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ARTICLE INFO ABSTRACT

Keywords: In a high-rise elevator system lateral vibrations of the suspension and compensating ropes, coupled with vertical
Rope vibration motions of the car and counterweight are induced by the building structure motions. When the frequency of the
Modelling

building coincides with the fundamental natural frequency of the ropes, large resonance whirling motions of the
ropes result. This phenomenon leads to impacts of the ropes on the elevator walls, large displacements of the
car and counterweight making the building and elevator system unsafe. This paper presents a comprehensive
mathematical model of a high-rise elevator system taking into account the combined lateral stiffness of the roller
guides and guide rails. The results and analysis presented in the paper demonstrate frequency curve veering
phenomena and a wide range of resonances that occur in the system. A case study is presented when the car is
parked at a landing level where the fundamental natural frequencies of the car, suspension and compensating
rope system coincide with one of the natural frequencies of the high-rise building. The results show a range of
nonlinear dynamic interactions between the components of the elevator system that play a significant role in the
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High-rise elevator system
Nonlinear dynamic interactions
Curve veering phenomena

operation of the entire installation.
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1. Introduction

Lateral vibrations of the suspension and compensating ropes in a
high-rise elevator system are induced by the building motions caused
by high winds. In general, a high-rise building has infinite number of
natural frequencies, but the main interactions between the ropes and
the building structure occur when the first two natural frequencies of
the building coincide with the fundamental natural frequencies of the
ropes. Then large resonance whirling motions of the ropes then result.
This phenomenon causes impact loads in the elevator shaft, leading to
adverse dynamic behaviour of the entire elevator system. The impact
loads affect the elevator installation resulting in interruptions of service
and damage to the components of the system. Furthermore, the car,
counterweight and compensating sheave suffer from vertical vibrations
due to the coupling with lateral vibrations of the ropes.

The dynamics of ropes and cables has attracted the attention of con-
siderable number of researchers in various types of applications. For
example in the context of civil engineering applications the behaviour
of cable stayed bridges and guyed towers supported by inclined ropes
is studied in [1-3], respectively. In lifting applications the multibody
dynamic behaviour of ropes has been studied when heavy cargo is sus-
pended by ropes in a floating crane system [4], and the kinematic and

* Corresponding authors.

dynamic analysis of rope winding (unwinding) process has been the sub-
ject of a study presented in [5]. Another example of engineering applica-
tions of ropes is in building elevators and mine hoists [6-9]. The nonlin-
ear modal interactions taking place in a model of an aramid suspension
rope system were studied in [10]. The model consisted of an aramid sus-
pension rope, a pulley assembly and a rigid suspended mass. The math-
ematical model of the system was validated with laboratory tests, the
results show the nonlinear couplings may lead to adverse modal inter-
actions in the system. A spatial discretization and substructure method
developed in [11] to accurately calculate the dynamic responses a rope
system with a time varying length parameter was proposed. The depen-
dent variables of a distributed-parameter component are decomposed
into boundary-induced terms and internal terms. In [11] the first part
the methodology was developed and in [12] the second part the lon-
gitudinal, transverse, and their coupled vibrations of moving elevator
cable-car systems is applied with different choices of boundary motions.
The effect of longitudinal high frequency excitation which may stiffen
a continuous elastic structure is studied in [13]. A structure employing
a piano string positioned horizontally is considered and the experimen-
tal results demonstrate the validity of the theoretical predictions of the
lateral displacements of the string.

The vibration analysis of a vertical rope of changing length and
the application of the multiple time scales method to develop approxi-
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pensating ropes

number of the lateral in plane
and out of plane modes
generalized coordinates in the
lateral in plane direction
coefficients corresponding to
the cubic nonlinear coupling of
the system for the ith rope for
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plane direction

coefficients that account for the
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quadratic nonlinear terms act-
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of plane directions

time
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Ww; dynamic displacement in the
lateral out of plane direction of
the ith rope

W, elastic deformations relative to
the building motion in the lat-
eral out of plane direction of the
ith rope

X; Eulerian spatial coordinate of
the ith rope

Greek symbols

®in normal free oscillation modes of the correspond-

ing linear undamped stationary components in
the lateral out of plane direction

eigenvalues in lateral in plane and lateral out of
plane direction for the suspension and compen-
sating ropes at the car side

€ Green’s strain measure
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modal damping ratio in the longitudinal direc-
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tor car and counterweight
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rection, respectively
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responses
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mate solutions to demonstrate the dynamical behaviour of a rope sys-
tem was analysed in [14]. It was demonstrated that the Galerkin trun-
cation method cannot be applied to obtain asymptotic results on long
timescales.

