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a b s t r a c t 

In a high-rise elevator system lateral vibrations of the suspension and compensating ropes, coupled with vertical 
motions of the car and counterweight are induced by the building structure motions. When the frequency of the 
building coincides with the fundamental natural frequency of the ropes, large resonance whirling motions of the 
ropes result. This phenomenon leads to impacts of the ropes on the elevator walls, large displacements of the 
car and counterweight making the building and elevator system unsafe. This paper presents a comprehensive 
mathematical model of a high-rise elevator system taking into account the combined lateral stiffness of the roller 
guides and guide rails. The results and analysis presented in the paper demonstrate frequency curve veering 
phenomena and a wide range of resonances that occur in the system. A case study is presented when the car is 
parked at a landing level where the fundamental natural frequencies of the car, suspension and compensating 
rope system coincide with one of the natural frequencies of the high-rise building. The results show a range of 
nonlinear dynamic interactions between the components of the elevator system that play a significant role in the 
operation of the entire installation. 

Crown Copyright © 2018 Published by Elsevier Ltd. 
This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Lateral vibrations of the suspension and compensating ropes in a
igh-rise elevator system are induced by the building motions caused
y high winds. In general, a high-rise building has infinite number of
atural frequencies, but the main interactions between the ropes and
he building structure occur when the first two natural frequencies of
he building coincide with the fundamental natural frequencies of the
opes. Then large resonance whirling motions of the ropes then result.
his phenomenon causes impact loads in the elevator shaft, leading to
dverse dynamic behaviour of the entire elevator system. The impact
oads affect the elevator installation resulting in interruptions of service
nd damage to the components of the system. Furthermore, the car,
ounterweight and compensating sheave suffer from vertical vibrations
ue to the coupling with lateral vibrations of the ropes. 

The dynamics of ropes and cables has attracted the attention of con-
iderable number of researchers in various types of applications. For
xample in the context of civil engineering applications the behaviour
f cable stayed bridges and guyed towers supported by inclined ropes
s studied in [1–3] , respectively. In lifting applications the multibody
ynamic behaviour of ropes has been studied when heavy cargo is sus-
ended by ropes in a floating crane system [4] , and the kinematic and
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ynamic analysis of rope winding (unwinding) process has been the sub-
ect of a study presented in [5] . Another example of engineering applica-
ions of ropes is in building elevators and mine hoists [6–9] . The nonlin-
ar modal interactions taking place in a model of an aramid suspension
ope system were studied in [10] . The model consisted of an aramid sus-
ension rope, a pulley assembly and a rigid suspended mass. The math-
matical model of the system was validated with laboratory tests, the
esults show the nonlinear couplings may lead to adverse modal inter-
ctions in the system. A spatial discretization and substructure method
eveloped in [11] to accurately calculate the dynamic responses a rope
ystem with a time varying length parameter was proposed. The depen-
ent variables of a distributed-parameter component are decomposed
nto boundary-induced terms and internal terms. In [11] the first part
he methodology was developed and in [12] the second part the lon-
itudinal, transverse, and their coupled vibrations of moving elevator
able-car systems is applied with different choices of boundary motions.
he effect of longitudinal high frequency excitation which may stiffen
 continuous elastic structure is studied in [13] . A structure employing
 piano string positioned horizontally is considered and the experimen-
al results demonstrate the validity of the theoretical predictions of the
ateral displacements of the string. 

The vibration analysis of a vertical rope of changing length and
he application of the multiple time scales method to develop approxi-
aczmarczyk). 
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Nomenclature 

A V/W 

displacement amplitudes in the 
lateral in plane and out of plane 
directions 

a 1 flange width of guide rail T cross 
section 

a 2 web height of guide rail T cross 
section 

a 3 thickness of guide rail T cross 
section 

b 1 distance measured from the bot- 
tom landing level to the centre 
of the compensating sheave 

b 2 distance measured from the cen- 
tre of the traction sheave to the 
centre of the diverter pulley 

c in generalised coordinates in the 
lateral out of plane direction of 
the i th rope 

D irn 
V/W coefficients that account for the 

quadratic nonlinear coupling of 
the system of the i th rope in the 
lateral in plane and out of plane 
directions 

E G modulus of elasticity of the 
guide rail 

EA i product of the modulus of elas- 
ticity and the cross-sectional 
area the i th rope 

F ir 
V/W excitation for the lateral in 

plane and out of plane direction 
F CR , F CS , F CW 

excitation forces acting on the 
elevator car, compensating 
sheave, and counterweight 

h 0 height from the bottom landing 
level to the centre of the traction 
sheave 

h t position of the elevator car 
h trav height of travel 
J y/z moment of inertia of the cross- 

sectional area of the guide rail 
in the lateral in plane and out of 
plane direction 

K G 
V/W combined stiffness of the guide 

rails in the lateral in plane and 
out of plane direction 

K c stiffness of the elevator car 
suspension-tyre system 

k irn 
V/W coefficients that account for the 

lateral in plane and out of plane 
linear stiffness of rope i th 

k 1/2 equivalent spring constant that 
represents the combined stiff- 
ness of the car suspension, tyre 
and guide rail system for the in 
plane and out of plane motion 

k u1 , 𝑘̄ u2 , 𝑘̂ u2 coefficients that account for the 
longitudinal linear stiffness of 
the elevator car, compensating 
sheave, and counterweight 

k u2 , 𝑘̄ u1 , 𝑘̂ u1 coefficients corresponding to 
the linear coupling between the 
longitudinal displacements of 
25 
the elevator car, compensating 
sheave, and counterweight 

k n 
u3 , k n 

u4 coefficients in the lateral in 
plane and out of plane direction 
that account for the linear cou- 
pling terms between the longi- 
tudinal displacements of the el- 
evator car 

𝑘̄ n 
u4 , 𝑘̄ n 

u5 coefficients in the lateral in 
plane and out of plane direction 
that account for the linear cou- 
pling terms between the longitu- 
dinal displacements of the com- 
pensating sheave 

L i rope length of the i th rope 
L G length of the guide rail section 
m i mass per unit length of the i th 

rope 
M 1/2/3 mass of the elevator car, com- 

pensating sheave, and counter- 
weight 

n 1 , n 2 number of suspension and com- 
pensating ropes 

N number of the lateral in plane 
and out of plane modes 

q in generalized coordinates in the 
lateral in plane direction 

R 

V1/W1 
irnjp , R 

V2/W2 
irnjp coefficients corresponding to 

the cubic nonlinear coupling of 
the system for the i th rope for 
the lateral in plane and out of 
plane direction 

R 

u1/u2 , 𝑅̄ 

u1/u2/u3/u4 , 𝑅̂ 

u1/u2/u3/u4 coefficients that account for the 
lateral in plane and out of plane 
quadratic nonlinear terms act- 
ing in the longitudinal direction 
of the elevator car, compensat- 
ing sheave, and counterweight 

S V/W 

kinematic excitation functions 
in the lateral in plane and out 
of plane directions 

t time 
T i tension of the i th rope 
U CR , U CS , U CW 

dynamic displacements in the 
longitudinal direction of the ele- 
vator car, compensating sheave 
and counterweight 

U i dynamic displacement in the 
longitudinal direction of rope 
i th 

V CR dynamic displacement in the 
lateral in plane direction of the 
elevator car 

V i dynamic displacement in the 
lateral in plane direction of the 
i th rope 

𝑉 i elastic deformations measured 
relative to the building motion 
in the lateral in plane direction 
of the i th rope 

W CR dynamic displacement in the 
lateral out of plane direction of 
the elevator car 
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W i dynamic displacement in the 
lateral out of plane direction of 
the i th rope 

𝑊̄ i elastic deformations relative to 
the building motion in the lat- 
eral out of plane direction of the 
i th rope 

x i Eulerian spatial coordinate of 
the i th rope 

Greek symbols 

𝛼in normal free oscillation modes of the correspond- 
ing linear undamped stationary components in 
the lateral out of plane direction 

𝛽1 n 
V/W , 𝛽2 n 

V/W eigenvalues in lateral in plane and lateral out of 
plane direction for the suspension and compen- 
sating ropes at the car side 

𝜀 Green’s strain measure 
𝜁 ir 

V/W modal damping ratio in the lateral in plane and 
out of plane direction of the i th rope 

𝜁1 , 𝜁2 , 𝜁3 modal damping ratio in the longitudinal direc- 
tion 

𝜉 lateral displacements of the structure corre- 
sponding to the top of the building at the ma- 
chine room level and to the position of the eleva- 
tor car and counterweight 

𝜙in normal free oscillation modes of the correspond- 
ing linear undamped stationary components in 
the lateral in plane direction 

𝜓 shape function related to the fundamental mode 
of the host building structure 

ΩV/W 

frequency of kinematic excitation in the lateral 
in plane direction and the lateral out of plane di- 
rection, respectively 

𝜔 r 
V(i)/W(i) undamped lateral in plane and out of plane nat- 

ural frequencies of rope i th 
𝜔 1/2/3 longitudinal natural frequencies of the vertical 

responses 

ate solutions to demonstrate the dynamical behaviour of a rope sys-
em was analysed in [14] . It was demonstrated that the Galerkin trun-
ation method cannot be applied to obtain asymptotic results on long
imescales. 

A small bending stiffness relative to tension was included in the
athematical models for stationary and moving hoist ropes studied in

15] and the convergence of the models were examined. 
High-rise elevator systems are composed of mechanical components

hat interact with each other when the elevator car is stationary or in
otion. The previous research was focused on specific parts or sections

f the elevator system to better understand the dynamical behaviour of
ach component. For example, in [16] the vertical vibrations of the com-
ensating sheave suspended by compensating ropes has been analysed.
 mathematical model is developed to evaluate the vertical motion of

he compensating sheave during different emergency scenarios such as
he brake activation and buffer strike to determine the maximum verti-
al displacement of the compensating sheave. In [17] the longitudinal
ibrations of a suspension rope are studied with a car frame attached to
he bottom end of the rope, when the top end of the rope is fixed to the
pper support. Different case studies were considered to understand the
ongitudinal dynamic behaviour of the suspension ropes coupled with
he elevator car assembly when the system is stationary. In [18] the ver-
ical vibrations are analysed by a five degree of freedom lumped parame-
er model representing the car, compensating sheave, and counterweight
ith the machine drive system and controllers used in the laboratory

xperimental tests. In [19] the lateral vibrations of the compensating
26 
opes due to the longitudinal vibrations of the compensating sheave and
he rope winding shape around the compensating sheave are studied by
eveloping a lumped mass-spring model to compare with experimental
esults. In [20] a simplified calculation method based on a single degree
f freedom system to predict the lateral displacements of the suspension
nd compensating ropes has been developed. The simplified model was
ompared with a finite difference method which considers the building
tructure lateral displacements and the ground displacement as inputs. 

A high-rise elevator system includes long slender continua such as
opes and cables that are linked with discrete mass/inertia elements.
n the dynamic analysis they can be represented as beam or string ele-
ents. An analysis of elastic beams with concentrated masses and spring

upports was conducted in [21,22] . In [21] the mode shape function
nd frequency equation were derived for cantilever beams with lumped
asses and spring supports in different configurations. In [22] a static

nd dynamic stability analysis of a laminated composite cantilever beam
upported by a system comprising a combination of linear translational
pring and torsional spring excited by axial forcing has been carried
ut. Research concerning the subject of non-linear vibrations of axially
oving material was studied in [23] . In this work a non-linear axially
oving cable coupled with the lateral displacements has been consid-

red. The response of the system has been studied in the region of a
:1 internal resonance between the first two lateral modes. The analysis
f transverse vibration of an axially moving finite length beam where
wo points are supported by rotating rollers is presented in [24] . The re-
ults show that the modal exchanges occur at the veering regions of the
atural frequency loci. The dynamic model includes the translational
nd rotational motions as well as the deflection of the moving beam.
n [25] a model of an axially moving cable of constant length is devel-
ped. In this work the cable is excited by forced vibration applied at
he supports. This scenario is relevant to moving walks or belts systems.

hen both ends are excited in phase, the symmetric and asymmetric
ode shows the resonance phenomena caused by the effect of motion.

n [26] a model is developed consisting of a power transmission belt sys-
em excited by pulleys having an eccentricity. The experimental results
howed a range of response amplitudes and near resonance amplitude
umps. 

The application of active roller guides in a high rise elevator system
o mitigate the effects of lateral excitations acting upon a car due to ir-
egularities of the guiding system [27,28] is considered in [29] . Active
oller guides apply forces in the opposite direction to the lateral mo-
ion in order to maintain the roller guides being always in contact with
he guide rails [30] . The implementation of roller guides in high-rise
levator system improves ride quality of passengers in the elevator car.
he study presented in [31] investigates a deterministic and stochastic
odel of a cable – mass system with an auxiliary mass to act as a trans-

erse tuned mass damper to mitigate the rope displacements when the
ength of the cable varies slowly. 

Coupled vibrations of buildings and elevator ropes with a focus on
he analysis of the car side are studied in [32] . An experimental test
ig is used to validate the results predicted from the theoretical model.
he proposed model is based on a real building site and the elevator
ope data corresponding to the Hyundai Asan elevator tower, located
n Icheon, South Korea, are used to predict the response of the system.
n overview provided in [33] shows a case study of the One World
rade Center site, New York, USA. The One World Trade Center building

s 541.0 m tall and vertical transportation is provided by a total of 73
levators of which ten elevators travel directly from the ground floor
evel to the roof level. 

This paper extends the analysis presented in the previous research
o develop a comprehensive mathematical model of a high-rise eleva-
or system in order, to understand and to predict the interaction be-
ween the lateral vibrations of the suspension and compensating ropes
oupled with the longitudinal vibrations of the elevator car, compensat-
ng sheave, and counterweight taking into account the combined lateral
tiffness characteristics of the elevator car guiding system. Additionally,



R.S. Crespo et al. International Journal of Mechanical Sciences 137 (2018) 24–45 

t  

r  

p  

s  

w  

v  

l  

c  

v  

a
 

w  

p  

s  

t  

t  

t  

i  

s

2

 

s  

d

2

 

s  

T
a  

a
 

l
d  

t  

f  

p  

c  

m  

t  

c

a  

r  

b  

o  

s  

L  

t  

m  

l  

d
i  

o  

a  

t  

V  

m  

m
 

t  

i  

d

Fig. 1. Model of stationary elevator system, M 1/2/3 – mass of elevator car, compensat- 
ing sheave, counterweight, L 1/2/3/4 – length of suspension and compensating ropes, and 
𝜉0/1/2/3 – lateral displacements of the structure at the top of the building measured at 
different positions (see the definition of all symbols in the Nomenclature) . 
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he results presented in this paper demonstrate the effects of the veering
egions of the natural frequency loci in the lateral in plane and out of
lane direction of the elevator car, suspension and compensating ropes
ubsystem. The Hamilton Principle [34] is used to derive the model
hich can then be used in the design and analysis of a high-rise ele-
ator systems to predict the lateral displacements of the ropes and the
ongitudinal displacements of the elevator car, compensating sheave and
ounterweight. The prediction can then inform the development of rele-
ant mitigating strategies to minimize the effects of excessive vibrations
nd to improve ride quality. 

A scenario is discussed when the car is parked at the height level at
hich the fundamental natural frequencies of the suspension and com-
ensating ropes at the car side become near each other with a compari-
on of the high and low lateral stiffness of the roller guide – suspension-
yre and guide rail system. The dynamic response of the system when
he building is subjected to a low frequency sway in the lateral direc-
ions is determined. The results predict a range of nonlinear dynamic
nteractions between the components of the elevator system that play a
ignificant role in the operation of the entire installation. 

. The mathematical model of an elevator system 

In this section, the mathematical model of an elevator system is de-
cribed and the equations of motion of the complete elevator system are
erived and explained. 

.1. Description of the mathematical model 

The model of an elevator system with a car of mass M 1 , compensating
heave of mass M 2 , and counterweight of mass M 3 , is depicted in Fig. 1 .
he suspension and compensating ropes have mass per unit length m 1 

nd m 2 , a product of the modulus of elasticity and the cross-sectional
rea EA 1 and EA 2 , respectively. 

The parameter b 1 represents the distance measured from the bottom
anding level to the centre of the compensating sheave. The parameter b 2 
enotes the distance measured from the centre of the traction sheave to
he centre of the diverter pulley and h 0 represents the distance measured
rom the bottom landing level to the centre of the traction sheave. The
arameter h trav is the height of travel of the elevator car. The elevator
ar, compensating sheave and counterweight are considered as point
asses, thus the height is neglected. The parameter h t is the position of

he elevator car measured from the bottom landing level to the elevator
ar. 

The lengths L 1 and L 4 of the suspension ropes and the lengths L 2 
nd L 3 of the compensating ropes are defined as shown in Fig. 1 . The
esponse of the elevator ropes subjected to dynamic loading due to the
uilding sway are represented by the lateral in-plane and lateral out
f plane displacements denoted as V i (x i ,t) and W i (x i ,t) where the sub-
cript i = 1,2,3,4 corresponds to the sections of the ropes of length L 1 ,
 2 , L 3 , and L 4 , respectively. The displacements of the ropes relative to
he configuration of the ropes when they are stretched by the structure
otion are represented by 𝑉 i (x i ,t) and 𝑊̄ i (x i ,t) . The lateral in-plane and

ateral out of plane motions of the ropes are coupled with the longitu-
inal motions of the ropes that are denoted as U i (x i ,t). The variable x i 
s the spatial coordinate of each rope measured from the top support
f each rope. The longitudinal motions of the car, compensating sheave
nd counterweight are denoted as U CR (t), U CS (t) , and U CW 

(t) , respec-
ively. The lateral in plane and out of plane motions of the car denoted as
 CR (t) = V 1 (L 1 ,t) = V 2 (0,t) and W CR (t) = W 1 (L 1 ,t) = W 2 (0,t). The lateral
otions of the counterweight are not considered in this mathematical
odel. 

More emphasis has been placed on modelling of the car–building in-
erface components due to their effects on ride quality. The compensat-
ng sheave and counterweight are restricted to move in the longitudinal
irection only. 
27 
The parameters k 1 and k 2 represents the combined stiffness of the
oller guides and guide rails in the lateral in plane and the lateral out of
lane direction, respectively. The roller guide and guide rails form the
uiding interface between the building and the elevator car and coun-
erweight. The guiding interface ensures the relative position of the el-
vator car and counterweight along the height of travel as discussed in
35] . 

