in equation

(1).

Equation (1), displays CPU loads-based number of nodes

The equation (1) was applied to core i5, i7 and Xeon

individually and the outcomes were coefficient with 95%

confidence bounds compared with their results in real-time

implementation. Therefore, this equation has also been applied

to obtain CPU loads for the others such as Core i3, i9 and Xeon

Phi. Furthermore, the factor of each CPU was found using

equation (1) and based on peer’s number. Figure (5), describes

the pseudocode of each CPU factor. Moreover, figure (6),

presents an example of the CPU difference between real-time

implementation and this implementation.

Fig 5, shows the pseudocode for the CPU load for broadcasting in all

topologies

Fig 6, shows the similarities between CPUs performance

More importantly, when communicating only between

broadcasters (bi-directional), it has considered that a=50 and

b=20 to obtain an efficient outcome comparing with the real-

time implementation. On the other hand, if communication

between one broadcaster and one/more viewers

(unidirectional), the streaming of the audio and video will only

be sent from the broadcaster to the viewer. In this case, a=120

and b=40 to get a productive result that is similar to the real-

time implementation result should be used. Thus, in this status

has combined the equation of CPU loads for broadcasters with

the equation of CPU loads for viewers to get an excellent result.

Figure (7), illustrates the pseudo code of combining the

broadcaster and viewer equations in hybrid topology.

Fig 7, shows the pseudocode of CPU load in hybrid system

CPU load

SET a = 50, b = 20, x = number of nodes

SET f according to the CPU type as
SWITCH CPU Type:

 case 'i3'

 f = 0.03;
 case 'i5'

 f = 0.04;

 case 'i7'

 f = 0.06;

 case 'Xeon'
 f = 0.09;

 case 'i9'

 f = 0.25;
 case ‘Xeon Phi’

 f = 1;

END

Calculate the CPU load

CPUload% = 100/(1 + (exp((f*a-x)/f*b)))
End

CPU load for broadcasters & Viewers in hybrid topology

SET f according to the CPU type as
SWITCH CPU Type:

 case 'i3'

 f = 0.03;
 case 'i5’

 f = 0.04;

 case 'i7'
 f = 0.06;

 case 'Xeon

 f = 0.09;
 case 'i9' f = 0.25;

 case ‘Xeon Phi’ f = 1;

END

SET a = 50, b = 20, x = number of broadcasters

Calculate the CPU load for broadcasters
Cpuload1% = 100/(1 + (exp((f*a-x)/f*b)

SET a = 120, b = 40, x = number of viewers
Calculate the CPU load for viewers

Cpuload2% = 100/(1 + (exp((f*a-x)/f*b)

CPUoad% = Cpuload1 + Cpuload2

IF CPUload% > 100

CPUload% = 100%

End

𝑪𝑷𝑼𝑳𝒐𝒂𝒅 =
𝟏𝟎𝟎

𝟏+𝒆
(
𝒂∗𝒇−𝒙
𝒃∗𝒇

)
 ……..… (1)

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13

C
P

U
 P

ER
C

EN
TA

G
E

NUMBER OF NODES

Difference between CPUs in Real-Time and MATLAB

Xeon in Real-Time implementation

Xeon in MATLAB Semulation

Computing Conference 2018

10-12 July 2018 | London, UK

5 | P a g e

V. IMPLEMENTATION RESULTS

Using CPU loads equations for broadcasters in star and mesh

and using broadcasters and viewers in hybrid has given a

productive result as in real-time implementation. The mentioned

CPUs were implemented in all topologies and that is why the

CPU core i3 was able to provide an excellent communication

between three to four peers, core i5 was able to give an excellent

communication between five to six peers, CPU core i7 was able

to give an excellent communication between seven to eight

peers, CPU core Xeon (called ix in this implementation) was

able to give an excellent communication between eleven to

twelve peers, core i9 (18 core) was able to give an excellent

communication up to thirty-five peers, and CPU core Xeon Phi

(named iz in this implementation) was able to give an excellent

communication up to 315 peers. On the other hand, these CPUs

cannot load more than the indicated numbers while the increase

will influence the QoE as shown in tables (1, 2 & 3). In the

hybrid, each viewer will communicate with all broadcasters,

despite the fact that each broadcaster will communicate with the

other broadcasters and viewers as well. This means, the more

decreased the broadcasters number is, the more increased the

viewer's number can be. Clearly, CPU capability for each

broadcaster is equal to two viewers. Thus, communication in

hybrid accomplished over a duplicated number of viewers is

compared with the number of broadcasters as shown in the table

(3). Overall, it has been proved that increasing the CPU core can

raise the number of users. Whereas, CPUs extension confirmed

its ability to achieve scalability in WebRTC video conferencing

as presented in figures (8, 9, 10, 11 & 12).