A small bending stiffness relative to tension was included in the
mathematical models for stationary and moving hoist ropes studied in
[15] and the convergence of the models were examined.

High-rise elevator systems are composed of mechanical components
that interact with each other when the elevator car is stationary or in
motion. The previous research was focused on specific parts or sections
of the elevator system to better understand the dynamical behaviour of
each component. For example, in [16] the vertical vibrations of the com-
pensating sheave suspended by compensating ropes has been analysed.
A mathematical model is developed to evaluate the vertical motion of
the compensating sheave during different emergency scenarios such as
the brake activation and buffer strike to determine the maximum verti-
cal displacement of the compensating sheave. In [17] the longitudinal
vibrations of a suspension rope are studied with a car frame attached to
the bottom end of the rope, when the top end of the rope is fixed to the
upper support. Different case studies were considered to understand the
longitudinal dynamic behaviour of the suspension ropes coupled with
the elevator car assembly when the system is stationary. In [18] the ver-
tical vibrations are analysed by a five degree of freedom lumped parame-
ter model representing the car, compensating sheave, and counterweight
with the machine drive system and controllers used in the laboratory
experimental tests. In [19] the lateral vibrations of the compensating
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ropes due to the longitudinal vibrations of the compensating sheave and
the rope winding shape around the compensating sheave are studied by
developing a lumped mass-spring model to compare with experimental
results. In [20] a simplified calculation method based on a single degree
of freedom system to predict the lateral displacements of the suspension
and compensating ropes has been developed. The simplified model was
compared with a finite difference method which considers the building
structure lateral displacements and the ground displacement as inputs.

A high-rise elevator system includes long slender continua such as
ropes and cables that are linked with discrete mass/inertia elements.
In the dynamic analysis they can be represented as beam or string ele-
ments. An analysis of elastic beams with concentrated masses and spring
supports was conducted in [21,22]. In [21] the mode shape function
and frequency equation were derived for cantilever beams with lumped
masses and spring supports in different configurations. In [22] a static
and dynamic stability analysis of a laminated composite cantilever beam
supported by a system comprising a combination of linear translational
spring and torsional spring excited by axial forcing has been carried
out. Research concerning the subject of non-linear vibrations of axially
moving material was studied in [23]. In this work a non-linear axially
moving cable coupled with the lateral displacements has been consid-
ered. The response of the system has been studied in the region of a
3:1 internal resonance between the first two lateral modes. The analysis
of transverse vibration of an axially moving finite length beam where
two points are supported by rotating rollers is presented in [24]. The re-
sults show that the modal exchanges occur at the veering regions of the
natural frequency loci. The dynamic model includes the translational
and rotational motions as well as the deflection of the moving beam.
In [25] a model of an axially moving cable of constant length is devel-
oped. In this work the cable is excited by forced vibration applied at
the supports. This scenario is relevant to moving walks or belts systems.
When both ends are excited in phase, the symmetric and asymmetric
mode shows the resonance phenomena caused by the effect of motion.
In [26] a model is developed consisting of a power transmission belt sys-
tem excited by pulleys having an eccentricity. The experimental results
showed a range of response amplitudes and near resonance amplitude
jumps.

The application of active roller guides in a high rise elevator system
to mitigate the effects of lateral excitations acting upon a car due to ir-
regularities of the guiding system [27,28] is considered in [29]. Active
roller guides apply forces in the opposite direction to the lateral mo-
tion in order to maintain the roller guides being always in contact with
the guide rails [30]. The implementation of roller guides in high-rise
elevator system improves ride quality of passengers in the elevator car.
The study presented in [31] investigates a deterministic and stochastic
model of a cable — mass system with an auxiliary mass to act as a trans-
verse tuned mass damper to mitigate the rope displacements when the
length of the cable varies slowly.

Coupled vibrations of buildings and elevator ropes with a focus on
the analysis of the car side are studied in [32]. An experimental test
rig is used to validate the results predicted from the theoretical model.
The proposed model is based on a real building site and the elevator
rope data corresponding to the Hyundai Asan elevator tower, located
in Icheon, South Korea, are used to predict the response of the system.
An overview provided in [33] shows a case study of the One World
Trade Center site, New York, USA. The One World Trade Center building
is 541.0m tall and vertical transportation is provided by a total of 73
elevators of which ten elevators travel directly from the ground floor
level to the roof level.