The guide rails are very well secured to the elevator shaft walls to
void any vibration that may be induced by the dynamic forces when
he elevator car is travelling along the hoistway. Each section of the
uide rails has a length approximately of 5.00 m. The guide rail system
nstalled in a building shaft can be treated as a multispan beam sub-
ected to lateral loading. The guide rail size is determined by relevant
esign calculations taking into account the code requirements [36] for
he guide rail deflections to satisfy the safety requirements. In the sce-
ario considered in this paper it is assumed that the roller guide applies
 constant load F G at the centre of the span. The guide rail span stiffness
an then be calculated by assuming that the span represents a fixed–
xed beam. The stiffness coefficients of the guide rail modelled as mass-

ess springs of constants K G 
V and K G 

W respectively, are then determined
s 

 

𝑉 ∕ 𝑊 

𝐺 
= 

192 𝐸 𝐺 𝐽 𝑦 ∕ 𝑧 

𝐿 

3 
𝐺 

, (1)

here E G is Young’s modulus of elasticity of the guide rail, J y/z is the
econd moment of inertia of the cross-sectional area of the guide rail in
he lateral in plane and out of plane direction and L is the length of the
G 
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Fig. 2. Roller guide arrangement consisting of a suspension-tyre system and a guide rail 
section. 

Fig. 3. Combined spring element between the elevator car and guide rail, K G 
V/W – stiffness 

coefficients of guide rail and K c – stiffness of elevator car suspension-tyre system in (a) 
lateral in plane and (b) lateral out of plane. 
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uide rail section. The cross section of a guide rail used in the elevator
ystem forms a T section. The roller guide arrangement and guide rail
ross section are shown in Fig. 2 . The flange width, web height, and
hickness of the T cross section are shown in Fig. 2 as a 1 , a 2 , and a 3 ,
espectively. 

Based on the model used in [37] the total combined stiffness of the
oller guide – suspension-tyre and guide rail system can be modelled
n the lateral in plane and lateral out of plane directions as shown in
ig. 3 (a) and (b), respectively. The total combined stiffness of the system
s mostly affected by the stiffness of the elevator car suspension-tyre
hen using hard or soft tyres, as will be shown in the case study in
ection 3 . 

The parameters k 1 and k 2 can be estimated by using Eqs. (2) and (3) .
he stiffness of the elevator car suspension-tyre system is represented by
 c . 

 1 = 

𝐾 

𝑉 
𝐺 
𝐾 𝑐 

𝐾 

𝑉 
𝐺 
+ 𝐾 𝑐 

, (2)

 2 = 

2 𝐾 

𝑊 

𝐺 
𝐾 𝑐 

𝐾 

𝑊 

𝐺 
+ 2 𝐾 𝑐 

. (3)

The lateral displacements of the structure expressed in terms of the
isplacements at the top of the building measured at the machine room
evel and to the position of the car and counterweight are represented as

0 , 𝜉1 , 𝜉2 , and 𝜉3 and are defined in Eqs. (11) –(14) . Furthermore, 𝜓 1 , 𝜓 2 ,
 3 , 𝜓 4 , and 𝜓 5 are non-dimensional coefficients obtained by using the
olynomial function 𝜓(h z ) representing the fundamental mode shape of
 cantilever beam, defined in Eq. (4) . The shape function is assumed
o be related to the fundamental mode of the high-rise building and is
pproximated by a cubic polynomial representing the lateral displace-
ents of the structure corresponding to the top of the structure and to

he position of the car and counterweight estimated by Eqs. (5) –(9) . 

 

(
ℎ 𝑧 

)
= 3 

( 

ℎ 𝑧 

ℎ 0 

) 2 
− 2 

( 

ℎ 𝑧 

ℎ 0 

) 3 
, (4)

 1 = 3 
( 

1 − 

𝐿 1 
ℎ 

) 2 
− 2 

( 

1 − 

𝐿 1 
ℎ 

) 3 
, (5)
0 0 

28 
 2 = 3 
( 

𝐿 2 − 𝑏 1 
ℎ 0 

) 2 
− 2 

( 

𝐿 2 − 𝑏 1 
ℎ 0 

) 3 
, (6)

 3 = 3 
( 

𝐿 3 − 𝑏 1 
ℎ 0 

) 2 
− 2 

( 

𝐿 3 − 𝑏 1 
ℎ 0 

) 3 
, (7)

 4 = 3 
( 

1 − 

𝐿 4 + 𝑏 2 
ℎ 0 

) 2 
− 2 

( 

1 − 

𝐿 4 + 𝑏 2 
ℎ 0 

) 3 
, (8)

 5 = 3 
( 

1 − 

𝑏 2 
ℎ 0 

) 2 
− 2 

( 

1 − 

𝑏 2 
ℎ 0 

) 3 
. (9)

The quantities S V (t) and S W 

(t) represent the displacements of the
uilding at the machine room level in the lateral in plane and out of
lane directions, respectively, and are expressed by the following equa-
ion: 

 𝑉 ∕ 𝑊 

= 𝐴 𝑉 ∕ 𝑊 

sin 
(
Ω𝑉 ∕ 𝑊 

𝑡 
)
. (10)

The displacement amplitudes in the lateral in plane and out of plane
irections are represented as A V and A W 

. The external frequency of ex-
itation lateral in plane and out of plane direction are represented as

V and ΩW 

. According to Fig. 1 the lateral displacements 𝜉0 
W , 𝜉0 

W , 𝜉1 
V ,

1 
W , 𝜉2 

V , 𝜉2 
W , 𝜉3 

V , and 𝜉3 
W in the lateral in plane and out of plane di-

ection and the non-dimensional coefficients from the shape functions
 1 , 𝜓 2 , 𝜓 3 , 𝜓 4 , and 𝜓 5 are related as shown in the following equations:

𝑉 ∕ 𝑊 

0 = 𝑆 𝑉 ∕ 𝑊 

, (11)

𝑉 ∕ 𝑊 

1 = 𝜓 1 𝑆 𝑉 ∕ 𝑊 

= 𝜓 2 𝑆 𝑉 ∕ 𝑊 

, (12)

𝑉 ∕ 𝑊 

2 = 𝜓 3 𝑆 𝑉 ∕ 𝑊 

= 𝜓 4 𝑆 𝑉 ∕ 𝑊 

, (13)

𝑉 ∕ 𝑊 

3 = 𝜓 5 𝑆 𝑉 ∕ 𝑊 

. (14)

The following assumptions are made. The ropes are treated as uni-
orm strings. The product of the modulus of elasticity and the cross-
ectional area EA of the ropes are considered constant. The bending stiff-
ess of all ropes is neglected, due to the criterion EI/TL 2 < < 1 according
o Zhu and Ren [11] , where EI represents the product of the modulus of
lasticity and the second moment of inertia of the cross-sectional area of
he rope, T corresponds to the tension of the rope, and L represents the
ength of the rope. This can be done because the bending stiffness have
mall effect when the ropes have long lengths. The multi-rope system
s represented by one equivalent rope, thus no interactions between the
opes are accounted for in the mathematical model. The elevator car,
ompensating sheave, and counterweight are treated as concentrated
ass elements. It is assumed that the elevator system dynamics does
ot affect the dynamics of the building structure. The lateral damping
haracteristics of the suspension and compensating ropes in all modes
s represented by the modal damping ratios. The longitudinal damping
f the elevator car, compensating sheave, and counterweight are repre-
ented by longitudinal damping ratios. 

The elastic Green’s strain measure of the i th rope expressed by the
ollowing equation: 

 𝑖 = 𝑈 𝑖𝑥 + 

1 
2 
(
𝑉 2 𝑖𝑥 + 𝑊 

2 
𝑖𝑥 

)
, (15)

here the subscript x denotes the partial derivative with respect to the
patial coordinate. The coupling between the suspension and compen-
ating ropes at the car side due to the constraints at the elevator car by
he springs k 1 and k 2 in both lateral in plane and out of plane directions
re considered. The elastic interface with the building at the counter-
eight side is neglected. The model represents a typical scenario when

he elevator car is positioned at a given height in the shaft and the elec-
romechanical brake is applied at the machine. 
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.2. Derivation of the accurate mathematical model 

The Hamilton Principle to derive the equations of motion of the sys-
em is stated as, 

𝑡 2 

 1 

(
𝛿𝑄̂ − 𝛿Π + 𝛿𝑊 𝑛𝑐 

)
𝑑𝑡 = 0 , (16)

here 𝑄̂ , Π and W nc denote the kinetic energy, the potential energy
nd the work due to non-conservative forces acting upon the system, re-
pectively. The model is considered conservative when is derived, thus
ork done by the nonconservative forces is neglected between t 1 and t 2 
hich are the initial and final time. The virtual work of the nonconser-
ative forces in this mathematical model represents the virtual work of
amping forces which are introduced later on as linear modal damping
atios. 

The boundary conditions are as follows: 

 1 ( 0 , 𝑡 ) = 𝜉𝑉 0 , (17)

 1 ( 0 , 𝑡 ) = 𝜉𝑊 

0 , (18)

 1 ( 0 , 𝑡 ) = 𝑉 2 
(
𝐿 2 , 𝑡 

)
= 𝑊 2 

(
𝐿 2 , 𝑡 

)
= 𝑉 3 

(
𝐿 3 , 𝑡 

)
= 𝑊 3 

(
𝐿 3 , 𝑡 

)
= 𝑈 4 ( 0 , 𝑡 ) = 0 , 

(19) 

 1 
(
𝐿 1 , 𝑡 

)
= 𝑈 2 ( 0 , 𝑡 ) = 𝑈 𝐶𝑅 , (20)

 1 
(
𝐿 1 , 𝑡 

)
= 𝑉 2 ( 0 , 𝑡 ) , (21)

 1 
(
𝐿 1 , 𝑡 

)
= 𝑊 2 ( 0 , 𝑡 ) , (22)

 2 
(
𝐿 2 , 𝑡 

)
= 𝑈 3 

(
𝐿 3 , 𝑡 

)
= 𝑈 𝐶𝑆 , (23)

 3 ( 0 , 𝑡 ) = 𝑉 4 
(
𝐿 4 , 𝑡 

)
= 𝜉𝑉 2 , (24)

 3 ( 0 , 𝑡 ) = 𝑊 4 
(
𝐿 4 , 𝑡 

)
= 𝜉𝑊 

2 , (25)

 3 ( 0 , 𝑡 ) = 𝑈 4 
(
𝐿 4 , 𝑡 

)
= 𝑈 𝐶𝑊 

, (26)

 4 ( 0 , 𝑡 ) = 𝜉𝑉 3 , (27)

 4 ( 0 , 𝑡 ) = 𝜉𝑊 

3 . (28)

After applying Hamilton Principle the nonlinear equations of mo-
ion (29) –(36) are derived, where the subscript t represents the partial
erivative with respect to time. The Eqs. (29) –(31) describe the dynam-
cs of the i th rope in the elevator system, where i = 1,2,3,4. 

 𝑖 𝑉 𝑖𝑡𝑡 − 𝑇 𝑖𝑥 𝑉 𝑖𝑥 − 𝐸 𝐴 𝑖 

(
𝑈 𝑖𝑥 + 

1 
2 
(
𝑉 𝑖𝑥 

2 + 𝑊 𝑖𝑥 
2 ))

𝑥 
𝑉 𝑖𝑥 − 𝑇 𝑖 𝑉 𝑖𝑥𝑥 

− 𝐸 𝐴 𝑖 

(
𝑈 𝑖𝑥 + 

1 
2 
(
𝑉 𝑖𝑥 

2 + 𝑊 𝑖𝑥 
2 ))𝑉 𝑖𝑥𝑥 = 0 , (29) 

 𝑖 𝑊 𝑖𝑡𝑡 − 𝑇 𝑖𝑥 𝑊 𝑖𝑥 − 𝐸 𝐴 𝑖 

(
𝑈 𝑖𝑥 + 

1 
2 
(
𝑉 𝑖𝑥 

2 + 𝑊 𝑖𝑥 
2 ))

𝑥 
𝑊 𝑖𝑥 − 𝑇 𝑖 𝑊 𝑖𝑥𝑥 

− 𝐸 𝐴 𝑖 

(
𝑈 𝑖𝑥 + 

1 
2 
(
𝑉 𝑖𝑥 

2 + 𝑊 𝑖𝑥 
2 ))𝑊 𝑖𝑥𝑥 = 0 , (30) 

 𝑖 𝑈 𝑖𝑡𝑡 − 𝑇 𝑖𝑥 − 𝐸 𝐴 𝑖 

(
𝑈 𝑖𝑥 + 

1 (
𝑉 𝑖𝑥 

2 + 𝑊 𝑖𝑥 
2 )) − 𝑚 𝑖 𝑔 = 0 . (31)
2 𝑥 

29 
The Eqs. (32) and (33) represent the boundary conditions at x 1 = L 1 
or the lateral in plane and lateral out of plane motions. 

 1 𝑉 1 𝑡𝑡 
(
𝐿 1 , 𝑡 

)
+ 

( 

𝑇 1 ( 𝑥 ) + 𝐸 𝐴 1 

(
𝑈 1 𝑥 + 

1 
2 
(
𝑉 1 𝑥 

2 + 𝑊 1 𝑥 
2 ))||||𝑥 1 = 𝐿 1 

) 

𝑉 1 𝑥 
||𝑥 1 = 𝐿 1 

 

( 

𝑇 2 ( 𝑥 ) + 𝐸 𝐴 2 

(
𝑈 2 𝑥 + 

1 
2 
(
𝑉 2 𝑥 

2 + 𝑊 2 𝑥 
2 ))||||𝑥 2 = 𝐿 2 

) 

𝑉 2 𝑥 
||𝑥 2 =0 + 2 𝑘 1 𝑉 1 (𝐿 1 , 𝑡 ) − 2 𝑘 1 𝜉𝑣 1 = 0 , (32) 

 1 𝑊 1 𝑡𝑡 
(
𝐿 1 , 𝑡 

)
+ 

( 

𝑇 1 ( 𝑥 ) + 𝐸 𝐴 1 

(
𝑈 1 𝑥 + 

1 
2 
(
𝑉 1 𝑥 

2 + 𝑊 1 𝑥 
2 ))||||𝑥 1 = 𝐿 1 

) 

𝑊 1 𝑥 
||𝑥 1 = 𝐿 1 

 

( 

𝑇 2 ( 𝑥 ) + 𝐸 𝐴 2 

(
𝑈 2 𝑥 + 

1 
2 
(
𝑉 2 𝑥 

2 + 𝑊 2 𝑥 
2 ))||||𝑥 2 = 𝐿 2 

) 

𝑊 2 𝑥 
||𝑥 2 =0 

+2 𝑘 2 𝑊 1 
(
𝐿 1 , 𝑡 

)
− 2 𝑘 2 𝜉𝑤 1 = 0 . (33) 

The Eqs. (34) –(36) are the boundary conditions at x 1 = L 1 and x 2 = 0 ,
 2 = L 2 and x 3 = L 3 , x 3 = 0, and x 4 = L 4 in the longitudinal direction
or the elevator car, compensating sheave, and counterweight, respec-
ively. 

𝑀 1 
(
𝑈 𝐶𝑅 

)
𝑡𝑡 
+ 𝑇 1 

(
𝐿 1 

)
+ 𝐸 𝐴 1 

(
𝑈 1 𝑥 + 

1 
2 

(
𝑉 1 𝑥 

2 + 𝑊 1 𝑥 
2 ))||||𝑥 = 𝐿 1 

− 𝑇 2 ( 0 ) − 𝐸 𝐴 2 

(
𝑈 2 𝑥 + 

1 
2 

(
𝑉 2 𝑥 

2 + 𝑊 2 𝑥 
2 ))||||𝑥 =0 

− 𝑀 1 𝑔 = 0 

, (34) 

𝑀 2 
(
𝑈 𝐶𝑆 

)
𝑡𝑡 
+ 𝑇 2 

(
𝐿 2 

)
+ 𝐸 𝐴 2 

(
𝑈 2 𝑥 + 

1 
2 

(
𝑉 2 𝑥 

2 + 𝑊 2 𝑥 
2 ))||||𝑥 = 𝐿 2 + 𝑇 3 

(
𝐿 3 

)
+ 𝐸 𝐴 2 

(
𝑈 3 𝑥 + 

1 
2 

(
𝑉 3 𝑥 

2 + 𝑊 3 𝑥 
2 ))||||𝑥 = 𝐿 3 

− 𝑀 2 𝑔 = 0 

, 

(35) 

𝑀 3 
(
𝑈 𝐶𝑊 

)
𝑡𝑡 
+ 𝑇 4 

(
𝐿 4 

)
+ 𝐸 𝐴 1 

(
𝑈 4 𝑥 + 

1 
2 

(
𝑉 4 𝑥 

2 + 𝑊 4 𝑥 
2 ))||||𝑥 = 𝐿 4 − 𝑇 3 ( 0 ) 

− 𝐸 𝐴 2 

(
𝑈 3 𝑥 + 

1 
2 

(
𝑉 3 𝑥 

2 + 𝑊 3 𝑥 
2 ))||||𝑥 =0 

− 𝑀 3 𝑔 = 0 

. 

(36) 

The mean quasi static rope tensions are derived by balance of forces
see Fig. 1 ) which are represented by Eqs. (37) –(40) , where g is the
cceleration of gravity (9.81 m/s 2 ). 