Fig 8, demonstrates CPU loads among twenty peers in mesh topology

Fig 9, shows CPU loads among hundred and thirty peers in mesh topology

Fig 10, presents CPU loads among eight peers in star topology when the

broadcaster uses CPU core i7 and the participant use core i7

Fig 11, presents CPU loads

Fig 11, displays different CPU loads among (i3, i5, i7 & ix) for four

broadcasters and eight viewers (i3, i5, i7 & ix) in hybrid topology

0

Fig 12, illustrates different CPU loads among (i7, ix, i9 & iz) for eight

broadcasters and twenty viewers (i7, ix, i9 & iz) in hybrid topology

TABLE (1), shows the CPU performance in mesh topology

Seq CPU

Core

Mesh Topology

Bi-directional

Excellent Unacceptable

1. i3 4 5

2. i5 6 7

3. i7 8 9

4. Xeon 12 13

5. i9 33 34

6. Xeon

Phi

136 137

Computing Conference 2018

10-12 July 2018 | London, UK

6 | P a g e

TABLE (2), presents the CPU performance in star topology

TABLE (3), displays the CPU performance in hybrid topology

B. An equation of Quality of Experience

According to the real-time implementation as mentioned in
[14][15][18], that each peer consumes minimum 950 kb/s and
maximum 1350 kb/s for video and between 58-63 kb/s for audio
on each RTP (Real Time Protocol) via LAN and WAN
networks. Moreover, in the real-time implementation, actual
users have participated to give their individual opinions;
therefore, the quality of audio and video has been assessed on
different CPUs, such as i5, i7 and Xeon. Therefore, users
revealed that the QoE of the audio and video could be excellent
as long as the CPU usage is less than 89% that is score 5 in MOS
(Mean Opinion Score). Nevertheless, as much as CPU load
exhibits more than 88% that lead to decrease the QoE. For
example, if the QoE reaches 91% then its score is 4, so it is good.
If it reaches 94% then its score 3 so it is as fair, etc. In this
implementation, the mean consumption of bandwidth as each
peer consumes 1 Mb/s for video and about 60 kb/s for audio was
considered. To this end, QoE equation has been built based on
CPU loads and QoE in real time implementation. Thus, the
results showed coefficient with more than 95% confidence
bounds in MATLAB tools as demonstrated in figure (8). The
result of QoE is presented in two bars separately, as one for CPU
load and another one for QoE. In fact, it was possible to use one
equation to display the overall result, but they were separated to
give a clear view for identifying the exact resource effects on the
quality of audio and video, including the specification of users.
Figure (9), represents the curve fitting of QoE based on CPU
usage and QoE in the real-time implementation. The equation of
QoE was applied on all topologies using several CPUs and
bandwidths. As shown in figures (13, 14, 15, 16, 17, 18 & 19)
as examples, diverse groups are used and each group (G) can
sustain unlimited users, several CPUs and various bandwidths.

For this reason, it is easy to recognise the disparity in groups
according to their CPU and bandwidth.

Fig 13, illustrates the equation of QoE

Fig 14, shows QoE based on CPU load in real-time implementation

Fig 15, displays QoE in mesh among 20 peers while G1= CPU i3, BW(10),

G2= CPU i5, BW (30), G3= CPU i7, BW (50) and G4= CPU ix,
BW (100). BW by Mb/s

QoE based on CPU loads

SET QoE = Quality of experience

 bw = Used bandwidth

 NoN = number of nodes

If (cpuload > 88)

QoE= round (34 - 0.33 * cpuload%);

else

 QoE(i,1) = 5;

 END

0

1

2

3

4

5

88
91

94
97

100

Curve Fitting of Quality of Experience

CPU Performance QoE

Seq CPU

Core

Star Topology

Bi-directional

Excellent Unacceptable

7. i3 4 5

8. i5 6 7

9. i7 8 9

10. Xeon 12 13

11. i9 33 34

12. Xeon

Phi

136 137

Seq CPU

Core

Hybrid System

Bi-directional

Broadcaster Viewer

Excellent Unacceptable Broadcaster-

to-viewer

1. i3 4 5 9

2. i5 6 7 12

3. i7 8 9 17

4. Xeon 12 13 29

5. i9 33 34 78

6. Xeon

Phi

136 137 315

Computing Conference 2018

10-12 July 2018 | London, UK

7 | P a g e

Fig 16, presents QoE in mesh among 20 peers while G1= CPU i7, BW (10),

G2= CPU ix, BW (30), G3= CPU i9, BW (50) and G4= CPU iz,
BW (100). BW by Mb/s

Fig 17, illustrates QoE in mesh among 10 peers while G1= CPU i7, BW

(30), G2= CPU ix, BW (50), G3= CPU i9, BW (100) and G4=

CPU is, BW (100). BW by Mb/s

Fig 18, illustrates QoE in star among 5 peers while G= CPU i7 and BW (30)