This paper extends the analysis presented in the previous research
to develop a comprehensive mathematical model of a high-rise eleva-
tor system in order, to understand and to predict the interaction be-
tween the lateral vibrations of the suspension and compensating ropes
coupled with the longitudinal vibrations of the elevator car, compensat-
ing sheave, and counterweight taking into account the combined lateral
stiffness characteristics of the elevator car guiding system. Additionally,
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the results presented in this paper demonstrate the effects of the veering
regions of the natural frequency loci in the lateral in plane and out of
plane direction of the elevator car, suspension and compensating ropes
subsystem. The Hamilton Principle [34] is used to derive the model
which can then be used in the design and analysis of a high-rise ele-
vator systems to predict the lateral displacements of the ropes and the
longitudinal displacements of the elevator car, compensating sheave and
counterweight. The prediction can then inform the development of rele-
vant mitigating strategies to minimize the effects of excessive vibrations
and to improve ride quality.

A scenario is discussed when the car is parked at the height level at
which the fundamental natural frequencies of the suspension and com-
pensating ropes at the car side become near each other with a compari-
son of the high and low lateral stiffness of the roller guide — suspension-
tyre and guide rail system. The dynamic response of the system when
the building is subjected to a low frequency sway in the lateral direc-
tions is determined. The results predict a range of nonlinear dynamic
interactions between the components of the elevator system that play a
significant role in the operation of the entire installation.

2. The mathematical model of an elevator system

In this section, the mathematical model of an elevator system is de-
scribed and the equations of motion of the complete elevator system are
derived and explained.

2.1. Description of the mathematical model

The model of an elevator system with a car of mass M;, compensating
sheave of mass M,, and counterweight of mass M3, is depicted in Fig. 1.
The suspension and compensating ropes have mass per unit length m;
and m,, a product of the modulus of elasticity and the cross-sectional
area EA, and EA,, respectively.

The parameter b; represents the distance measured from the bottom
landing level to the centre of the compensating sheave. The parameter b,
denotes the distance measured from the centre of the traction sheave to
the centre of the diverter pulley and h, represents the distance measured
from the bottom landing level to the centre of the traction sheave. The
parameter h,,, is the height of travel of the elevator car. The elevator
car, compensating sheave and counterweight are considered as point
masses, thus the height is neglected. The parameter h;, is the position of
the elevator car measured from the bottom landing level to the elevator
car.

The lengths L; and L, of the suspension ropes and the lengths L,
and Lj of the compensating ropes are defined as shown in Fig. 1. The
response of the elevator ropes subjected to dynamic loading due to the
building sway are represented by the lateral in-plane and lateral out
of plane displacements denoted as V;(x;t) and W;(x;t) where the sub-
script i=1,2,3,4 corresponds to the sections of the ropes of length L,
L,, L3, and L, respectively. The displacements of the ropes relative to
the configuration of the ropes when they are stretched by the structure
motion are represented by V;(x;,t) and W ;(x;,t). The lateral in-plane and
lateral out of plane motions of the ropes are coupled with the longitu-
dinal motions of the ropes that are denoted as U;(x;,t). The variable x;
is the spatial coordinate of each rope measured from the top support
of each rope. The longitudinal motions of the car, compensating sheave
and counterweight are denoted as Ugg(t), Ugs(t), and Uy (1), respec-
tively. The lateral in plane and out of plane motions of the car denoted as
Ver(® =V (L3,0) = V5(0,t) and Weg(t) = Wi (L;,t) = W,(0,t). The lateral
motions of the counterweight are not considered in this mathematical
model.

More emphasis has been placed on modelling of the car-building in-
terface components due to their effects on ride quality. The compensat-
ing sheave and counterweight are restricted to move in the longitudinal
direction only.
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Fig. 1. Model of stationary elevator system, M ,,; — mass of elevator car, compensat-
ing sheave, counterweight, L, , 3,4, — length of suspension and compensating ropes, and
£0/1/2/3 — lateral displacements of the structure at the top of the building measured at
different positions (see the definition of all symbols in the Nomenclature).

The parameters k; and k, represents the combined stiffness of the
roller guides and guide rails in the lateral in plane and the lateral out of
plane direction, respectively. The roller guide and guide rails form the
guiding interface between the building and the elevator car and coun-
terweight. The guiding interface ensures the relative position of the el-
evator car and counterweight along the height of travel as discussed in
[35].