 1 
(
𝑥 1 

)
= 

( 

𝑀 1 + 𝑚 1 
(
𝐿 1 − 𝑥 

)
+ 𝑚 2 𝐿 2 + 

𝑀 2 
2 

) 

𝑔, (37) 

 2 
(
𝑥 2 

)
= 

( 

𝑀 2 
2 

+ 𝑚 2 
(
𝐿 2 − 𝑥 2 

)) 

𝑔, (38) 

 3 
(
𝑥 3 

)
= 

( 

𝑀 2 
2 

+ 𝑚 2 
(
𝐿 3 − 𝑥 3 

)) 

𝑔, (39) 

 4 
(
𝑥 4 

)
= 

( 

𝑀 3 + 𝑚 1 
(
𝐿 4 − 𝑥 4 

)
+ 𝑚 2 𝐿 3 + 

𝑀 2 
2 

) 

𝑔. (40) 

The overall lateral in plane displacements of each rope can be rep-
esented by the following equations: 

 1 
(
𝑥 1 , 𝑡 

)
= 𝑉 1 

(
𝑥 1 , 𝑡 

)
+ 𝑆 𝑉 

( 

1 + 

(
𝜓 1 − 1 

) 𝑥 1 
𝐿 1 

) 

, (41)

 2 
(
𝑥 2 , 𝑡 

)
= 𝑉 2 

(
𝑥 2 , 𝑡 

)
+ 𝑆 𝑉 𝜓 2 

( 

1 − 

𝑥 2 
𝐿 2 

) 

, (42)

 3 
(
𝑥 3 , 𝑡 

)
= 𝑉 3 

(
𝑥 3 , 𝑡 

)
+ 𝑆 𝑉 𝜓 3 

( 

1 − 

𝑥 3 
𝐿 3 

) 

, (43)

 4 
(
𝑥 4 , 𝑡 

)
= 𝑉 4 

(
𝑥 4 , 𝑡 

)
+ 𝑆 𝑉 

( 

𝜓 5 + 

(
𝜓 4 − 𝜓 5 

) 𝑥 4 
𝐿 

) 

. (44)

4 
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here V i (x i ,t) are the overall response of the elevator ropes in the lat-
ral in plane direction subjected to dynamic loading due to the building
way where the subscript i = 1,2,3,4 corresponds to the rope i th. The dis-
lacements of the ropes relative to the configuration of the ropes when
hey are stretched by the structure motion are represented by 𝑉 i ( x i ,t ).
he second term in Eqs. (41) –(44) are the stretch of rope i th due to the
eformation of the structure. Similarly, the overall lateral out of plane
isplacements of each rope can be expressed by the application of sim-
lar transformations. The partial derivative with respect to x and t can
e derived and replaced into Eq. (31) resulting in Eq. (45) . 

 𝑖 𝑈 𝑖𝑡𝑡 − 𝐸 𝐴 𝑖 

(
𝑈 𝑖𝑥 + 

1 
2 
(
𝑉 𝑖𝑥 

2 + 𝑊 𝑖𝑥 
2 ))

𝑥 
= 0 . (45)

According to Kaczmarczyk and Picton [6] , the longitudinal natural
requencies of steel wire ropes are much higher than their lateral natural
requencies, thus the inertia of the ropes in the longitudinal direction
an be neglected, resulting in the following equation: 

 𝐴 𝑖 

(
𝑈 𝑖𝑥 + 

1 
2 
(
𝑉 𝑖𝑥 

2 + 𝑊 𝑖𝑥 
2 ))

𝑥 
= 0 , for 𝑖 = 1 , 2 , 3 , 4 (46)

Thus, the following results 

 𝑖𝑥 + 

1 
2 
(
𝑉 𝑖𝑥 

2 + 𝑊 𝑖𝑥 
2 ) = 𝑒 𝑖 ( 𝑡 ) , for 𝑖 = 1 , 2 , 3 , 4 (47)

here e i (t) is an arbitrary function which depends on the boundary con-
itions. Substituting Eq. (47) into Eq. (29) –(36) gives: 

 𝑖 𝑉 𝑖𝑡𝑡 + 𝑇 𝑖𝑥 𝑉 𝑖𝑥 − 𝑇 𝑖 𝑉 𝑖𝑥𝑥 − 𝐸 𝐴 𝑖 𝑒 𝑖 ( 𝑡 ) 𝑉 𝑖𝑥𝑥 = 0 , (48)

 𝑖 𝑊 𝑖𝑡𝑡 + 𝑇 𝑖𝑥 𝑊 𝑖𝑥 − 𝑇 𝑖 𝑊 𝑖𝑥𝑥 − 𝐸 𝐴 𝑖 𝑒 𝑖 ( 𝑡 ) 𝑊 𝑖𝑥𝑥 = 0 , (49)

𝑀 1 ̄𝑉 1 
(
𝐿 1 , 𝑡 

)
𝑡𝑡 
− 𝑀 1 𝜉

𝑉 
1 𝜆

2 
𝑣 + 𝑇 1 

(
𝐿 1 

)
𝑉 1 𝑥 − 𝑇 1 

(
𝐿 1 

) (
𝜉𝑉 1 − 𝑆 𝑉 

)
𝐿 1 

+ 𝐸 𝐴 1 𝑒 1 ( 𝑡 ) ̄𝑉 1 𝑥 − 𝐸 𝐴 1 𝑒 1 ( 𝑡 ) 

(
𝜉𝑉 1 − 𝑆 𝑉 

)
𝐿 1 

− 𝑇 2 ( 0 ) ̄𝑉 2 𝑥 + 𝑇 2 ( 0 ) 
𝜉𝑉 1 
𝐿 2 

+ 𝐸 𝐴 2 𝑒 2 ( 𝑡 ) ̄𝑉 2 𝑥 − 𝐸 𝐴 2 𝑒 2 ( 𝑡 ) 
𝜉𝑉 1 
𝐿 2 

+2 𝑘 1 ̄𝑉 1 
(
𝐿 1 , 𝑡 

)
= 0 

, (50)

𝑀 1 𝑊̄ 1 
(
𝐿 1 , 𝑡 

)
𝑡𝑡 
− 𝑀 1 𝜉

𝑊 

1 𝜆
2 
𝑊 

+ 𝑇 1 
(
𝐿 1 

)
𝑊̄ 1 𝑥 − 𝑇 1 

(
𝐿 1 

) (
𝜉𝑊 1 − 𝑆 𝑊 

)
𝐿 1 

+ 𝐸 𝐴 1 𝑒 1 ( 𝑡 ) 𝑊̄ 1 𝑥 − 𝐸 𝐴 1 𝑒 1 ( 𝑡 ) 

(
𝜉𝑊 1 − 𝑆 𝑊 

)
𝐿 1 

− 𝑇 2 ( 0 ) 𝑊̄ 2 𝑥 + 𝑇 2 ( 0 ) 
𝜉𝑊 1 
𝐿 2 

+ 𝐸 𝐴 2 𝑒 2 ( 𝑡 ) 𝑊̄ 2 𝑥 − 𝐸 𝐴 2 𝑒 2 ( 𝑡 ) 
𝜉𝑊 1 
𝐿 2 

+2 𝑘 1 𝑊̄ 1 
(
𝐿 1 , 𝑡 

)
= 0 

, (51)

 1 
(
𝑈 𝐶𝑅 

)
𝑡𝑡 
+ 𝑇 1 

(
𝐿 1 

)
+ 𝐸 𝐴 1 𝑒 1 ( 𝑡 ) − 𝑇 2 ( 0 ) − 𝐸 𝐴 2 𝑒 2 ( 𝑡 ) − 𝑀 1 𝑔 = 0 , (52)

 2 
(
𝑈 𝐶𝑆 

)
𝑡𝑡 
+ 𝑇 2 

(
𝐿 2 

)
+ 𝐸 𝐴 2 𝑒 2 ( 𝑡 ) + 𝑇 3 

(
𝐿 3 

)
+ 𝐸 𝐴 2 𝑒 3 ( 𝑡 ) − 𝑀 2 𝑔 = 0 , (53)

 3 
(
𝑈 𝐶𝑊 

)
𝑡𝑡 
+ 𝑇 4 

(
𝐿 4 

)
+ 𝐸 𝐴 1 𝑒 4 ( 𝑡 ) − 𝑇 3 ( 0 ) − 𝐸 𝐴 2 𝑒 3 ( 𝑡 ) − 𝑀 3 𝑔 = 0 . (54)

The boundary conditions at x i = 0, L i for i = 3, 4, x 1 = 0 and x 2 = L 2
re 𝑉 i (x i ,t) = 𝑊̄ i (x i ,t) = 0 (are trivial). The boundary conditions at
 1 = L 1 and x 2 = 0 satisfy 𝑉 1 (x 1 ,t) = 𝑉 2 (x 2 ,t) and 𝑊̄ 1 (x 1 ,t) = 𝑊̄ 1 (x 2 ,t)

re represented by the equations of motion of the car mass in the lateral
n plane and out of plane direction. The linear natural modes of the lat-
ral in plane and lateral out of plane motions for the suspension rope at
he car side (rope 1) are given as 

1 𝑛 
(
𝑥 1 

)
= sin 

(
𝛽𝑉 
1 𝑛 𝑥 1 

)
, (55)

1 𝑛 
(
𝑥 1 

)
= sin 

(
𝛽𝑊 

1 𝑛 𝑥 1 
)
. (56)

The linear natural modes of the lateral in plane and lateral out of
lane motion for the compensating rope at the car side (rope 2) are
epresented by the following equations: 

2 𝑛 
(
𝑥 2 

)
= sin 𝛽𝑉 

1 𝑛 𝐿 1 cos 𝛽𝑉 
2 𝑛 𝑥 2 − 

sin 𝛽𝑉 
1 𝑛 𝐿 1 cos 𝛽𝑉 

2 𝑛 𝐿 2 

sin 𝛽𝑉 
2 𝑛 𝐿 2 

sin 𝛽𝑉 
2 𝑛 𝑥 2 , (57)
30 
2 𝑛 
(
𝑥 2 

)
= sin 𝛽𝑊 

1 𝑛 𝐿 1 cos 𝛽𝑊 

2 𝑛 𝑥 2 − 

sin 𝛽𝑊 

1 𝑛 𝐿 1 cos 𝛽𝑊 

2 𝑛 𝐿 2 

sin 𝛽𝑊 

2 𝑛 𝐿 2 
sin 𝛽𝑊 

2 𝑛 𝑥 2 , (58)

here 𝛽1 n 
V , 𝛽2 n 

V , 𝛽1 n 
W , and 𝛽2 n 

W are the lateral in plane and lateral
ut of plane eigenvalues for the suspension and compensating ropes at
he car side, respectively, given in terms of the natural frequencies. The
atural frequencies of the lateral in plane and out of plane directions of
oth ropes can be obtained from the following equation: 

𝜔 

𝑉 ∕ 𝑊 

√
𝑇 2 𝑚 2 cos 

(
𝜔 

𝑉 ∕ 𝑊 𝐿 2 

√ 

𝑚 2 
𝐿 2 

)
sin 

(
𝜔 

𝑉 ∕ 𝑊 𝐿 1 

√ 

𝑚 1 
𝐿 1 

)
+2 𝑘 1∕2 sin 

(
𝜔 

𝑉 ∕ 𝑊 𝐿 2 

√ 

𝑚 2 
𝐿 2 

)
sin 

(
𝜔 

𝑉 ∕ 𝑊 𝐿 1 

√ 

𝑚 1 
𝐿 1 

)
+ 𝜔 

𝑉 ∕ 𝑊 

√
𝑇 1 𝑚 1 sin 

(
𝜔 

𝑉 ∕ 𝑊 𝐿 2 

√ 

𝑚 2 
𝐿 2 

)
cos 

(
𝜔 

𝑉 ∕ 𝑊 𝐿 1 

√ 

𝑚 1 
𝐿 1 

)
− 𝑀 1 

(
𝜔 

𝑉 ∕ 𝑊 

)2 sin (𝜔 

𝑉 ∕ 𝑊 𝐿 2 

√ 

𝑚 2 
𝐿 2 

)
sin 

(
𝜔 

𝑉 ∕ 𝑊 𝐿 1 

√ 

𝑚 1 
𝐿 1 

)
= 0 

. (59)

The corresponding eigenvalues can then be determined from the fol-
owing equation: 

𝑉 ∕ 𝑊 

𝑖𝑛 
= 𝜔 

𝑉 ∕ 𝑊 

𝑛 

√ 

𝑚 𝑖 

𝑇 𝑖 
, for 𝑖 = 1 and 2 (60)

On the other hand, at the counterweight side, the linear natural
odes of the lateral in plane and lateral out of plane motion are given

y the following equation: 

𝑖𝑛 = 𝜙𝑖𝑛 = sin 
( 

𝑛𝜋

𝐿 𝑖 

𝑥 

) 

, for 𝑖 = 3 and 4 (61)

The corresponding natural frequencies in the lateral in plane and out
f plane direction are then determined by the following equation: 

 

𝑉 ( 𝑖 ) 
𝑛 = 𝜔 

𝑊 ( 𝑖 ) 
𝑛 = 

𝑛𝜋

𝐿 𝑖 

√ 

𝑇 𝑖 

𝑚 𝑖 

. (62)

.3. Derivation of the approximate mathematical model 

The equations of motion (48) –(54) can be discretized by applying
he Galerkin method. In this procedure, the dynamic response of the
ystem is approximated, in the lateral in plane and lateral out of plane
irections by the following expansions: 

̄
 𝑖 

(
𝑥 𝑖 , 𝑡 

)
= 

𝑁 ∑
𝑛 =1 

𝜙𝑖𝑛 

(
𝑥 𝑖 
)
𝑞 𝑖𝑛 ( 𝑡 ) , (63)

̄
 𝑖 

(
𝑥 𝑖 , 𝑡 

)
= 

𝑁 ∑
𝑛 =1 

𝛼𝑖𝑛 
(
𝑥 𝑖 
)
𝑐 𝑖𝑛 ( 𝑡 ) , (64)

here i = 1,2,3,4, q in (t) and c in (t) represent the generalized (modal)
oordinates. For the suspension and compensating ropes at the
ar side the time dependent functions are q 1 n ( t ) = q 2 n ( t ) = q n ( t ) and
 1 n ( t ) = c 2 n ( t ) = c n ( t ) is used. Substituting expansions (63) and (64) into
q. (47) results in the following equations: 

𝑒 1 ( 𝑡 ) = 
𝑈 𝐶𝑅 
𝐿 1 

+ 1 
2 𝐿 1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝐺 

𝑉 1 
𝑗𝑝 

𝑞 𝑗 ( 𝑡 ) 𝑞 𝑝 ( 𝑡 ) + 
𝜉𝑉 1 − 𝑆 𝑉 

𝐿 2 1 

𝑁 ∑
𝑗=1 

𝑞 𝑗 ( 𝑡 ) sin 
(
𝛽𝑉 
1 𝑗 𝐿 1 

)
+ 

(
𝜉𝑉 1 − 𝑆 𝑉 

)2 
2 𝐿 2 1 

+ 1 
2 𝐿 1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝐺 

𝑊 1 
𝑗𝑝 

𝑐 𝑗 ( 𝑡 ) 𝑐 𝑝 ( 𝑡 ) + 
𝜉𝑊 1 − 𝑆 𝑊 

𝐿 2 1 

𝑁 ∑
𝑗=1 

𝑐 𝑗 ( 𝑡 ) sin 
(
𝛽𝑊 
1 𝑗 𝐿 1 

)
+ 

(
𝜉𝑊 1 − 𝑆 𝑊 

)2 
2 𝐿 2 1 

, 

(65) 

 2 ( 𝑡 ) = 
𝑈 𝐶𝑆 − 𝑈 𝐶𝑅 

𝐿 2 
+ 1 

2 𝐿 2 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝐺 

𝑉 2 
𝑗𝑝 

𝑞 𝑗 ( 𝑡 ) 𝑞 𝑝 ( 𝑡 ) + 
𝜉𝑉 1 
𝐿 2 2 

𝑁 ∑
𝑗=1 

𝑞 𝑗 ( 𝑡 ) sin 
(
𝛽𝑉 
2 𝑗 𝐿 2 

)
+ 

(
𝜉𝑉 1 

)2 
2 𝐿 2 2 

 

1 
2 𝐿 2 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝐺 

𝑊 2 
𝑗𝑝 

𝑐 𝑗 ( 𝑡 ) 𝑐 𝑝 ( 𝑡 ) + 
𝜉𝑊 1 
𝐿 2 2 

𝑁 ∑
𝑗=1 

𝑐 𝑗 ( 𝑡 ) sin 
(
𝛽𝑊 
2 𝑗 𝐿 2 

)
+ 

(
𝜉𝑊 1 

)2 
2 𝐿 2 2 

, (66)

 3 ( 𝑡 ) = 

𝑈 𝐶𝑆 − 𝑈 𝐶𝑊 

𝐿 3 
+ 

1 
4 

𝑁 ∑
𝑗=1 

( 

𝑗𝜋

𝐿 3 

) 2 
𝑞 2 3 𝑗 ( 𝑡 ) + 

(
𝜉𝑉 2 

)2 
2 𝐿 

2 
3 

+ 

1 
4 

𝑁 ∑
𝑗=1 

( 

𝑗𝜋

𝐿 3 

) 2 
𝑐 2 3 𝑗 ( 𝑡 ) + 

(
𝜉𝑊 

2 
)2 

2 𝐿 

2 
3 

, (67) 
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 4 ( 𝑡 ) = 

𝑈 𝐶𝑊 

𝐿 4 
+ 

1 
4 

𝑁 ∑
𝑗=1 

( 

𝑗𝜋

𝐿 4 

) 2 
𝑞 2 4 𝑗 ( 𝑡 ) + 

(
𝜉𝑉 2 − 𝜉𝑉 3 

)2 
2 𝐿 

2 
4 

+ 

1 
4 

𝑁 ∑
𝑗=1 

( 

𝑗𝜋

𝐿 4 

) 2 
𝑐 2 4 𝑗 ( 𝑡 ) + 

(
𝜉𝑊 

2 − 𝜉𝑊 

3 
)2 

2 𝐿 

2 
4 

, (68) 

here G jp 
V1 and G jp 

V2 are defined by Eqs. (A.1) and ( A.2 ) are coefficients
orresponding to the in plane modes, where G jp 

W1 and G jp 
W2 are coeffi-

ients corresponding to the out of plane modes which can be similarly
erived. Substituting expansions (63) and (64) into (48) –(54) applying
he orthogonality conditions with respect to the linear modes a system of
onlinear ordinary differential equations shown in Eqs. (69) –(75) . The
qs. (69) and (70) correspond to the lateral in plane and out of plane
otion at the car side composed of the suspension ropes, compensating

opes, and elevator car. 