for broadcaster and CPU i7 for participants. BW by Mb/s

Fig 19, illustrates QoE in star among 5 peers while G= CPU i5 & BW (30)

for broadcaster and CPU i7 for participants. BW by Mb/s

VI. ANALYSIS AND DISCUSSION

It was proved that resources management is necessary to extend

the number of users for scalability in WebRTC. Resources,

such as CPU, bandwidth and topology are dovetailed and able

to impact on a number of participants, affecting the quality of

audio and video, etc. The performance of CPU and bandwidth

consumption has significant issues in audio and video

conferencing. Mesh topology is the most complicated topology

since it requests a high CPU and high bandwidth speed. For

instance, when a user uses CPU core Xeon, it cannot perform

as another user, which uses CPU core i3, etc. On the other hand,

in the star, a broadcaster exhibits high CPU processing, while it

is sending and receiving the audio and video with many users

simultaneously. However, a participant does not exhibit a high

CPU or bandwidth, as long as he/she is communicating only

with the broadcaster. Moving to hybrid, it is the best topology

while since offers several options and the user is free to select

any of them. As an example, if the user realises that the

bandwidth is limited or CPU is not high enough, he/she can

simply change from broadcaster to viewer and keep joining the

session. This change will maintain the user connected and also

consumes less bandwidth. Additionally, the hybrid is useful to

use WebRTC video conferencing among various

communications. For instance, m-Health (many doctors can

communicate with many technicians and patients), e-learning

(many teachers can communicate with many students and many

students can communicate with each other), communication

applications, etc. The quality of experience (QoE) verifies that

this testbed environment works correctly as it is in the real-time

implementation.

VII. CONCLUSION

In this implementation, a massive simulation that coefficient
with 95% confidence bound as demonstrated in MATLAB tools
was obtained. Although, a massive effort has been made in order
to evaluate and specify the limitations of resources in WebRTC,
especially for bi-directional video conferencing. Therefore, real-
time implementation was achieved to exploit its results in this
implementation to extend the resources and find out some
suggestions and solutions for scalability in WebRTC. In this
paper, a novel MATLAB simulation was created and tested,
which describes the advantages and disadvantages of using
different topologies, CPUs, bandwidths, the number of users,
etc. Moreover, it suggests a hybrid system that can reduce the
resources consumption and specifications in several
applications. This implementation guarantees a different
equation for providing a method to manage the resourcing in
WebRTC. In addition, a deep evaluation based on the physical
implementation was done over CPU performance, QoE, mesh
topology, star topology and hybrid topology. Additionally, by
managing the resources in WebRTC, can achieve a scalability,
therefore in this implementation can support up to 140
broadcasters and 315 viewers while having high core CPUs. In
future, there is an intention to consider different CPU cores and
develop the hybrid system to be applied based on overlay
network techniques.

ACKNOWLEDGMENT

This research was funded by the Ministry of Higher Education

in the Republic of Iraq, according to the scholarship number

(1469) in (03/04/2013) to sponsor the first author to pursue his

PhD research.

I want to acknowledge the effort of Mr. Riyadh Abedraba Abbas

for supporting by different ideas and advices.

REFERENCES

[1] J. Jang-Jaccard, S. Nepal, B. Celler, and B. Yan, “WebRTC-based

video conferencing service for telehealth,” Computing, vol. 98, no.

Computing Conference 2018

10-12 July 2018 | London, UK

8 | P a g e

1–2, pp. 169–193, 2016.

[2] M. Phankokkruad and P. Jaturawat, “An Evaluation of Technical
Study and Performance for Real-Time Face Detection Using Web

Real-Time Communication,”, no. I4ct, pp. 162–166, 2015.

[3] L. N. Eirik Fosser, “Quality of Experience of WebRTC based video
communication,” Norwegian University of Science and Technology,

2016.

[4] R. Manson, Getting Started with WebRTC. Birmingham: Packt
Publishing Ltd, 2013.

[5] R. Rai, Socket. IO Real-time Web Application Development.

BIRMINGHAM - MUMBAI: PACKT, 2013.
[6] N. M. Edan, A. Al-Sherbaz, S. Turner, and S. Ajit, “Performance

evaluation of QoS using SIP & IAX2 VVoIP protocols with

CODECS,” in Proceedings of SAI Computing Conference, SAI, pp.
631–636, 2016.

[7] L. Zhang, F. Zhou, A. Mislove, and R. Sundaram, “Maygh: Building

a CDN from client web browsers,” in Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys, pp. 281–294,

2013.