The guide rails are very well secured to the elevator shaft walls to
avoid any vibration that may be induced by the dynamic forces when
the elevator car is travelling along the hoistway. Each section of the
guide rails has a length approximately of 5.00 m. The guide rail system
installed in a building shaft can be treated as a multispan beam sub-
jected to lateral loading. The guide rail size is determined by relevant
design calculations taking into account the code requirements [36] for
the guide rail deflections to satisfy the safety requirements. In the sce-
nario considered in this paper it is assumed that the roller guide applies
a constant load F; at the centre of the span. The guide rail span stiffness
can then be calculated by assuming that the span represents a fixed—
fixed beam. The stiffness coefficients of the guide rail modelled as mass-
less springs of constants K" and K;" respectively, are then determined
as

v _ 192Ey.

) @
G LZ‘

where Eg is Young’s modulus of elasticity of the guide rail, J,, is the
second moment of inertia of the cross-sectional area of the guide rail in
the lateral in plane and out of plane direction and L;; is the length of the
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rail—
section

Fig. 2. Roller guide arrangement consisting of a suspension-tyre system and a guide rail
section.

(b)

Fig. 3. Combined spring element between the elevator car and guide rail, K;"/" - stiffness
coefficients of guide rail and K, - stiffness of elevator car suspension-tyre system in (a)
lateral in plane and (b) lateral out of plane.

guide rail section. The cross section of a guide rail used in the elevator
system forms a T section. The roller guide arrangement and guide rail
cross section are shown in Fig. 2. The flange width, web height, and
thickness of the T cross section are shown in Fig. 2 as a;, a,, and as,
respectively.

Based on the model used in [37] the total combined stiffness of the
roller guide — suspension-tyre and guide rail system can be modelled
in the lateral in plane and lateral out of plane directions as shown in
Fig. 3(a) and (b), respectively. The total combined stiffness of the system
is mostly affected by the stiffness of the elevator car suspension-tyre
when using hard or soft tyres, as will be shown in the case study in
Section 3.

The parameters k; and k, can be estimated by using Egs. (2) and (3).
The stiffness of the elevator car suspension-tyre system is represented by
K

ce

KYK
k= %’ )
K. +K,
2KV K,
ky= —9 < 3)
KY +2K,

The lateral displacements of the structure expressed in terms of the
displacements at the top of the building measured at the machine room
level and to the position of the car and counterweight are represented as
£o, €15 €, and €3 and are defined in Eqgs. (11)-(14). Furthermore, yq, v,
v3, Wy, and y5 are non-dimensional coefficients obtained by using the
polynomial function y (h,) representing the fundamental mode shape of
a cantilever beam, defined in Eq. (4). The shape function is assumed
to be related to the fundamental mode of the high-rise building and is
approximated by a cubic polynomial representing the lateral displace-
ments of the structure corresponding to the top of the structure and to
the position of the car and counterweight estimated by Egs. (5)-(9).

“

&)
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ei(2) (52
i) ()

The quantities Sy(t) and Sy, (t) represent the displacements of the
building at the machine room level in the lateral in plane and out of
plane directions, respectively, and are expressed by the following equa-
tion:

(10)

The displacement amplitudes in the lateral in plane and out of plane
directions are represented as Ay and Ay,. The external frequency of ex-
citation lateral in plane and out of plane direction are represented as
Qy and Q. According to Fig. 1 the lateral displacements &,%, &,Y, &,
EW, &Y, E,W, €57, and £5Y in the lateral in plane and out of plane di-
rection and the non-dimensional coefficients from the shape functions
W1, Wa, W3, Wy, and y 5 are related as shown in the following equations:

Sy w = Ay w sin (Q 1)

& =Sy, an
EI//W=V/ISV/W =Sy ws (12)
& = wsSyw = vaSy w (13)
&Y = ysSy . (14)

The following assumptions are made. The ropes are treated as uni-
form strings. The product of the modulus of elasticity and the cross-
sectional area EA of the ropes are considered constant. The bending stiff-
ness of all ropes is neglected, due to the criterion EI/TL? < <1 according
to Zhu and Ren [11], where EI represents the product of the modulus of
elasticity and the second moment of inertia of the cross-sectional area of
the rope, T corresponds to the tension of the rope, and L represents the
length of the rope. This can be done because the bending stiffness have
small effect when the ropes have long lengths. The multi-rope system
is represented by one equivalent rope, thus no interactions between the
ropes are accounted for in the mathematical model. The elevator car,
compensating sheave, and counterweight are treated as concentrated
mass elements. It is assumed that the elevator system dynamics does
not affect the dynamics of the building structure. The lateral damping
characteristics of the suspension and compensating ropes in all modes
is represented by the modal damping ratios. The longitudinal damping
of the elevator car, compensating sheave, and counterweight are repre-
sented by longitudinal damping ratios.