̈ 𝑟 ( 𝑡 ) + 2 𝜁𝑉 𝑟 𝜔 

𝑉 
𝑟 𝑞̇ 𝑟 ( 𝑡 ) + 

(
𝜔 

𝑉 
𝑟 

)2 
𝑞 𝑟 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑘 𝑉 1 𝑟𝑛 𝑞 𝑛 ( 𝑡 ) + 𝑘 𝑉 3 𝑟 𝑈 𝐶𝑅 

+ 𝑘 𝑉 4 𝑟 𝑈 𝐶𝑆 + 

𝑁 ∑
𝑛 =1 

𝑘 𝑉 2 𝑟𝑛 𝑐 𝑛 ( 𝑡 ) 

 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝐷 

𝑉 1 
𝑟𝑛 𝑞 𝑗 ( 𝑡 ) 𝑞 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝐷 

𝑉 2 
𝑟𝑛 𝑐 𝑗 ( 𝑡 ) 𝑞 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝐷 

𝑉 3 
𝑟𝑛 𝑐 𝑗 ( 𝑡 ) 𝑐 𝑛 ( 𝑡 ) 

 

𝑁 ∑
𝑛 =1 

(
𝐷 

𝑉 4 
𝑟𝑛 𝑈 𝐶𝑅 + 𝐷 

𝑉 5 
𝑟𝑛 𝑈 𝐶𝑆 

)
𝑞 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑉 1 
𝑟𝑛𝑗𝑝 

𝑞 𝑗 ( 𝑡 ) 𝑞 𝑝 ( 𝑡 ) 𝑞 𝑛 ( 𝑡 ) 

 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑉 2 
𝑟𝑛𝑗𝑝 

𝑐 𝑗 ( 𝑡 ) 𝑐 𝑝 ( 𝑡 ) 𝑞 𝑛 ( 𝑡 ) + 𝐹 𝑉 𝑟 = 0 

, (69) 

̈ 𝑟 ( 𝑡 ) + 2 𝜁𝑊 

𝑟 𝜔 

𝑊 

𝑟 𝑐̇ 𝑟 ( 𝑡 ) + 

(
𝜔 

𝑊 

𝑟 

)2 
𝑐 𝑟 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑘 𝑊 1 
𝑟𝑛 𝑐 𝑛 ( 𝑡 ) + 𝑘 𝑊 3 

𝑟 𝑈 𝐶𝑅 

+ 𝑘 𝑊 4 
𝑟 𝑈 𝐶𝑆 + 

𝑁 ∑
𝑛 =1 

𝑘 𝑊 2 
𝑟𝑛 𝑞 𝑛 ( 𝑡 ) 

 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝐷 

𝑊 1 
𝑟𝑛 𝑞 𝑗 ( 𝑡 ) 𝑐 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝐷 

𝑊 2 
𝑟𝑛 𝑐 𝑗 ( 𝑡 ) 𝑐 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝐷 

𝑊 3 
𝑟𝑛 𝑞 𝑗 ( 𝑡 ) 𝑞 𝑛 ( 𝑡 ) 

 

𝑁 ∑
𝑛 =1 

(
𝐷 

𝑊 4 
𝑟𝑛 𝑈 𝐶𝑅 + 𝐷 

𝑊 5 
𝑟𝑛 𝑈 𝐶𝑆 

)
𝑐 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑊 1 
𝑟𝑛𝑗𝑝 

𝑞 𝑗 ( 𝑡 ) 𝑞 𝑝 ( 𝑡 ) 𝑐 𝑛 ( 𝑡 ) 

 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑊 2 
𝑟𝑛𝑗𝑝 

𝑐 𝑗 ( 𝑡 ) 𝑐 𝑝 ( 𝑡 ) 𝑐 𝑛 ( 𝑡 ) + 𝐹 𝑊 

𝑟 = 0 

. (70) 

The quantities 𝜔 r 
V defined in Eq. (A.4) and 𝜔 r 

W which can be simi-
arly derived are the lateral in plane and out of plane natural frequencies
f the ropes at the car side. The coefficients 𝜁 r 

V and 𝜁 r 
W represent the

odal damping ratios in the lateral in plane and out of plane direc-
ion for the ropes at the car side. The coefficients k rn 

V1 defined in Eq.
A.5) and k rn 

W1 which can be obtained correspondingly, are the lateral
n plane and out of plane linear stiffness coefficients of the ropes at the
ar side. In the stiffness coefficients of k rn 

V1 and k rn 
W1 are located the

arametric terms which are the kinematic forcing terms that are excit-
ng the ropes at the machine room level in the lateral in plane and out
f plane direction resulting in a parametric excitation to the ropes. The
oefficients k rn 

V2 defined in Eq. (A.6) and k rn 
W2 which can be similarly

erived are the lateral parameters that account for the linear coupling
erms between the lateral in plane and out of plane displacements for
he ropes at the car side. The coefficients k rn 

V3 and k rn 
V4 defined in Eqs.

A.7) and (A.8) represents the lateral in plane parameters that account
or the linear coupling terms with the longitudinal modal displacements
f the elevator car and compensating sheave for the ropes at the car side.
he coefficients k rn 

W3 and k rn 
W4 represents the lateral out of plane pa-

ameters that account for the linear coupling terms with the longitudinal
odal displacements of the elevator car and compensating sheave for

he ropes at the car side. 
The coefficients D rn 

V1 , D rn 
V2 , D rn 

V3 , R rnjp 
V1 , R rnjp 

V2 defined in Eqs.
A.9) –( A.11 ), and ( A.14 ) account for the lateral quadratic and cubic non-
inear terms in the lateral in plane direction of the ropes at the car side.
he coefficients D 

V4 , D 

V5 defined in Eqs. (A.12) , (A.13) and D 

W4 ,
rn rn rn 

31 
 rn 
W5 which can be derived similarly account for the lateral quadratic

erms, coupling between the longitudinal modes of the elevator car and
ompensating sheave and the lateral in plane and out of plane direc-
ions of the ropes at the car side, due to which the autoparametric (2:1)
esonance may occur. The coefficients D rn 

W1 , D rn 
W2 , D rn 

W3 , R rnjp 
W1 , and

 rnjp 
W2 account for the lateral quadratic and cubic nonlinear terms in

he lateral out of plane direction of the ropes at the car side. 
According to Nayfeh and Mook [38] , whirling motions of the rope

s a nonlinear phenomenon which occur in systems that can be repre-
ented by nonlinear string models. The whirling motion of a rope occurs
hen the energy of the rope is transferred from the lateral in plane di-

ection to the lateral out of plane direction. These motions are a direct
onsequence of the fact that the frequency of motion in the plane of
he excitation is the same as the frequency of the motion in the plane
erpendicular to the plane of the excitation. Thus, a 1:1 autoparamet-
ic internal resonance occur when the lateral in plane and out of plane
atural frequencies of the ropes at the car side represented by 𝜔 r 

V and
 r 
W are equal and is due to the cubic nonlinear terms in Eqs. (69) and

70) from the coefficients R rnjp 
V2 and R rnjp 

W1 where the coupling be-
ween the lateral in plane and out of plane modes occur. 

The coefficients F r 
V defined in Eq. (A.15) and F r 

W which can be de-
ived similarly are the excitation forces in the lateral in plane and out
f plane direction of the ropes at the car side. 

The equations of motion for the counterweight side for i = 3,4 are the
ollowing: 

̈ 𝑖𝑟 ( 𝑡 ) + 2 𝜁𝑉 
𝑖𝑟 
𝜔 

𝑉 ( 𝑖 ) 
𝑟 𝑞̇ 𝑖𝑟 ( 𝑡 ) + 

(
𝜔 

𝑉 ( 𝑖 ) 
𝑟 

)2 
𝑞 𝑖𝑟 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑘 𝑉 
𝑖𝑟𝑛 

𝑞 𝑖𝑛 ( 𝑡 ) 

+ 

𝑁 ∑
𝑛 =1 

(
𝐷 

𝑉 1 
𝑖𝑟𝑛 

𝑈 𝐶𝑆 + 𝐷 

𝑉 2 
𝑖𝑟𝑛 

𝑈 𝐶𝑊 

)
𝑞 𝑖𝑛 ( 𝑡 ) 

 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑉 1 
𝑖𝑟𝑛𝑗𝑝 

𝑞 2 
𝑖𝑗 
( 𝑡 ) 𝑞 𝑖𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑉 2 
𝑖𝑟𝑛𝑗𝑝 

𝑐 2 
𝑖𝑗 
( 𝑡 ) 𝑞 𝑖𝑛 ( 𝑡 ) + 𝐹 𝑉 

𝑖𝑟 
= 0 

, (71) 

̈ 𝑖𝑟 ( 𝑡 ) + 2 𝜁𝑊 

𝑖𝑟 
𝜔 

𝑊 ( 𝑖 ) 
𝑟 𝑐̇ 𝑖𝑟 ( 𝑡 ) + 

(
𝜔 

𝑊 ( 𝑖 ) 
𝑟 

)2 
𝑐 𝑖𝑟 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑘 𝑊 

𝑖𝑟𝑛 
𝑐 𝑖𝑛 ( 𝑡 ) 

+ 

𝑁 ∑
𝑛 =1 

(
𝐷 

𝑊 1 
𝑖𝑟𝑛 

𝑈 𝐶𝑆 + 𝐷 

𝑊 2 
𝑖𝑟𝑛 

𝑈 𝐶𝑊 

)
𝑐 𝑖𝑛 ( 𝑡 ) 

 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑊 1 
𝑖𝑟𝑛𝑗𝑝 

𝑞 2 
𝑖𝑗 
( 𝑡 ) 𝑐 𝑖𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑊 2 
𝑖𝑟𝑛𝑗𝑝 

𝑐 2 
𝑖𝑗 
( 𝑡 ) 𝑐 𝑖𝑛 ( 𝑡 ) + 𝐹 𝑊 

𝑖𝑟 
= 0 

. (72) 

The quantities 𝜔 r 
V(i) defined in Eqs. (A.17) and (A.24) , and the quan-

ities 𝜔 r 
W(i) which can be derived similarly are the lateral in plane and

ut of plane natural frequencies for the i th rope at the counterweight
ide. The coefficients 𝜁 ir 

V and 𝜁 ir 
W represent the modal damping ratios

or the i th rope in the lateral in plane and out of plane direction. The
oefficients k irn 

V defined in Eqs. (A.18) and (A.25) , and the coefficients
 irn 

W which can be obtained similarly are the lateral in plane and out
f plane linear stiffness coefficients for the ropes at the counterweight
ide. In the stiffness coefficients of k irn 

V and k irn 
W are located the para-

etric terms which are the kinematic forcing terms that are exciting the
opes at the machine room level in the lateral in plane and out of plane
irection resulting in a parametric excitation to the ropes. The coeffi-
ients R irnjp 

V1 and R irnjp 
V2 defined in Eqs. (A.21) and ( A.28 ) account for

he lateral cubic nonlinear terms in the lateral in plane direction of the
opes at the counterweight side. The coefficients R irnjp 

W1 and R irnjp 
W2 

ccount for the lateral cubic nonlinear terms in the lateral out of plane
irection of the ropes at the counterweight side. The coefficient D irn 

V1 

nd D irn 
V2 defined in Eqs. (A.19) , (A.20) , (A.26) , and (A.27) , and D irn 

W1 

nd D irn 
W2 which can be derived correspondingly account for the lateral

uadratic terms coupling between the longitudinal modes of the com-
ensating sheave and counterweight and the lateral in plane and out of
lane direction of the ropes at the counterweight side, due to which the
utoparametric (2:1) resonance may occur. The autoparametric (1:1)
nternal resonance takes place between the lateral in plane and out of
lane directions represented by 𝜔 r 

V(i) and 𝜔 r 
W(i) are equal and is due

o the cubic nonlinear terms of Eqs. (71) and (72) from the coefficients
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p  
 irnjp 
V2 and R irnjp 

W1 where the coupling between the lateral in plane and
ut of plane modes occur. 

The coefficients F ir 
V defined in Eqs. (A.22) and (A.29) and F ir 

W which
an be derived correspondingly are the excitation forces in the lateral
n plane and out of plane direction of the ropes at the counterweight
ide. All of the coefficients are coming from solving the integrals from
he Galerkin Method. 

The equations of motion for the elevator car, compensating sheave
nd counterweight are shown in the following equations: 

 1 
(
𝑈 𝐶𝑅 

)
𝑡𝑡 
+ 𝑘 𝑢 1 𝑈 𝐶𝑅 ( 𝑡 ) + 𝑘 𝑢 2 𝑈 𝐶𝑆 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑘 𝑢 3 𝑛 𝑞 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑘 𝑢 4 𝑛 𝑐 𝑛 ( 𝑡 ) 

+ 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑢 1 
𝑗𝑝 
𝑞 𝑗 ( 𝑡 ) 𝑞 𝑝 ( 𝑡 ) 

 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑢 2 
𝑗𝑝 
𝑐 𝑗 ( 𝑡 ) 𝑐 𝑝 ( 𝑡 ) + 𝑓 𝐶𝑅 = 0 

, (73)

 2 
(
𝑈 𝐶𝑆 

)
𝑡𝑡 
+ ̄𝑘 𝑢 1 𝑈 𝐶𝑅 ( 𝑡 ) + ̄𝑘 𝑢 2 𝑈 𝐶𝑆 ( 𝑡 ) + ̄𝑘 𝑢 3 𝑈 𝐶𝑊 

( 𝑡 ) 

+ 

𝑁 ∑
𝑛 =1 

𝑘̄ 𝑢 4 𝑛 𝑞 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑘̄ 𝑢 5 𝑛 𝑐 𝑛 ( 𝑡 ) 

 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅̄ 

𝑢 1 
𝑗𝑝 
𝑞 𝑗 ( 𝑡 ) 𝑞 𝑝 ( 𝑡 ) + 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅̄ 

𝑢 2 
𝑗𝑝 
𝑐 𝑗 ( 𝑡 ) 𝑐 𝑝 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑅̄ 

𝑢 3 
𝑛 𝑞 

2 
3 𝑛 ( 𝑡 ) 

+ 

𝑁 ∑
𝑛 =1 

𝑅̄ 

𝑢 4 
𝑛 𝑐 

2 
3 𝑛 ( 𝑡 ) + 𝑓 𝐶𝑆 = 0 

, (74)

 3 
(
𝑈 𝐶𝑊 

)
𝑡𝑡 
+ ̂𝑘 𝑢 1 𝑈 𝐶𝑆 ( 𝑡 ) + ̂𝑘 𝑢 2 𝑈 𝐶𝑊 

( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑅̂ 

𝑢 1 
𝑛 𝑞 

2 
3 𝑛 ( 𝑡 ) 

+ 

𝑁 ∑
𝑛 =1 

𝑅̂ 

𝑢 2 
𝑛 𝑐 

2 
3 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑅̂ 

𝑢 3 
𝑛 𝑞 

2 
4 𝑛 ( 𝑡 ) 

 

𝑁 ∑
𝑛 =1 

𝑅̂ 

𝑢 4 
𝑛 𝑐 

2 
4 𝑛 ( 𝑡 ) + 𝑓 𝐶𝑊 

= 0 

. (75)

The coefficients k u1 , 𝑘̄ u2 , and 𝑘̂ u2 defined in Eqs. (A.30) , (A.37) ,
nd (A.45) are the longitudinal linear stiffness parameters. The coef-
cients k u2 , 𝑘̄ u1 , 𝑘̄ u3 , and 𝑘̂ u1 defined in Eqs. (A.31) , (A.36) , (A.38) ,
nd (A.44) are the longitudinal parameters that account for the linear
oupling terms with the longitudinal displacements of the elevator car,
ompensating sheave, and counterweight. The coefficients k n 

u3 and k n 
u4 

efined in Eqs. (A.32) and (A.33) are the lateral in plane and out of plane
arameters that account for the linear coupling terms with the longitu-
inal displacements of the elevator car. The coefficients 𝑘̄ n 

u4 and 𝑘̄ n 
u5 

efined in Eqs. (A.39) and (A.40) are the lateral in plane and out of
lane parameters that account for the linear coupling terms with the
ongitudinal displacements of the compensating sheave. 

The coefficients R 

u1 , R 

u2 , 𝑅̄ 

u1 , 𝑅̄ 

u2 , 𝑅̄ 

u3 , 𝑅̄ 

u4 , 𝑅̂ 

u1 , 𝑅̂ 

u2 , 𝑅̂ 

u3 , and
̂
 

u4 defined in Eqs. (A.34) , (A.41) , (A.42) , (A.46) , and (A.47) account
or the lateral in plane and out of plane quadratic nonlinear terms in
he longitudinal direction of the elevator car, compensating sheave, and
ounterweight. 

The coefficients F CR , F CS , and F CW 

defined in Eqs. (A.35) , (A.43) , and
A.48) are the excitation forces in the longitudinal direction of the eleva-
or car, compensating sheave, and counterweight. All of the coefficients
re coming from solving the integrals from the Galerkin Method. 

The equations of motion (73) –(75) describe the longitudinal be-
aviour of the elevator car, compensating sheave, and counterweight,
espectively, and can be transformed into the modal coordinates using
he transformation 𝑈⃗ = [ Y ] ⃗𝑆 where 𝑈⃗ = [ U CR U CS U CW 

] T and 𝑆 = [ S 1 S 2 
 3 ] 

T is a vector of modal-coordinates corresponding to the three longi-
udinal modes of the system, respectively. If [ Y ] is the mass-normalized
ode shape matrix, the following equation in a matrix form describes

he vertical response of the car, compensating sheave and counterweight
n terms of the modal parameters 

̈⃗
 ( 𝑡 ) + [ 𝐶 ] ̇⃗𝑆 ( 𝑡 ) + [ 𝑃 ] ⃗𝑆 ( 𝑡 ) + [ 𝑌 ] 𝑇 

(
𝜎⃗1 + ⃗𝜎2 

)
+ [ 𝑌 ] 𝑇 

(
𝐹 + ⃗𝜂

)
= 0 , (76)
32 
here the matrices [C] and [P] are defined by (77) and (78) , respec-
ively. 