[8] S. Surati, D. C. Jinwala, and S. Garg, “A survey of simulators for P2P
overlay networks with a case study of the P2P tree overlay using an

event-driven simulator,” Eng. Sci. Technol. an Int. J., vol. 20, no. 2,

pp. 705–720, 2017.
[9] Y. Deng, F. Wang, and A. Ciura, “Ant colony optimization inspired

resource discovery in P2P Grid systems,” J. Supercomput., vol. 49,

no. 1, pp. 4–21, 2009.
[10] M. K. Melhus and P. E. Heegaard, “P2P Video Streaming with

HTML5 and WebRTC,” Norwegian University of Science and

Technology, 2015.
[11] Schahin Rajab, “Comparing different network topologies for

WebRTC conferencing,” 2015.

[12] P. Rodríguez, J. Cerviño, I. Trajkovska, and J. Salvachúa, “Advanced
Videoconferencing Services Based on WebRTC,” in IADIS

International Conferences Web Based Communities and Social

Media and Collaborative Technologies, pp. 180–184, 2012.
[13] J. B. Husić, S. Baraković, and A. Veispahić, “What Factors Influence

the Quality of Experience for WebRTC Video Calls,” in 40th

International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pp. 428–

433, 2017.

[14] N. M. Edan, A. Al-sherbaz, and S. Turner, “WebNSM : A Novel
Scalable WebRTC Signalling Mechanism for Many-to-Many Video

Conferencing,” in 3rd IEEE International Conference on

Collaboration and Internet Computing (CIC), vol. 2, pp. 1–7, 2017.
[15] N. M. Edan, A. Al-sherbaz, and S. Turner, “WebNSM: A Novel

WebRTC Signalling Mechanism for One-to-Many Bi-directional

Video Conferencing,” in Proceedings of SAI Computing Conference,
pp. 1–6, 2018.

[16] M. Grinberg, “socketio Documentation,” 2017.
[17] M. Villanueva, F. Valverde, and O. Pastor, Information System

Development. 2014.

[18] T. S. Edan. N, Al-sherbaz. A, “Desing and Implement A Hybrid
WebRTC Signalling Mechanism for Unidirectional & Bi-directional

Video Conferencing,” Int. J. Electr. Comput. Eng, vol. 8, no. i, pp. 1–

8, 2018.
[19] M. Roussopoulos, M. Baker, D. S. H. Rosenthal, T. J. Giuli, P.

Maniatis, and J. Mogul, “2 P2P or Not 2 P2P?,” 2004.

[20] J. H. Paik and D. H. Lee, “Scalable signaling protocol for Web real-
time communication based on a distributed hash table,” Comput.

Commun., vol. 70, pp. 28–39, 2015.

[21] F. R. N. Barbosa and L. F. G. Soares, “Towards the Application of
WebRTC Peer-to-Peer to Scale Live Video Streaming over the

Internet,” in Simpósio Brasileiro de Redes de Computadores (SBRC),

no. Figure 1, pp. 119–124, 2014.
[22] F. Rhinow, P. P. Veloso, C. Puyelo, S. Barrett, and E. O. Nuallain,

“P2P live video streaming in WebRTC,” in World Congress on

Computer Applications and Information Systems (WCCAIS), pp. 1–
6, 2014.

[23] A. Ghaffari Sheshjavani and B. Akbari, “An adaptive buffer-map

exchange mechanism for pull-based peer-to-peer video-on-demand
streaming systems,” in Multimedia Tools and Applications, vol. 76,

no. 5, pp. 7535–7561, 2017.

[24] P. M. Jacob and M. Prasanna, “A Comparative analysis on Black box

testing strategies,” in International Conference on Information
Science (ICIS), pp. 1–6, 2016.

[25] V. Kandari, “Implementation and Performance Optimization of

WebRTC Based Remote Collaboration System,” Blekinge Institute
of Technology, 2016.

[26] A. Hallberg, “A protocol for decentralized video conferencing with

WebRTC Solving the scalability problems of conferencing,” KTH
ROYAL INSTITUTE OF TECHNOLOGY, 2016.

[27] A. Disterhöft and K. Graffi, “Protected chords in the web: Secure P2P

framework for decentralized online social networks,” in IEEE
International Conference on Peer-to-Peer Computing, 2015.

[28] M. Passingham, “Intel Core i9,” trustedreviews. [Online]. Available:

http://www.trustedreviews.com/news/intel-core-i9-specs-release-
date-skylake-x-2948774. [Accessed: 09-Sep-2017].

[29] “Xeon Phi Processor 7290,” Intel®. [Online]. Available:

https://www.intel.com/content/www/us/en/products/processors/xeon
-phi/xeon-phi-processors/7290.html. [Accessed: 16-Sep-2017].

[30] W. Elleuch, “Models for multimedia conference between browsers

based on WebRTC,” in International Conference on Wireless and
Mobile Computing, Networking and Communications, pp. 279–284,

2013.