 𝐶 ] = 

⎡ ⎢ ⎢ ⎣ 
2 𝜁1 𝜔 1 0 0 
0 2 𝜁2 𝜔 2 0 
0 0 2 𝜁3 𝜔 3 

⎤ ⎥ ⎥ ⎦ . (77)

 𝑃 ] = 

⎡ ⎢ ⎢ ⎣ 
𝜔 

2 
1 0 0 
0 𝜔 

2 
2 0 

0 0 𝜔 

2 
3 

⎤ ⎥ ⎥ ⎦ . (78)

The quantities 𝜔 1 , 𝜔 2 , and 𝜔 3 represent the longitudinal natural fre-
uencies of the system. The longitudinal natural frequencies can be esti-
ated by obtaining the eigenvalues with the characteristic equation de-
ned by (79) , where 𝜆 represent the eigenvalues of the stiffness matrix
 M 

defined in (80) and I represent the identity matrix. The coefficients

1 , 𝜁2 , 𝜁3 represent the three longitudinal modal damping ratios of the
ystem. The vectors 𝜎⃗1 , 𝜎⃗2 , 𝐹 , 𝜂 are shown in Eqs. (81) –(84) . 

et 
(
𝐾 𝑀 

− 𝜆𝐼 
)
= 0 , (79)

 𝑀 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑘 𝑢 1 

𝑀 1 

𝑘 𝑢 2 

𝑀 1 
0 

𝑘̄ 𝑢 1 

𝑀 2 

𝑘̄ 𝑢 2 

𝑀 2 

𝑘̄ 𝑢 3 

𝑀 2 

0 𝑘̂ 𝑢 1 

𝑀 3 

𝑘̂ 𝑢 2 

𝑀 3 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (80)

⃗1 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑁 ∑
𝑛 =1 

𝑘 𝑢 3 𝑛 𝑞 𝑛 ( 𝑡 ) 
𝑁 ∑
𝑛 =1 

𝑘̄ 𝑢 4 𝑛 𝑞 𝑛 ( 𝑡 ) 

0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (81)

⃗2 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑁 ∑
𝑛 =1 

𝑘 𝑢 4 𝑛 𝑐 𝑛 ( 𝑡 ) 
𝑁 ∑
𝑛 =1 

𝑘̄ 𝑢 5 𝑛 𝑐 𝑛 ( 𝑡 ) 

0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (82)

 ⃗= 

⎡ ⎢ ⎢ ⎣ 
𝑓 𝐶𝑅 

𝑓 𝐶𝑆 

𝑓 𝐶𝑊 

⎤ ⎥ ⎥ ⎦ , (83)

⃗ = 

⎡ ⎢ ⎢ ⎣ 
𝜂𝐶𝑅 

𝜂𝐶𝑆 

𝜂𝐶𝑊 

⎤ ⎥ ⎥ ⎦ , (84)

The coefficients 𝜂CR , 𝜂CS , 𝜂CW 

represent the quadratic terms that fea-
ure in the equations of motion of the elevator car, compensating sheave,
ounterweight represented by the following equations: 

𝐶𝑅 = 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑢 1 
𝑗𝑝 𝑞 𝑗 ( 𝑡 ) 𝑞 𝑝 ( 𝑡 ) + 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑢 2 
𝑗𝑝 𝑐 𝑗 ( 𝑡 ) 𝑐 𝑝 ( 𝑡 ) , (85)

𝐶𝑆 = 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅̄ 

𝑢 1 
𝑗𝑝 𝑞 𝑗 ( 𝑡 ) 𝑞 𝑝 ( 𝑡 ) + 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅̄ 

𝑢 2 
𝑗𝑝 𝑐 𝑗 ( 𝑡 ) 𝑐 𝑝 ( 𝑡 ) 

+ 

𝑁 ∑
𝑛 =1 

𝑅̄ 

𝑢 3 
𝑛 𝑞 

2 
3 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑅̄ 

𝑢 4 
𝑛 𝑐 

2 
3 𝑛 ( 𝑡 ) , (86) 

𝐶𝑊 

= 

𝑁 ∑
𝑛 =1 

𝑅̂ 

𝑢 1 
𝑛 𝑞 

2 
3 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑅̂ 

𝑢 2 
𝑛 𝑐 

2 
3 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑅̂ 

𝑢 3 
𝑛 𝑞 

2 
4 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑅̂ 

𝑢 4 
𝑛 𝑐 

2 
4 𝑛 ( 𝑡 ) . (87)

Similarly in Eqs. (69) –(72) the coefficients of the elevator car, com-
ensating sheave and counterweight are transformed and rewritten as
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e  
he following equations 

̈ 𝑟 ( 𝑡 ) + 2 𝜁𝑉 𝑟 𝜔 

𝑉 
𝑟 𝑞̇ 𝑟 ( 𝑡 ) + 

(
𝜔 

𝑉 
𝑟 

)2 
𝑞 𝑟 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑘 𝑉 1 𝑟𝑛 𝑞 𝑛 ( 𝑡 ) + 𝜎̄𝑉 
𝑢 𝑌 

( 1 ) 𝑆 1 

+ ̄𝜎𝑉 
𝑢 𝑌 

( 2 ) 𝑆 2 + 𝜎̄𝑉 
𝑢 𝑌 

( 3 ) 𝑆 3 

 

𝑁 ∑
𝑛 =1 

𝑘 𝑉 2 𝑟𝑛 𝑐 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝐷 

𝑉 1 
𝑟𝑛 𝑞 𝑗 ( 𝑡 ) 𝑞 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝐷 

𝑉 2 
𝑟𝑛 𝑐 𝑗 ( 𝑡 ) 𝑞 𝑛 ( 𝑡 ) 

+ 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝐷 

𝑉 3 
𝑟𝑛 𝑐 𝑗 ( 𝑡 ) 𝑐 𝑛 ( 𝑡 ) 

 

𝑁 ∑
𝑛 =1 

(
𝐷 

𝑉 4 
𝑟𝑛 𝑌 

( 1 ) 𝑆 + 𝐷 

𝑉 5 
𝑟𝑛 𝑌 

( 2 ) 𝑆 

)
𝑞 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑉 1 
𝑟𝑛𝑗𝑝 

𝑞 𝑗 ( 𝑡 ) 𝑞 𝑝 ( 𝑡 ) 𝑞 𝑛 ( 𝑡 ) 

 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑉 2 
𝑟𝑛𝑗𝑝 

𝑐 𝑗 ( 𝑡 ) 𝑐 𝑝 ( 𝑡 ) 𝑞 𝑛 ( 𝑡 ) + 𝐹 𝑉 𝑟 = 0 

, (88) 

̈ 𝑟 ( 𝑡 ) + 2 𝜁𝑊 

𝑟 𝜔 

𝑊 

𝑟 𝑐̇ 𝑟 ( 𝑡 ) + 

(
𝜔 

𝑊 

𝑟 

)2 
𝑐 𝑟 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑘 𝑊 1 
𝑟𝑛 𝑐 𝑛 ( 𝑡 ) + 𝜎̄𝑊 

𝑢 𝑌 
( 1 ) 𝑆 1 

+ ̄𝜎𝑊 

𝑢 𝑌 
( 2 ) 𝑆 2 + 𝜎̄𝑊 

𝑢 𝑌 
( 3 ) 𝑆 3 

 

𝑁 ∑
𝑛 =1 

𝑘 𝑊 2 
𝑟𝑛 𝑞 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝐷 

𝑊 1 
𝑟𝑛 𝑞 𝑗 ( 𝑡 ) 𝑐 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝐷 

𝑊 2 
𝑟𝑛 𝑐 𝑗 ( 𝑡 ) 𝑐 𝑛 ( 𝑡 ) 

+ 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝐷 

𝑊 3 
𝑟𝑛 𝑞 𝑗 ( 𝑡 ) 𝑞 𝑛 ( 𝑡 ) 

 

𝑁 ∑
𝑛 =1 

(
𝐷 

𝑊 4 
𝑟𝑛 𝑌 

( 1 ) 𝑆 + 𝐷 

𝑊 5 
𝑟𝑛 𝑌 

( 2 ) 𝑆 

)
𝑐 𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑊 1 
𝑟𝑛𝑗𝑝 

𝑞 𝑗 ( 𝑡 ) 𝑞 𝑝 ( 𝑡 ) 𝑐 𝑛 ( 𝑡 ) 

 

𝑁 ∑
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𝑁 ∑
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𝑁 ∑
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𝑟𝑛𝑗𝑝 

𝑐 𝑗 ( 𝑡 ) 𝑐 𝑝 ( 𝑡 ) 𝑐 𝑛 ( 𝑡 ) + 𝐹 𝑊 

𝑟 = 0 
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̈ 𝑖𝑟 ( 𝑡 ) + 2 𝜁𝑉 
𝑖𝑟 
𝜔 

𝑉 ( 𝑖 ) 
𝑟 𝑞̇ 𝑖𝑟 ( 𝑡 ) + 

(
𝜔 

𝑉 ( 𝑖 ) 
𝑟 

)2 
𝑞 𝑖𝑟 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑘 𝑉 
𝑖𝑟𝑛 

𝑞 𝑖𝑛 ( 𝑡 ) 

+ 

𝑁 ∑
𝑛 =1 

(
𝐷 

𝑉 1 
𝑖𝑟𝑛 

𝑌 ( 2 ) 𝑆 + 𝐷 

𝑉 2 
𝑖𝑟𝑛 

𝑌 ( 3 ) 𝑆 

)
𝑞 𝑖𝑛 ( 𝑡 ) 

 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑉 1 
𝑖𝑟𝑛𝑗𝑝 

𝑞 2 
𝑖𝑗 
( 𝑡 ) 𝑞 𝑖𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 

𝑅 

𝑉 2 
𝑖𝑟𝑛𝑗𝑝 

𝑐 2 
𝑖𝑗 
( 𝑡 ) 𝑞 𝑖𝑛 ( 𝑡 ) + 𝐹 𝑉 

𝑖𝑟 
= 0 

, (90) 

̈ 𝑖𝑟 ( 𝑡 ) + 2 𝜁𝑊 

𝑖𝑟 
𝜔 

𝑊 ( 𝑖 ) 
𝑟 𝑐̇ 𝑖𝑟 ( 𝑡 ) + 

(
𝜔 

𝑊 ( 𝑖 ) 
𝑟 

)2 
𝑐 𝑖𝑟 ( 𝑡 ) + 

𝑁 ∑
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𝑘 𝑊 

𝑖𝑟𝑛 
𝑐 𝑖𝑛 ( 𝑡 ) 

+ 

𝑁 ∑
𝑛 =1 

(
𝐷 

𝑊 1 
𝑖𝑟𝑛 

𝑌 ( 2 ) 𝑆 + 𝐷 
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)
𝑐 𝑖𝑛 ( 𝑡 ) 

 

𝑁 ∑
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𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 
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𝑊 1 
𝑖𝑟𝑛𝑗𝑝 
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𝑖𝑗 
( 𝑡 ) 𝑐 𝑖𝑛 ( 𝑡 ) + 

𝑁 ∑
𝑛 =1 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑝 =1 
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𝑊 2 
𝑖𝑟𝑛𝑗𝑝 

𝑐 2 
𝑖𝑗 
( 𝑡 ) 𝑐 𝑖𝑛 ( 𝑡 ) + 𝐹 𝑊 

𝑖𝑟 
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here 𝜎̄u 
V and 𝜎̄u 

W represented by: 

̄ 𝑉 𝑢 = 

[
𝑘 𝑉 3 𝑟 𝑘 𝑉 4 𝑟 0 

]
, (92)

̄𝑊 

𝑢 = 

[
𝑘 𝑊 3 
𝑟 𝑘 𝑊 4 

𝑟 0 
]
. (93)

. Case study and simulation 

A summary of the parameters used in the simulation tests are shown
n Table 1 . 

The analysis is focused on the car side subsystem. In this simula-
ion the longitudinal natural frequency of the car corresponding to the
osition of the car along the travel height of 𝜔 1 is chosen to be twice
he lateral in plane natural frequency of the suspension ropes at the car
ide ( 𝜔 1 = 2 𝜔 1 

V ) and the external excitation frequency in the lateral in
lane direction of the building structure should coincide with the lat-
ral in plane natural frequency of the suspension ropes at the car side

V = 𝜔 1 
V . 

The research to analyse wind loading acting on a building struc-
ure has attracted the attention of many researchers. For example in
40,41] the formation of vortices, distortion of the mean flow, and flow
eparation has been considered. Large aerodynamic loads act on the
uilding structure which makes the building vibrate in rectilinear and
orsional modes, as discussed in [41] . Full scale monitoring was car-
ied out in [42] to better understand the methodology used to predict
he acceleration response of high-rise buildings consistent with on-site
33 
ehaviour. A full scale monitoring programme has been discussed in
43,44] . The results presented corresponded to the first three natural
requencies, modal damping ratios and mode shapes for three building
tructures. A comparison is then developed between the measurement
ata, simulation results from finite element models and wind tunnel test-
ng. Thus, following the results presented in [43,44] , the frequency of
xcitation in the lateral in plane and in the lateral out of plane directions
or the simulation tests is assumed to be harmonic and corresponds to
he fundamental modes of the structure, relevant parameters are shown
n Table 1 . 

The stiffness coefficients of the springs that are connected to the ele-
ator car in the lateral in plane direction and in the lateral out of plane
irection can be calculated using Eqs. (1) –(3) , resulting in k 1 = 80 kN/m
nd k 2 = 236 kN/m when using hard tyres and k 1 = 30 kN/m and
 2 = 75 kN/m when using soft tyres. Following on from what has been
iscussed in Section 2 , the total combined stiffness of the system in the
ateral in plane and out of plane direction depends on the stiffness of the
levator car suspension-tyre system when using hard or soft tyres. In the
onsiderations to follow it is assumed that the lateral in plane and lat-
ral out of plane natural frequencies of the elevator car, suspension, and
ompensating ropes system at the car side are the same ( 𝜔 1 

V ≈ 𝜔 1 
W ). The

tiffness coefficients of the springs in the lateral in plane and out of plane
irection are assumed to be equal, and are taken as k 1 = k 2 = 80 kN/m
hen using hard tyres and k 1 = k 2 = 30 kN/m when using soft tyres, re-

pectively. The simulation tests cover the time interval of 200 s. 

.1. Frequency analysis 

The variation of frequency corresponding to all lateral modes of the
levator car, suspension, and compensating ropes at the car side accord-
ng to the position of the elevator car in the hoistway measured from the
ottom landing level are shown in Fig. 4 , with k 1 = k 2 = 80 kN/m. 

In Fig. 4 the solid blue, green, magenta, and cyan lines represent the
ariation of frequency of the first four lateral natural frequencies at the
ar side lateral subsystem, which is composed of the elevator car mass,
he suspension and compensating ropes. The variation of the lateral in
lane and out of plane natural frequencies at the car side of the elevator
ar, suspension and compensating ropes are the same as shown in Fig. 4 ,
ue to k 1 = k 2 according to the initial input data presented at the begin-
ing of this chapter. The dashed green line represents the variation of
requency of the first longitudinal natural frequency in the vertical di-
ection. The dashed magenta and black lines represent the fundamental
atural frequency of the suspension and compensating ropes, respec-
ively, when the interface between the car and the hoistway is consid-
red as rigid and the car mass lateral motions are not admitted. The
orizontal dashed red and blue lines represent the excitation frequen-
ies of the building structure in the lateral in plane and out of plane
irection with 0.42 Hz and 0.36 Hz, respectively. 

It is evident from Fig. 4 that the suspension ropes will be excited at
he fundamental natural frequency when the car is positioned at 72.0 m
rom the bottom landing level in the lateral out of plane direction due
o the frequency of excitation of the building structure in the lateral out
f plane direction of 0.36 Hz. If the car is positioned at 120.0 m from
he bottom landing level the compensating ropes will be excited at the
undamental natural frequency. 

When the elevator car is at a height of approximately 100.0 m the
rst natural frequency in the longitudinal direction is twice the funda-
ental natural frequency of the elevator car, suspension, and compen-

ating ropes at the car side. For the condition ΩV ≈ 𝜔 1 /2 ≈ 𝜔 1 
V/W , the

xternal excitation of the building structure in the lateral in plane direc-
ion was set at the fundamental natural frequency of the elevator car,
uspension and compensating ropes at the car side in the lateral in plane
nd out of plane direction when the car is positioned at the height of
00.0 m. 

In Fig. 4 the curve veering phenomena is observed which is when two
igenvalues approach each other closely and suddenly veer away again,
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Table 1 

Summary of parameters used in the simulation tests. 

System parameters 

Number of suspension ropes n 1 = 6 
Number of compensating ropes n 2 = 6 
Mass per unit length of suspension ropes m 1 = 2.15 kg/m 

Mass per unit length of compensating ropes m 2 = 2.15 kg/m 

Elastic modulus of suspension ropes EA 1 = 95,276,193 N 
Elastic modulus of compensating ropes EA 2 = 95,276,193 N 
Height h 0 = 248.0 m 

Travel height h trav = 236.0 0 m 

Car mass with full load M 1 = 8600 kg 
Mass of the compensating sheave M 2 = 21,500 kg 
Mass of the counterweight M 3 = 7800 kg 
Height measured from the bottom landing level to the centre of the compensating sheave b 1 = 8.30 m 

Height from centre of the traction sheave to the centre of the diverter pulley b 2 = 0.50 m 

Frequency of excitation in the lateral in plane direction ΩV = 2.64 rad/s (0.42 Hz) 
Frequency of excitation in the lateral out of plane direction ΩW = 2.26 rad/s (0.36 Hz ) 
Displacement at the machine room level in the lateral in plane direction A V = 0.15 m 

Displacement at the machine room level in the lateral out of plane direction A W = 0.15 m 

Young’s modulus of elasticity of the guide rail E G = 210 ×10 9 N/m 

2 

T cross section flange width a 1 = 60 mm 

T cross section web height a 2 = 70 mm 

T cross section thickness a 3 = 6 mm 

2nd moment of inertia of the T cross-sectional area in the lateral in plane direction J y = 2.87 ×10 − 7 m 

4 

2nd moment of inertia of the T cross-sectional area in the lateral out of plane direction J z = 9.20 ×10 − 7 m 

4 

Length of the guide rail section L G = 5.00 m 

Stiffness of the elevator car suspension-tyre with hard tyres [30] K c = 580 kN/m 

Stiffness of the elevator car suspension-tyre with soft tyres [39] K c = 50 kN/m 

Fig. 4. Variation of the first four lateral natural frequencies at car side lateral subsystem ( 𝜔 V 1/2/3/4 ) for k 1/2 = 80 kN/m, 𝝎̄ 1 
V(1/2) – first lateral natural frequency of suspension and 

compensating ropes, 𝜔 1 – first longitudinal natural frequency and ΩV/W – excitation frequencies of building structure in lateral in plane and out of plane direction. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ach one taking on the trajectory of the other, according to Giannini
nd Sestieri [45] . The veering phenomena is defined as smooth change
f normal parametric variation of two modes approaching each other
ut, instead of crossing, they veer away and finally diverge [24,46–48] .

In Fig. 5 the solid blue and green lines represent the variation of
requency of the first two lateral natural frequencies of the car side lat-
ral subsystem vs. the car position in the shaft for k 1 = k 2 = 80 kN/m
nd the magenta and cyan lines represent the variation of frequency of
he first two lateral natural frequencies at the car side lateral subsystem
or k 1 = k 2 = 30 kN/m. The horizontal dashed red and blue lines repre-
ent the excitation frequencies of the building structure in the lateral in
lane and out of plane direction with 0.42 Hz and 0.36 Hz, respectively.
s shown in Fig. 5 if the stiffness parameter is lowered the variation of

requency becomes smoother and the sharp peak for the fundamental
atural frequency is reduced from 0.42 Hz to about 0.36 Hz. The fre-
uency of excitation of the building structure in the lateral out of plane
irection of 0.36 Hz and the fundamental natural frequency of the car
a

34 
ubsystem for k 1 = k 2 = 30 kN/m are equal when the elevator car is at a
eight approximately of 100.0 m. 

Similarly, the variation of the natural frequencies of the compensat-
ng ropes at the counterweight side and the variation of the first three
ongitudinal natural frequencies according to the position of the car
n the hoistway measured from the bottom landing level are shown in
ig. 6 . The solid blue, green, magenta, and cyan lines represent the first
our lateral natural frequencies of the compensating ropes. The dashed
lack, magenta, and green lines represent the three longitudinal natu-
al frequencies of the system according to the position of the elevator
ar, estimated by finding the eigenvalues. The horizontal dashed red
nd blue lines represent the frequency of excitation from the building
tructure at 0.42 Hz and 0.36 Hz in the lateral in plane and out of plane
irection. In the scenario considered in this case study the compensat-
ng rope at the counterweight side will be excited at close to the funda-
ental natural frequency in the lateral out of plane direction due to the

requency of excitation of the building structure when the car is position
t 116.0 m from the bottom landing level. 
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Fig. 5. Variation of the first two natural frequencies at car side lateral subsystem ( 𝜔 V 1/2 ) for k 1/2 = 80 kN/m and k 1/2 = 30 kN/m, ΩV/W – excitation frequencies of the building structure 
in the lateral in plane and out of plane direction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Variation of the first four lateral natural frequencies of the compensating ropes at the counterweight side ( 𝜔 V(3) 
1/2/3/4 ), 𝜔 1/2/3 – first three longitudinal natural frequencies and 

ΩV/W – the excitation frequencies of the building structure in the lateral in plane and out of plane direction. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 

Fig. 7. The first three vertical mode shapes Y 1/2/3 of the elevator system. 
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.2. Mode shapes 

The mode shapes corresponding to the vertical vibrations of the ele-
ator car, compensating sheave, and counterweight are shown in Fig. 7 .
n the first mode (0.84 Hz) the elevator car, compensating sheave, and
ounterweight are in phase. The second mode (2.17 Hz) the compensat-
ng sheave and counterweight are in phase than the elevator car. In the
35 
hird mode (2.41 Hz) the elevator car and counterweight are in phase
han the compensating sheave. 

The 1st and 2nd lateral mode shapes at the car side subsystem com-
osed of the suspension ropes, compensating ropes, and the elevator
ar when the car is at 100.0 m from the bottom landing level are shown
n Fig. 8 and Fig. 9 , respectively, comparing a k 1 = k 2 = 80 kN/m and
 = k = 30 kN/m. 
1 2 
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Fig. 8. First mode shapes of the system at the car side for k 1 = k 2 = 80 kN/m represented as solid line and k 1 = k 2 = 30 kN/m represented as dashed line, the suspension and compensating 
ropes are represented as blue and red lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Second mode shapes of the system at the car side for k 1 = k 2 = 80 kN/m represented as solid line and k 1 = k 2 = 30 kN/m represented as dashed line, the suspension and compensating 
ropes are represented as blue and red lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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The solid line represents the mode shapes of the system at the
ar side subsystem when k 1 = k 2 = 80 kN/m and the dashed line rep-
esent the mode shapes of the system at the car side subsystem when
 1 = k 2 = 30 kN/m. The blue and red line correspond to the suspension
opes ( i = 1) and compensating ropes ( i = 2), respectively. The joining
oint where the blue and red lines meet represent the position of the el-
vator car considered as a lumped mass which is positioned at a height
f 100.0 m from the bottom landing level. The bottom landing level is
epresented at 0.0 m. The height of − 8.3 m is the height from the bottom
anding level to the centre of the compensating sheave. 

The sharp transition between the suspension and compensating ropes
t the car subsystem for the 1st mode shape shown in Fig. 8 with a
pring stiffness of k 1 = k 2 = 80 kN/m and k 1 = k 2 = 30 kN/m, is due to the
undamental mode shape of the ropes when the elevator car is positioned
t a height of 100.0 m from the bottom landing level. It is evident from
ig. 8 that when using a low spring stiffness of k 1 = k 2 = 30 kN/m the
ateral displacements of the elevator car are higher than using a high
pring stiffness of k 1 = k 2 = 80 kN/m. 

The 2nd mode shapes at the car side subsystem shown in Fig. 9 are
he same when using a low spring stiffness k 1 = k 2 = 30 kN/m and a high
k  

36 
pring stiffness k 1 = k 2 = 80 kN/m. The mode shapes are obtained with
qs. (55) and (57) . Similarly, the mode shapes at the counterweight side
an be determined using Eq. (61) . 

.3. Response of the ropes 

The behaviour of all ropes are described by the mathematical model
iven in terms of Eqs. (88) –(91) . The equations of motion are solved
umerically by applying Runge–Kutta 4–5 order numerical algorithm
o obtain the modal coordinates of the system. The total displacements
f rope i th for i = 1,2,3,4 are obtain by using Eqs. (41) –(44) with the ex-
ansions of the system in the lateral in plane and out of plane directions
efined in Eqs. (63) and (64) . 

The overall time response at the midspan length of the suspension
nd compensating ropes (defined by Eqs. (41) and (42) ) at the car side
hen the elevator car is positioned at a height of 100.0 m from the bot-

om landing level are shown in Figs. 10 and 11 . 
The solution is for higher stiffness parameters of k 1 = k 2 = 80 kN/m

epresented by the blue line and for lower stiffness parameter of
 = k = 30 kN/m represented by the red line. The response of the sus-
1 2 
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Fig. 10. The mid span length displacements of the suspension rope at the car side with respect to time (a) lateral in plane direction (b) lateral out of plane direction, k 1 = k 2 = 80 kN/m 

represented as blue line and k 1 = k 2 = 30 kN/m represented as red line, the elevator car is positioned at a height of 100.0 m from the bottom landing level. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. The mid span length displacements of the compensating rope at the car side with respect to time (a) lateral in plane direction (b) lateral out of plane direction, k 1 = k 2 = 80 kN/m 

represented as blue line and k 1 = k 2 = 30 kN/m represented as red line, the elevator car is positioned at a height of 100.0 m from the bottom landing level. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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a  
ension and compensating ropes in the lateral in plane direction at the
ar side have high amplitudes at the start and during time the ampli-
udes decreases. 

In Fig. 12 (a) and (b) shows the maximum displacements of the com-
ensating ropes at the car side in (a) lateral in plane and (b) lateral out
f plane direction, with a high stiffness parameter of k 1 = k 2 = 80 kN/m
epresented by a dashed blue line and k 1 = k 2 = 30 kN/m represented by
 dashed red line. The compensating rope length is measured from the
entre of the compensating sheave to the elevator car considered as a
umped mass where the height is not considered. In Fig. 12 (a) and (b)
he shapes of the ropes display the first mode shape due to the excita-
ion frequency of the building structure in the lateral in plane and out
f plane directions. 

The maximum displacements in the lateral in plane direction is
.35 m and in the lateral out of plane direction is 1.82 m when the el-
vator car has a lower stiffness parameter of k 1 = k 2 = 30 kN/m. If the
levator shaft has a distance from wall to wall of 2.00 m in the lateral
n plane and out of plane direction the ropes will impact the eleva-
or shaft walls when the elevator car has a lower stiffness parameter
f k 1 = k 2 = 30 kN/m. 

The FFT frequency spectra of the lateral in plane and out of
lane responses over the time span of 10.0 s–60.0 s for the sus-
ension and compensating ropes at the car side are shown in
37 
ig. 13 (a)–(d) and Fig. 14 (a)–(d), with a high stiffness parameter of
 1 = k 2 = 80 kN/m represented by a blue line and a low stiffness param-
ter of k 1 = k 2 = 30 kN/m represented by a red line. 

The predominant frequencies are 0.42 Hz and 0.36 Hz which are the
requencies in which the building structure is exciting the ropes in the
ateral in plane and out of plane directions. The frequency of 0.42 Hz
n the lateral out of plane direction shown in Fig. 13 (c) and Fig. 14 (c)
nd the frequency of 0.36 Hz in the lateral in plane direction shown in
ig. 13 (b) and Fig. 14 (b) are the same external excitation frequency of
he system in the lateral in plane and out of plane directions, respec-
ively. Thus, 1:1 autoparametric interaction is taking place between the
ateral in plane and out of plane directions, through the quadratic and
ubic nonlinear terms of Eqs. (69) and (70) from the quadratic and cu-
ic coefficients D rn 

V2 , D rn 
W1 , R rnjp 

V2 , and R rnjp 
W1 where the coupling

etween the lateral in plane and out of plane modes occur. 
A third FFT frequency spectra is shown in Fig. 15 (a) and (b) in the

ateral in plane and (c) and (d) out of plane direction of the suspension
opes at the car side over a time span of 100.0 s–150.0 s, with a high
tiffness parameter of k 1 = k 2 = 80 kN/m represented by a blue line and
 1 = k 2 = 30 kN/m represented by a red line. The maximum frequencies
re 0.42 Hz shown in Fig. 15 (a) and (b) in the lateral in plane direction
nd 0.36 Hz shown in Fig. 15 (c) and (d) in the lateral out of plane di-
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Fig. 12. The behaviour of the compensating ropes at the car side in (a) lateral in plane (b) lateral out of plane direction, k 1 = k 2 = 80 kN/m represented as blue line and k 1 = k 2 = 30 kN/m 

represented as red line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. FFT frequency spectra of suspension ropes at the car side (a) and (b) lateral in plane (c) and (d) lateral out of plane between a time span of 10.0 s–60.0 s, k 1 = k 2 = 80 kN/m 

represented as blue line and k 1 = k 2 = 30 kN/m represented as red line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 14. FFT frequency spectra of compensating ropes at the car side (a) and (b) lateral in plane (c) and (d) lateral out of plane between a time span of 10.0 s–60.0 s, k 1 = k 2 = 80 kN/m 

represented as blue line and k 1 = k 2 = 30 kN/m represented as red line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

38 
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Fig. 15. FFT frequency spectra of suspension ropes at the car side (a) and (b) lateral in plane (c) and (d) lateral out of plane between a time span of 100.0 s–150.0 s, k 1 = k 2 = 80 kN/m 

represented as blue line and k 1 = k 2 = 30 kN/m represented as red line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 16. Displacements of the compensating rope at the car side, k 1 = k 2 = 80 kN/m rep- 
resented as blue line and k 1 = k 2 = 30 kN/m represented as red line, between 100.0 s and 
200.0 s. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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ection are the same as the external excitation applied to the system in
he lateral in plane and out of plane direction. 

The frequencies of 0.42 Hz and 0.36 Hz from the lateral in plane and
ut of plane directions are due to the parametric terms located in the
ateral in plane and out of plane equations in the stiffness coefficients of
 rn 

V1 and k rn 
W1 . This parametric excitation is coming from the kinematic

orcing terms that are exciting the ropes at the machine room level. 
In Fig. 16 (a) and (b) the motion of the compensating ropes at the car

ide can be observed between the time span of 100.0 s and 200.0 s when
he displacements in the lateral in plane and out of plane direction are
raphed together corresponding to the midspan length of the rope with
 high stiffness parameter of k 1 = k 2 = 80 kN/m represented by a blue
ine shown in (a) and a low stiffness parameter of k 1 = k 2 = 30 kN/m
epresented by a red line shown in (b). 

In Fig. 16 (a) and (b) the full whirling motion of the compensating
opes at the car side subsystem is not developed due to the frequency of
39 
xcitation of 0.36 Hz in the lateral out of plane direction is not equal to
he frequency of excitation in the lateral in plane direction. 

In order to develop the whirling motion of the suspension and com-
ensating ropes at car side subsystem the frequency of excitation in the
ateral in plane and out of plane direction should be approximately equal
o the fundamental natural frequency of the suspension and compensat-
ng ropes at the car side subsystem ( ΩV/W 

≈ 𝜔 1 
V/W ). The response of the

ompensating ropes at the car side subsystem shown in Fig. 17 (a), (b)
nd Fig. 18 are obtained by assuming the external excitation frequency
f the building structure in the lateral in plane and out of plane direc-
ion to be ΩV/W 

= 2.64 rad/s (0.42 Hz ) with a high stiffness parameter of
 1 = k 2 = 80 kN/m and ΩV/W 

= 2.26 rad/s ( 0.36 Hz ) with a low stiffness
arameter of k 1 = k 2 = 30 kN/m. Assuming, the displacement at the ma-
hine room level in the lateral in plane direction is A V = 0.15 m and in
he lateral out of plane direction is A W 

= 0.02 m. The other parameters
onsidered at the beginning of Section 3 remain unchanged. 

The overall time response at the midspan length of the compensating
opes at the car side when the elevator car is positioned at a height of
00.0 m from the bottom landing level is shown in Fig. 17 (a) and (b).
n Fig. 17 (b) can be seen the displacements in the lateral out of plane
irection increase over time due to the 1:1 autoparametric interaction
s taking place between the lateral in plane and out of plane direction
hrough the cubic nonlinear terms of Eqs. (69) and (70) where the cou-
ling between the lateral in plane and out of plane modes occur. In
ig. 18 the motion of the compensating ropes at the car side can be
bserved between the time span of 100.0 s and 200.0 s when the dis-
lacements in the lateral in plane and out of plane direction are graphed
ogether corresponding to the midspan length of the rope when the car
s positioned at a height of 100.0 m from the bottom landing level with
 high stiffness parameter of k 1 = k 2 = 80 kN/m represented by a blue
ine and a low stiffness parameter of k 1 = k 2 = 30 kN/m represented by
 red line. 

.4. Lateral response of the elevator car 

The lateral in plane and out of plane displacements of the eleva-
or car relative to the building structure are shown in Fig. 19 with a
igh stiffness parameter of k 1 = k 2 = 80 kN/m represented by a blue line
nd in Fig. 20 with a low stiffness parameter of k 1 = k 2 = 30 kN/m rep-
esented by a red line in (a) and (b), respectively, compared with the
isplacements of the building structure represented by a dashed black
ine. 

The maximum lateral in plane displacements of the elevator car rela-
ive to the building structure with a high stiffness parameter are 0.15 m
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Fig. 17. The mid span length displacements of the compensating rope at the car side with respect to time (a) lateral in plane direction (b) lateral out of plane direction, k 1 = k 2 = 80 kN/m 

represented as blue line and k 1 = k 2 = 30 kN/m represented as red line, the elevator car is positioned at a height of 100.0 m from bottom landing level. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 18. Displacements of the compensating rope at the car side, k 1 = k 2 = 80 kN/m rep- 
resented as blue line and k 1 = k 2 = 30 kN/m represented as red line, between 100.0 s and 
200.0 s. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

a  

s  

v  

e  

0  

s  

t  

a  

h  

s  

l
 

c  

F  

c  

d  

t  

s  

i  

c
 

b  

f  

t  

b  

I  

r  

a

3

c

 

i  

a  

k  

e
 

w  

a  

w  

f  

e  

e  

a  

e  

e
 

h  

o  

t  

s  

i  

m
 

w  

a  

w  

q  

t  
nd the maximum displacements of the building structure are 0.05 m,
hown in Fig. 19 (a). The lateral out of plane displacements of the ele-
ator car relative to the building structure with a high stiffness param-
ter are almost equal to the displacements of the building structure of
.05 m, shown in Fig. 19 (b), due to the high stiffness parameter repre-
enting the stiffness of the tyre-suspension system of the elevator car in
he lateral directions. The lateral displacements of the elevator car rel-
tive to the building structure with a low stiffness parameter are much
igher than the maximum displacements of the building structure as
hown in Fig. 20 (a) and (b), due to the low stiffness parameter in the
ateral directions of the elevator car. 

When comparing the lateral in plane displacements of the elevator
ar relative to the building structure with a high stiffness parameter in
ig. 19 (a) with the lateral out of plane displacements of the elevator
ar with a low stiffness parameter in Fig. 20 (b), it is evident that larger
40 
isplacements of the elevator car are predicted, due to the proximity
o the resonance condition, exceeding the allowable limits. However, it
hould be noted the model limitation is that no damping elements are
ncluded in the lateral interface between the guide rails and the elevator
ar. 

In addition the lateral vibrations at the elevator car are induced
y irregularities and imperfections of the rail guide system resulting
rom the accumulation of manufacturing error, which are transmitted
o the suspension and compensating ropes resulting in adverse dynamic
ehaviour of the elevator system, as discussed by Kaczmarczyk and
wankiewicz [27] . This additional source of excitation induced by ir-
egularities and imperfections of the rail guide system is not taken into
ccount in the model presented in this paper. 

.5. Longitudinal response of the elevator car, compensating sheave and 

ounterweight 

The longitudinal displacements of the elevator car, compensat-
ng sheave, and counterweight are shown in Figs. 21 (a), 22 (a),
nd 23 (a) compared when using a high stiffness parameters of
 1 = k 2 = 80 kN/m represented as a blue line and a low stiffness param-
ter of k 1 = k 2 = 30 kN/m represented as a red line. 

The FFT frequency spectra over a time span of 100.0 s and 150.0 s
hen using a high stiffness parameters of k 1 = k 2 = 80 kN/m represented
s a blue line for the elevator car, compensating sheave, and counter-
eight are shown in Figs. 21 (b), 22 (b), and 23 (b). The predominant

requency is the frequency of 0.84 Hz which is twice the frequency of
xcitation in the lateral in plane direction coming from the excitation co-
fficients F CR , F CS , F CW 

defined in Eqs. (A.35) , (A.43) , and ( A.48 ) which
re the excitation forces acting in the longitudinal direction of the el-
vator car, compensating sheave, and counterweight, which is primary
xternal excitation. 

The primary external excitation in the 1st longitudinal mode which
as a predominant frequency of 0.84 Hz, is due to the tuning condition
f ΩV ≈ 𝜔 1 /2 ≈ 𝜔 1 

V/W , which in turn provides autoparametric excitation
o the first lateral mode leading to 2:1 autoparametric resonance in the
ystem. The elevator car, compensating sheave, and counterweight are
n phase as shown in Fig. 7 (a) for the vertical mode shapes in the first
ode of 0.84 Hz. 

The FFT frequency spectra over a time span of 100.0 s and 150.0 s
hen using a low stiffness parameters of k 1 = k 2 = 30 kN/m represented
s a red line for the elevator car, compensating sheave, and counter-
eight are shown in Figs. 21 (c), 22 (c), and 23 (c). The predominant fre-
uency is the frequency of 0.72 Hz which is twice the frequency of exci-
ation in the lateral out of plane direction coming from the excitation co-
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Fig. 19. Lateral displacements of the elevator car relative to the building structure (a) lateral in plane (b) lateral out of plane directions with k 1 = k 2 = 80 kN/m represented as a blue 
line and the displacements of the building structure represented as a green line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 20. Lateral displacements of the elevator car relative to the building structure (a) lateral in plane (b) lateral out of plane directions with k 1 = k 2 = 30 kN/m represented as a red line 
and the displacements of the building structure represented as a green line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 21. (a) Longitudinal displacements of the elevator car with k 1 = k 2 = 80 kN/m represented as a blue line and k 1 = k 2 = 30 kN/m represented as a red line (b, c) FFT frequency spectra 
of the elevator car between the time span of 100.0 s–150.0 s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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o  
fficients F CR , F CS , F CW 

defined in Eqs. (A.35) , (A.43) , and (A.48) which
re the excitation forces acting in the longitudinal direction of the el-
vator car, compensating sheave, and counterweight, which is primary

xternal excitation. t  

c

41 
The mathematical model gives the response of the suspension and
ompensating ropes at the car and counterweight side and the response
f the elevator car in the lateral in plane, lateral out of plane and longi-
udinal directions with the response in the longitudinal direction of the
ompensating sheave and counterweight. 



R.S. Crespo et al. International Journal of Mechanical Sciences 137 (2018) 24–45 

Fig. 22. (a) Longitudinal displacements of the compensating sheave with k 1 = k 2 = 80 kN/m represented as a blue line and k 1 = k 2 = 30 kN/m represented as a red line (b, c) FFT frequency 
spectra of the compensating sheave between the time span of 100.0 s–150.0 s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 23. (a) Longitudinal displacements of the counterweight with k 1 = k 2 = 80 kN/m represented as a blue line and k 1 = k 2 = 30 kN/m represented as a red line (b, c) FFT frequency 
spectra of the compensating sheave between the time span of 100.0 s–150.0 s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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. Conclusions 

The mathematical model of an elevator system derived and pre-
ented in this paper takes into account the lateral stiffness of the lift
elevator) car building interface. Green’s strain tensor measure for the
teel wire rope is applied to express the nonlinear couplings between
he modes. The assumption is made that the longitudinal inertia of the
opes can be neglected. This is because in practical applications the lon-
itudinal natural frequencies are much higher than the lateral natural
requencies of the rope and the external excitation frequencies are low.

hen the elastic interface between the elevator car and the building
tructure in the lateral directions is considered the veering phenomena
ppears. The simulation tests are carried out and the results are obtained
hen the elevator car is positioned at a height where the fundamental
atural frequencies of the suspension ropes and compensating ropes at
he car side become near each other. It is shown that this particular con-
guration corresponds to the veering point of the natural frequency loci
nd is analysed by using high and low stiffness parameters of the lateral
tiffness of the car building interface. It is found that the lower the stiff-
ess the more the frequency loci veer away. The lateral response of the
uspension ropes, compensating ropes, and the elevator car was high
nd the ropes would impact the elevator shaft walls and components. 
t

42 
The 1:1 autoparametric internal resonance takes place between the
ateral in plane and out of plane modes, due to the effects of the cu-
ic nonlinear terms at the car side. Furthermore, it is shown that the
st longitudinal mode is excited due to the primary external resonance
hich in turn acts on the first lateral mode which leads to 2:1 internal

esonance. It is demonstrated that the whirling motions of the compen-
ating ropes at the car side take place due to the cubic nonlinear coupling
erms between the lateral in plane and out of plane modes. It is evident
hat large whirling motions occur when the frequency of excitation of
he building structure in the lateral in plane and out of plane direction
re approximately equal to the fundamental natural frequency of the
levator car, suspension and compensating ropes at the car side. 

Due to the ride quality requirements of the elevator system, an el-
vator car with low lateral stiffness having high lateral vibrations as
he ones shown in Figs. 19 and 20 would not be suitable for service.
n all cases the resonance responses are too large and some mitigating
easures would need to be applied. 
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ppendix A 

The coefficients G jp 
V1 and G jp 

V2 are defined in the following equa-
ions: 

 

𝑉 1 
𝑗𝑝 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝑗 = 𝑝 ; 

(
𝛽𝑉 1 𝑗 

)2 
𝐿 1 

2 + 

𝛽𝑉 1 𝑗 sin 
(
2 𝛽𝑉 1 𝑗 𝐿 1 

)
4 

𝑗 ≠ 𝑝 ; 𝛽𝑉 
1 𝑗 𝛽

𝑉 
1 𝑝 

[ 

sin 
(
𝐿 1 

(
𝛽𝑉 1 𝑗 − 𝛽

𝑉 
1 𝑝 

))
2 
(
𝛽𝑉 1 𝑗 − 𝛽

𝑉 
1 𝑝 

) + 

sin 
(
𝐿 1 

(
𝛽𝑉 1 𝑗 + 𝛽

𝑉 
1 𝑝 

))
2 
(
𝛽𝑉 1 𝑗 + 𝛽

𝑉 
1 𝑝 

)
] 

, (A.1)

 

𝑉 2 
𝑗𝑝 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝑗 = 𝑝 ; 
⎛ ⎜ ⎜ ⎜ ⎝ 
𝐿 2 

( 
𝛽𝑉 2 𝑗 

) 2 
sin 2 𝛽𝑉 1 𝑗 𝐿 1 

2 sin 2 𝛽𝑉 2 𝑗 𝐿 2 
+ 

𝛽𝑉 2 𝑗 sin 
2 𝛽𝑉 1 𝑗 𝐿 1 cos 2 𝛽

𝑉 
2 𝑗 𝐿 2 sin 2 𝛽

𝑉 
2 𝑗 𝐿 2 

4 sin 2 𝛽𝑉 2 𝑗 𝐿 2 

+ 𝛽𝑉 
2 𝑗 sin 

2 𝛽𝑉 
1 𝑗 𝐿 1 cos 𝛽

𝑉 
2 𝑗 𝐿 2 sin 𝛽

𝑉 
2 𝑗 𝐿 2 

⎞ ⎟ ⎟ ⎟ ⎠ 

𝑗 ≠ 𝑝 ; 1 ( 
𝛽𝑉 2 𝑝 

) 2 
− 
( 
𝛽𝑉 2 𝑗 

) 2 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

sin 𝛽𝑉 
2 𝑝 𝐿 2 

⎛ ⎜ ⎜ ⎝ 
sin 𝛽𝑉 

2 𝑗 𝐿 2 

(
𝛽𝑉 
2 𝑝 𝐶 

𝑉 
2 𝑝 𝐶 

𝑉 
1 𝑗 − 𝛽

𝑉 
2 𝑗 𝐶 

𝑉 
1 𝑝 𝐶 

𝑉 
2 𝑗 

)
+ cos 𝛽𝑉 

2 𝑗 𝐿 2 

(
𝛽𝑉 
2 𝑝 𝐶 

𝑉 
2 𝑝 𝐶 

𝑉 
2 𝑗 + 𝛽

𝑉 
2 𝑗 𝐶 

𝑉 
1 𝑝 𝐶 

𝑉 
1 𝑗 

)⎞ ⎟ ⎟ ⎠ + 
cos 𝛽𝑉 

2 𝑝 𝐿 2 

⎛ ⎜ ⎜ ⎝ 
cos 𝛽𝑉 

2 𝑗 𝐿 2 

(
𝛽𝑉 
2 𝑗 𝐶 

𝑉 
2 𝑝 𝐶 

𝑉 
1 𝑗 − 𝛽

𝑉 
2 𝑝 𝐶 

𝑉 
1 𝑝 𝐶 

𝑉 
2 𝑗 

)
− sin 𝛽𝑉 

2 𝑗 𝐿 2 

(
𝛽𝑉 
2 𝑝 𝐶 

𝑉 
1 𝑝 𝐶 

𝑉 
1 𝑗 + 𝛽

𝑉 
2 𝑗 𝐶 

𝑉 
2 𝑝 𝐶 

𝑉 
2 𝑗 

)⎞ ⎟ ⎟ ⎠ − (
𝛽𝑉 
2 𝑗 𝐶 

𝑉 
2 𝑝 𝐶 

𝑉 
1 𝑗 − 𝛽

𝑉 
2 𝑝 𝐶 

𝑉 
1 𝑝 𝐶 

𝑉 
2 𝑗 

)

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

(A.2) 

here 𝐶 

𝑉 
1 𝑝 = 𝛽𝑉 

2 𝑝 sin 𝛽
𝑉 
1 𝑝 𝐿 1 , 𝐶 

𝑉 
1 𝑗 = 𝛽𝑉 

2 𝑗 sin 𝛽
𝑉 
1 𝑗 𝐿 1 , 𝐶 

𝑉 
2 𝑗 = 

𝛽𝑉 2 𝑗 sin 𝛽
𝑉 
1 𝑗 𝐿 1 cos 𝛽

𝑉 
2 𝑗 𝐿 2 

sin 𝛽𝑉 2 𝑗 𝐿 2 
,

nd 𝐶 

𝑉 
2 𝑝 = 

𝛽𝑉 2 𝑝 sin 𝛽
𝑉 
1 𝑝 𝐿 1 cos 𝛽

𝑉 
2 𝑝 𝐿 2 

sin 𝛽𝑉 2 𝑝 𝐿 2 
. 

Similarly, G jp 
W1 and G jp 

W2 can be deducted. The coefficients for
he subsystem at the car side composed of the elevator car, suspen-
ion, and compensating ropes in the lateral in plane direction defined
n Eq. (88) are presented in the following equations:. 

 

𝑉 
𝑟𝑟 = 𝑚 1 ∫

𝐿 1 

0 
𝜙2 
1 𝑟 
(
𝑥 1 

)
𝑑 𝑥 1 + 𝑀 1 𝜙

2 
1 𝑟 
(
𝐿 1 

)
+ 𝑚 2 ∫

𝐿 2 

0 
𝜙2 
2 𝑟 
(
𝑥 2 

)
𝑑 𝑥 2 , (A.3)

𝜔 

𝑉 
𝑟𝑟 

)2 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

− 

(
𝑀 1 + 𝑚 1 𝐿 1 + 𝑚 2 𝐿 2 + 

𝑀 2 
2 

)
𝑔 ∫ 𝐿 1 

0 𝜙′′
1 𝑟 
(
𝑥 1 

)
𝜙1 𝑟 

(
𝑥 1 

)
𝑑 𝑥 1 

+ 

(
𝑀 1 + 𝑚 2 𝐿 2 + 

𝑀 2 
2 

)
𝑔 𝜙′

1 𝑟 
(
𝐿 1 

)
𝜙1 𝑟 

(
𝐿 1 

)
+2 𝑘 1 𝜙1 𝑟 

(
𝐿 1 

)2 − 

(
𝑚 2 𝐿 2 + 

𝑀 2 
2 

)
𝑔 ∫ 𝐿 2 

0 𝜙′′
2 𝑟 
(
𝑥 2 

)
𝜙2 𝑟 

(
𝑥 2 

)
𝑑 𝑥 2 

− 

(
𝑚 2 𝐿 2 + 

𝑀 2 
2 

)
𝑔 𝜙′

2 𝑟 ( 0 ) 𝜙1 𝑟 
(
𝐿 1 

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
∕ 𝑚 

𝑉 
𝑟𝑟 ,

(A.4) 

 

𝑉 1 
𝑟𝑛 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑚 1 𝑔 
(∫ 𝐿 1 

0 𝑥 1 𝜙
′′
1 𝑛 
(
𝑥 1 

)
𝜙1 𝑟 

(
𝑥 1 

)
𝑑 𝑥 1 + ∫ 𝐿 1 

0 𝜙′
1 𝑛 
(
𝑥 1 

)
𝜙1 𝑟 

(
𝑥 1 

)
𝑑 𝑥 1 

)
+ 

𝐸 𝐴 1 

( (
𝜉𝑉 1 − 𝑆 𝑉 

)2 
+ 
(
𝜉𝑊 1 − 𝑆 𝑊 

)2 ) 
2 𝐿 2 1 

(
− ∫ 𝐿 1 

0 𝜙′′
1 𝑛 
(
𝑥 1 

)
𝜙1 𝑟 

(
𝑥 1 

)
𝑑 𝑥 1 + 𝜙′

1 𝑛 
(
𝐿

+ 

( 

𝐸 𝐴 1 
(
𝜉𝑉 1 − 𝑆 𝑉 

)2 
𝐿 3 1 

+ 

𝐸 𝐴 2 
(
𝜉𝑉 1 

)2 
𝐿 3 2 

) 

𝜙1 𝑛 
(
𝐿 1 

)
𝜙1 𝑟 

(
𝐿 1 

)
− 

𝐸 𝐴 2 

( (
𝜉𝑉 1 

)2 
+ 
(
𝜉𝑊 1 

)2 ) 
2 𝐿 2 2 

(∫ 𝐿 2 
0 𝜙′′

2 𝑛 
(
𝑥 2 

)
𝜙2 𝑟 

(
𝑥 2 

)
𝑑 𝑥 2 + 𝜙′

2 𝑛 ( 0 ) 𝜙1 𝑟 
(
𝐿 1 

))
+ 𝑚 2 𝑔 

(∫ 𝐿 2 
0 𝑥 2 𝜙

′′
2 𝑛 
(
𝑥 2 

)
𝜙2 𝑟 

(
𝑥 2 

)
𝑑 𝑥 2 + ∫ 𝐿 2 

0 𝜙′
2 𝑛 
(
𝑥 2 

)
𝜙2 𝑟 

(
𝑥 2 

)
𝑑 𝑥 2 

)

 

𝑉 2 
𝑟𝑛 = 

𝛼1 𝑛 
(
𝐿 1 

)
𝜙1 𝑟 

(
𝐿 1 

)
𝑚 

𝑉 
𝑟𝑟 

( 

𝐸 𝐴 1 
(
𝜉𝑉 1 − 𝑆 𝑉 

)(
𝜉𝑊 

1 − 𝑆 𝑊 

)
𝐿 

3 
1 

+ 

𝐸 𝐴 2 𝜉
𝑉 
1 𝜉

𝑊 

1 

𝐿 

3 
2 

) 

, 

(A.6) 

 

𝑉 3 
𝑟 = 

𝜙1 𝑟 
(
𝐿 1 

)
𝑚 

𝑉 
𝑟𝑟 

( 

𝐸 𝐴 1 
(
𝜉𝑉 1 − 𝑆 𝑉 

)
𝐿 

2 
1 

− 

𝐸 𝐴 2 𝜉
𝑉 
1 

𝐿 

2 
2 

) 

, (A.7)

 

𝑉 4 
𝑟 = 

𝐸 𝐴 2 𝜉
𝑉 
1 𝜙1 𝑟 

(
𝐿 1 

)
𝑚 

𝑉 
𝑟𝑟 𝐿 

2 
2 

, (A.8)
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(
𝐿 1 

))
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

∕ 𝑚 

𝑉 
𝑟𝑟 , (A.5)

 

𝑉 1 
𝑟𝑛 

= 
𝐸 𝐴 1 

(
𝜉𝑉 1 − 𝑆 𝑉 

)
𝜙1 𝑟 ( 𝐿 1 ) 

𝑚 𝑉 𝑟𝑟 𝐿 
2 
1 

( 

− ∫ 𝐿 1 
0 𝜙′′

1 𝑛 
(
𝑥 1 

)
𝜙1 𝑟 

(
𝑥 1 

)
𝑑 𝑥 1 + 𝜙1 𝑗 

(
𝐿 1 

)
𝜙′

1 𝑛 
(
𝐿 1 

)
+ 

𝐺 𝑉 1 
𝑗𝑝 

2 

) 

 

𝐸 𝐴 2 𝜉
𝑉 
1 𝜙1 𝑟 ( 𝐿 1 ) 
𝑚 𝑉 𝑟𝑟 𝐿 

2 
2 

( 

− ∫ 𝐿 2 
0 𝜙′′

2 𝑛 
(
𝑥 2 

)
𝜙2 𝑟 

(
𝑥 2 

)
𝑑 𝑥 2 − 𝜙1 𝑗 

(
𝐿 1 

)
𝜙′

2 𝑛 ( 0 ) + 
𝐺 𝑉 2 
𝑗𝑝 

2 

) , 

(A.9) 

 

𝑉 2 
𝑟𝑛 

= 
𝐸 𝐴 1 

(
𝜉𝑊 1 − 𝑆 𝑊 

)
𝛼1 𝑗 ( 𝐿 1 ) 

𝑚 𝑊 𝑟𝑟 𝐿 
2 
1 

(
− ∫ 𝐿 1 

0 𝜙′′
1 𝑛 
(
𝑥 1 

)
𝜙1 𝑟 

(
𝑥 1 

)
𝑑 𝑥 1 + 𝜙1 𝑟 

(
𝐿 1 

)
𝜙′

1 𝑛 
(
𝐿 1 

))
 

𝐸 𝐴 2 𝜉
𝑊 
1 𝛼1 𝑗 ( 𝐿 1 ) 
𝑚 𝑉 𝑟𝑟 𝐿 

2 
2 

(
− ∫ 𝐿 2 

0 𝜙′′
2 𝑛 
(
𝑥 2 

)
𝜙2 𝑟 

(
𝑥 2 

)
𝑑 𝑥 2 − 𝜙1 𝑟 

(
𝐿 1 

)
𝜙′

2 𝑛 ( 0 ) 
) , 

(A.10) 

 

𝑉 3 
𝑟𝑛 = 

𝜙1 𝑟 
(
𝐿 1 

)
2 𝑚 

𝑉 
𝑟𝑟 

( 

𝐸 𝐴 1 
(
𝜉𝑉 1 − 𝑆 𝑉 

)
𝐿 

2 
1 

𝐺 

𝑊 1 
𝑗𝑝 + 

𝐸 𝐴 2 𝜉
𝑉 
1 

𝐿 

2 
2 

𝐺 

𝑊 2 
𝑗𝑝 

) 

, (A.11)

 

𝑉 4 
𝑟𝑛 = − 

𝐸 𝐴 1 
𝐿 1 𝑚 

𝑉 
𝑟𝑟 

(∫ 𝐿 1 
0 𝜙′′

1 𝑛 
(
𝑥 1 

)
𝜙1 𝑟 

(
𝑥 1 

)
𝑑 𝑥 1 − 𝜙′

1 𝑛 
(
𝐿 1 

)
𝜙1 𝑟 

(
𝐿 1 

))
 

𝐸 𝐴 2 
𝐿 2 𝑚 

𝑉 
𝑟𝑟 

(∫ 𝐿 2 
0 𝜙′′

2 𝑛 
(
𝑥 2 

)
𝜙2 𝑟 

(
𝑥 2 

)
𝑑 𝑥 2 − 𝜙′

2 𝑛 ( 0 ) 𝜙1 𝑟 
(
𝐿 1 

)) , (A.12) 

 

𝑉 5 
𝑟𝑛 = − 

𝐸 𝐴 2 
𝐿 2 𝑚 

𝑉 
𝑟𝑟 

( 

∫
𝐿 2 

0 
𝜙′′

2 𝑛 
(
𝑥 2 

)
𝜙2 𝑟 

(
𝑥 2 

)
𝑑 𝑥 2 − 𝜙′

2 𝑛 ( 0 ) 𝜙1 𝑟 
(
𝐿 1 

)) 

, (A.13)

 

𝑉 1 
𝑟𝑛𝑗𝑝 

= 𝑅 

𝑉 2 
𝑟𝑛𝑗𝑝 

= 
𝐸 𝐴 1 𝐺 

𝑉 1∕ 𝑊 1 
𝑗𝑝 

2 𝑚 𝑉 𝑟𝑟 𝐿 1 

(
− ∫ 𝐿 1 

0 𝜙′′
1 𝑛 
(
𝑥 1 

)
𝜙1 𝑟 

(
𝑥 1 

)
𝑑 𝑥 1 + 𝜙′

1 𝑛 
(
𝐿 1 

)
𝜙1 𝑟 

(
𝐿 1 

))
 

𝐸 𝐴 2 𝐺 
𝑉 2∕ 𝑊 2 
𝑗𝑝 

2 𝑚 𝑉 𝑟𝑟 𝐿 2 

(∫ 𝐿 2 
0 𝜙′′

2 𝑛 
(
𝑥 2 

)
𝜙2 𝑟 

(
𝑥 2 

)
𝑑 𝑥 2 + 𝜙′

2 𝑛 ( 0 ) 𝜙1 𝑟 
(
𝐿 1 

)) , 

(A.14) 

 

𝑉 
𝑟 = 

𝑚 1 
𝑚 𝑉 𝑟𝑟 𝐿 1 

(
( − 𝜆2 

𝑉 
𝐿 1 𝑆 𝑉 + 𝜉𝑉 1 𝑔 − 𝑆 𝑉 𝑔 ) ∫ 𝐿 1 

0 𝜙1 𝑟 
(
𝑥 1 

)
𝑑 𝑥 1 

− 

(
𝜉𝑉 1 − 𝑆 𝑉 

)
𝜆2 
𝑉 
∫ 𝐿 1 
0 𝑥 1 𝜙1 𝑟 

(
𝑥 1 

)
𝑑 𝑥 1 

)
+ 

 

 

 

 

 

 

 

 

(
𝑀 1 + 𝑚 2 𝐿 2 + 

𝑀 2 
2 

) 𝑔 
(
𝜉𝑉 1 − 𝑆 𝑉 

)
𝐿 1 

+ 

(
𝑀 2 
2 + 𝑚 2 𝐿 2 

)
𝑔𝜉𝑉 1 
𝐿 2 

− 𝑀 1 𝜉
𝑉 
1 𝜆

2 
𝑉 
+ 

𝐸 𝐴 1 
(
𝜉𝑉 1 − 𝑆 𝑉 

)
2 𝐿 3 1 

((
𝜉𝑉 1 − 𝑆 𝑉 

)2 + 

(
𝜉𝑊 

1 − 𝑆 𝑊 

)2 )
+ 

𝐸 𝐴 2 𝜉
𝑉 
1 

2 𝐿 3 2 

((
𝜉𝑉 1 

)2 + 

(
𝜉𝑊 

1 
)2 )

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
𝜙1 𝑟 ( 𝐿 1 ) 

𝑚 𝑉 𝑟𝑟 

 

𝑚 2 𝜉
𝑉 
1 

𝑚 𝑉 𝑟𝑟 𝐿 2 

(
− 

(
𝐿 2 𝜆

2 
𝑣 + 𝑔 

) ∫ 𝐿 2 
0 𝜙2 𝑟 

(
𝑥 2 

)
𝑑 𝑥 2 + 𝜆2 

𝑉 
∫ 𝐿 2 
0 𝑥 2 𝜙2 𝑟 

(
𝑥 2 

)
𝑑 𝑥 2 

)
. (A.15) 

The coefficients for the subsystem at the car side composed of the
levator car, suspension and compensating ropes in the lateral out of
lane direction defined in Eq. (89) can be derived by following the same
rocedure. The coefficients of Eq. (90) representing the compensating
ope at the counterweight side ( i = 3 ) in the lateral in plane direction
re presented in the following equations: 

 

𝑉 
3 𝑟𝑟 = 𝑚 2 ∫

𝐿 3 

0 
𝜙2 
3 𝑟 
(
𝑥 3 

)
𝑑 𝑥 3 , (A.16)

𝜔 

𝑉 
3 𝑟𝑟 

)2 = − 

(
𝑚 2 𝐿 3 + 

𝑀 2 
2 

)
𝑔 

𝑚 𝑉 3 𝑟𝑟 
∫ 𝐿 3 
0 𝜙′′

3 𝑟 
(
𝑥 3 

)
𝜙3 𝑟 

(
𝑥 3 

)
𝑑 𝑥 3 

 

𝑚 2 𝑔 

𝑚 𝑉 

(∫ 𝐿 3 
0 𝜙′

3 𝑟 
(
𝑥 3 

)
𝜙3 𝑟 

(
𝑥 3 

)
𝑑 𝑥 3 + ∫ 𝐿 3 

0 𝑥 3 𝜙
′′
3 𝑟 
(
𝑥 3 

)
𝜙3 𝑟 

(
𝑥 3 

)
𝑑 𝑥 3 

), (A.17) 
3 𝑟𝑟 
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𝑘  

𝐷  

𝐷  

𝑅  

𝐹

 

 

c  

i

𝑚  

(
+

 

𝑘

 

𝐷  

𝐷  

𝑅  

𝐹

 

 

(  

t  

E  

l

𝑘  

𝑘  

𝑘  

𝑘  

𝑅  

𝑓

 

t  

t

𝑘  

𝑘  

𝑘  

𝑘  

𝑘  

𝑅  

𝑅  

𝑓  

 

t  

l

𝑘  

𝑘  

𝑅  

𝑅  

𝑓
4 4 3 3 

 

 

𝑉 
3 𝑟𝑛 = − 

𝐸 𝐴 2 

((
𝜉𝑉 2 

)2 + 

(
𝜉𝑊 

2 
)2 )

2 𝐿 

2 
3 𝑚 

𝑉 
3 𝑟𝑟 

∫
𝐿 3 

0 
𝜙′′

3 𝑛 
(
𝑥 3 

)
𝜙3 𝑟 

(
𝑥 3 

)
𝑑 𝑥 3 , (A.18)

 

𝑉 1 
3 𝑟𝑛 = − 

𝐸 𝐴 2 

𝐿 3 𝑚 

𝑉 
3 𝑟𝑟 

∫
𝐿 3 

0 
𝜙′′

3 𝑛 
(
𝑥 3 

)
𝜙3 𝑟 

(
𝑥 3 

)
𝑑 𝑥 3 , (A.19)

 

𝑉 2 
3 𝑟𝑛 = 

𝐸 𝐴 2 

𝐿 3 𝑚 

𝑉 
3 𝑟𝑟 

∫
𝐿 3 

0 
𝜙′′

3 𝑛 
(
𝑥 3 

)
𝜙3 𝑟 

(
𝑥 3 

)
𝑑 𝑥 3 , (A.20)

 

𝑉 1 
3 𝑟𝑛𝑗𝑝 = 𝑅 

𝑉 2 
3 𝑟𝑛𝑗𝑝 = − 

𝐸 𝐴 2 

4 𝑚 

𝑉 
3 𝑟𝑟 

( 

𝑗𝜋

𝐿 3 

) 2 

∫
𝐿 3 

0 
𝜙′′

3 𝑛 
(
𝑥 3 

)
𝜙3 𝑟 

(
𝑥 3 

)
𝑑 𝑥 3 , (A.21)

 

𝑉 
3 𝑟 = 

𝑚 2 𝜉
𝑉 
2 

𝑚 

𝑉 
3 𝑟𝑟 𝐿 3 

( 

− 

(
𝐿 3 𝜆

2 
𝑉 
+ 𝑔 

)
∫

𝐿 3 

0 
𝜙3 𝑟 

(
𝑥 3 

)
𝑑 𝑥 3 + 𝜆2 

𝑉 ∫
𝐿 3 

0 
𝑥 3 𝜙3 𝑟 

(
𝑥 3 

)
𝑑 𝑥 3 

) 

. 

(A.22)

The coefficients of Eq. (90) representing the suspension rope at the
ounterweight side ( i = 4 ) in the lateral in plane direction are presented
n the following equations: 

 

𝑉 
4 𝑟𝑟 = 𝑚 1 ∫

𝐿 4 

0 
𝜙2 
4 𝑟 
(
𝑥 4 

)
𝑑 𝑥 4 , (A.23)

𝜔 

𝑉 
4 𝑟𝑟 

)2 = − 

(
𝑀 3 + 𝑚 1 𝐿 4 + 𝑚 2 𝐿 3 + 

𝑀 2 
2 

)
𝑔 

𝑚 𝑉 4 𝑟𝑟 
∫ 𝐿 4 
0 𝜙′′

4 𝑟 
(
𝑥 4 

)
𝜙4 𝑟 

(
𝑥 4 

)
𝑑 𝑥 4 

 

𝑚 1 𝑔 

𝑚 𝑉 4 𝑟𝑟 

(∫ 𝐿 4 
0 𝑥 4 𝜙

′′
4 𝑛 
(
𝑥 4 

)
𝜙4 𝑟 

(
𝑥 4 

)
𝑑 𝑥 4 + ∫ 𝐿 4 

0 𝜙′
4 𝑛 
(
𝑥 4 

)
𝜙4 𝑟 

(
𝑥 4 

)
𝑑 𝑥 4 

) , 

(A.24)

 

𝑉 
4 𝑟𝑛 = − 

𝐸 𝐴 1 

((
𝜉𝑉 2 − 𝜉𝑉 3 

)2 + 

(
𝜉𝑊 

2 − 𝜉𝑊 

3 
)2 )

2 𝑚 

𝑉 
4 𝑟𝑟 𝐿 

2 
4 

∫
𝐿 4 

0 
𝜙′′

4 𝑛 
(
𝑥 4 

)
𝜙4 𝑟 

(
𝑥 4 

)
𝑑 𝑥 4 , 

(A.25)

 

𝑉 1 
4 𝑟𝑛 = 0 , (A.26)

 

𝑉 2 
4 𝑟𝑛 = − 

𝐸 𝐴 1 

𝑚 

𝑉 
4 𝑟𝑟 𝐿 4 ∫

𝐿 4 

0 
𝜙′′

4 𝑛 
(
𝑥 4 

)
𝜙4 𝑟 

(
𝑥 4 

)
𝑑 𝑥 4 , (A.27)

 

𝑉 1 
4 𝑟𝑛𝑗𝑝 = 𝑅 

𝑉 2 
4 𝑟𝑛𝑗𝑝 = − 

𝐸 𝐴 1 

4 𝑚 

𝑉 
4 𝑟𝑟 

( 

𝑗𝜋

𝐿 4 

) 2 

∫
𝐿 4 

0 
𝜙′′

4 𝑛 
(
𝑥 4 

)
𝜙4 𝑟 

(
𝑥 4 

)
𝑑 𝑥 4 , (A.28)

 

𝑉 
4 𝑟 = 

𝑚 1 

𝑚 

𝑉 
4 𝑟𝑟 𝐿 4 

(
− 𝜉𝑉 3 𝐿 4 𝜆

2 
𝑉 
+ 𝑔𝜉𝑉 2 − 𝑔𝜉𝑉 3 

)
∫

𝐿 4 

0 
𝜙4 𝑟 

(
𝑥 4 

)
𝑑 𝑥 4 

− 

𝑚 1 𝜆
2 
𝑉 

(
𝜉𝑉 2 − 𝜉𝑉 3 

)
𝑚 

𝑉 
4 𝑟𝑟 𝐿 4 ∫

𝐿 4 

0 
𝑥 4 𝜙4 𝑟 

(
𝑥 4 

)
𝑑 𝑥 4 . (A.29)

The coefficients of Eq. (91) representing the compensating rope
 i = 3 ) and the suspension rope ( i = 4 ) at the counterweight side in
he lateral out of plane direction can be deducted. The coefficients of
q. (73) representing the dynamic response of the elevator car in the
ongitudinal direction are presented in the following equations: 

 

𝑢 1 = 

𝐸 𝐴 1 
𝐿 1 

+ 

𝐸 𝐴 2 
𝐿 2 

, (A.30)

 

𝑢 2 = − 

𝐸 𝐴 2 
𝐿 2 

, (A.31)

 

𝑢 3 
𝑛 = 

( 

𝐸 𝐴 1 
(
𝜉𝑉 1 − 𝑆 𝑉 

)
𝐿 

2 
1 

− 

𝐸 𝐴 2 𝜉
𝑉 
1 

𝐿 

2 
2 

) 

𝜙1 𝑛 
(
𝐿 1 

)
, (A.32)
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𝑢 4 
𝑛 = 

( 

𝐸 𝐴 1 
(
𝜉𝑊 

1 − 𝑆 𝑊 

)
𝐿 

2 
1 

− 

𝐸 𝐴 2 𝜉
𝑊 

1 

𝐿 

2 
2 

) 

𝛼1 𝑛 
(
𝐿 1 

)
, (A.33)

 

𝑢 1 
𝑗𝑝 = 𝑅 

𝑢 2 
𝑗𝑝 = 

𝐸 𝐴 1 
2 𝐿 1 

𝐺 

𝑉 1∕ 𝑊 1 
𝑗𝑝 

− 

𝐸 𝐴 2 
2 𝐿 2 

𝐺 

𝑉 2∕ 𝑊 2 
𝑗𝑝 

, (A.34)

 𝐶𝑅 = 

𝐸 𝐴 1 

2 𝐿 

2 
1 

((
𝜉𝑉 1 − 𝑆 𝑉 

)2 + 

(
𝜉𝑊 

1 − 𝑆 𝑊 

)2 ) − 

𝐸 𝐴 2 

2 𝐿 

2 
2 

((
𝜉𝑉 1 

)2 + 

(
𝜉𝑊 

1 
)2 )

. 

(A.35) 

The coefficients of Eq. (74) representing the dynamic responses of
he compensating sheave in the longitudinal direction are presented in
he following equations: 

̄
 

𝑢 1 = − 

𝐸 𝐴 2 
𝐿 2 

, (A.36)

̄
 

𝑢 2 = 𝐸 𝐴 2 

( 

1 
𝐿 2 

+ 

1 
𝐿 3 

) 

, (A.37)

̄
 

𝑢 3 = − 

𝐸 𝐴 2 
𝐿 3 

, (A.38)

̄
 

𝑢 4 
𝑛 = − 

𝐸 𝐴 2 𝜉
𝑉 
1 

𝐿 

2 
2 

𝜙2 𝑛 
(
𝐿 2 

)
, (A.39)

̄
 

𝑢 5 
𝑛 = − 

𝐸 𝐴 2 𝜉
𝑊 

1 

𝐿 

2 
2 

𝛼2 𝑛 
(
𝐿 2 

)
, (A.40)

̄
 

𝑢 1 
𝑗𝑝 = 𝑅̄ 

𝑢 2 
𝑗𝑝 = − 

𝐸 𝐴 2 
2 𝐿 2 

𝐺 

𝑉 2∕ 𝑊 2 
𝑗𝑝 

, (A.41)

̄
 

𝑢 3 
𝑛 = 𝑅̄ 

𝑢 4 
𝑛 = 

𝐸 𝐴 2 
4 

( 

𝑛𝜋

𝐿 3 

) 2 
, (A.42)

 𝐶𝑆 = 

𝐸 𝐴 2 
2 

⎛ ⎜ ⎜ ⎝ 
( 

𝜉𝑉 1 
𝐿 2 

) 2 

+ 

( 

𝜉𝑊 

1 
𝐿 2 

) 2 

+ 

( 

𝜉𝑉 2 
𝐿 3 

) 2 

+ 

( 

𝜉𝑊 

1 
𝐿 3 

) 2 ⎞ ⎟ ⎟ ⎠ . (A.43)

The coefficients of Eq. (75) representing the dynamic responses of
he counterweight in the longitudinal direction are presented in the fol-
owing equations: 

̂
 

𝑢 1 = − 

𝐸 𝐴 2 
𝐿 3 

, (A.44)

̂
 

𝑢 2 = 

𝐸 𝐴 2 
𝐿 3 

+ 

𝐸 𝐴 1 
𝐿 4 

, (A.45)

̂
 

𝑢 1 
𝑛 = 𝑅̂ 

𝑢 2 
𝑛 = − 

𝐸 𝐴 2 
4 

( 

𝑛𝜋

𝐿 3 

) 2 
, (A.46)

̂
 

𝑢 3 
𝑛 = 𝑅̂ 

𝑢 4 
𝑛 = 

𝐸 𝐴 1 
4 

( 

𝑛𝜋

𝐿 4 

) 2 
, (A.47)

 𝐶𝑊 = 
𝐸 𝐴 1 
2 

⎛ ⎜ ⎜ 
( 

𝜉𝑉 2 − 𝜉
𝑉 
3 

𝐿 

) 2 

+ 

( 

𝜉𝑊 2 − 𝜉𝑊 3 
𝐿 

) 2 ⎞ ⎟ ⎟ − 𝐸 𝐴 2 
2 

⎛ ⎜ ⎜ 
( 

𝜉𝑉 2 
𝐿 

) 2 

+ 

( 

𝜉𝑊 2 
𝐿 

) 2 ⎞ ⎟ ⎟ . (A.48)
⎝ ⎠ ⎝ ⎠ 
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