The elastic Green’s strain measure of the ith rope expressed by the
following equation:

g =Uy+ %(V,i +W2).
where the subscript x denotes the partial derivative with respect to the
spatial coordinate. The coupling between the suspension and compen-
sating ropes at the car side due to the constraints at the elevator car by
the springs k; and k, in both lateral in plane and out of plane directions
are considered. The elastic interface with the building at the counter-
weight side is neglected. The model represents a typical scenario when
the elevator car is positioned at a given height in the shaft and the elec-
tromechanical brake is applied at the machine.

15)
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2.2. Derivation of the accurate mathematical model

The Hamilton Principle to derive the equations of motion of the sys-
tem is stated as,

)
/ (60 — 611 + 6W,,)dt =0,

n

(16)

where Q, Il and W, denote the kinetic energy, the potential energy
and the work due to non-conservative forces acting upon the system, re-
spectively. The model is considered conservative when is derived, thus
work done by the nonconservative forces is neglected between t; and t,
which are the initial and final time. The virtual work of the nonconser-
vative forces in this mathematical model represents the virtual work of
damping forces which are introduced later on as linear modal damping
ratios.
The boundary conditions are as follows:

V0,0 = ¢, a7

Wi0.0 =& (as)

U 0,0) = Vy(Ly, 1) = Wy(Ly, 1) = V3(Ls, 1) = W3 (L3, 1) = Uy0,1) = 0,

19)
U (Ly.t) = Uy0,1) = Ucp, (20)
Vi(Ly.1) = V5(0,1), @n
Wi (Ly,t) = W5(0,1), (22)
Uy(Ly.t) =Us(Ls, 1) = Ugg, (23)
V30,0 = Vy(Lyst) = &, 4
W;(0,1) = W, (Ly.t) =&Y, (25)
U3 (0,1) = Uy(Ly. 1) = Ugyy, (26)
V40,0 =&, @7
W0, =&Y (28)

After applying Hamilton Principle the nonlinear equations of mo-
tion (29)—(36) are derived, where the subscript t represents the partial
derivative with respect to time. The Egs. (29)-(31) describe the dynam-
ics of the ith rope in the elevator system, where i=1,2,3,4.

1

Vi = TV = EA (U + 5 (Vi + W) ) Vie =TV

~ EA (U + S (12 + W) Wi =0, @9
Wiy = ToWoe = EA(Unc# (Vi3 + W2)) Wi = TWis

= EA(Us + 5 (V24 W) Wiy =0, (30)
MUy =T = EA(Un+ 3 (V24 W,2)) = mig =0, )
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The Egs. (32) and (33) represent the boundary conditions at x; =L;
for the lateral in plane and lateral out of plane motions.

le|x1:L1
x=L;

1
MV, (Ly,1) + <T1(x)+ EA1<U1X +o (Ml Wlxz))

2
x2:L2>

1
—<Tz(x) + Ea(Use+ 5 (12 +W5.7))

Vil gyoo + 260 V3 (Ly.1) = 26,8 = 0, (32)
1
MWy, (L 1) + (T](x)+ EAI(le + E(lez + Wlxz)) . )VI/IXL;]:LI
x1=L
1 2 2
—<T2(x)+ EAz(U2x+ §(V2x + Wy, )) )I’sz|x2=o
xp=L,
+2U W, (L1, 1) = 2kyE =0, (33)

The Egs. (34)—(36) are the boundary conditions at x; =L; and x, =0,
Xy=L, and x3=L3, x3=0, and x4, =L, in the longitudinal direction
for the elevator car, compensating sheave, and counterweight, respec-
tively.

M;(Ucg), +T (Ly)+ EA, (le + %(lez + VV1X2))

x=L

-T,(0) - EAz(sz + %(szz + szz)) . ’ ©h
=
-Mg=0
My (Ucs), + Ta(Ly) + EAy(Une + 1 (22 + W2.2)) |+ T5(La)
x=Ly
+ EAy (Us + 3 (37 + W3,.2) ) ’
x=Lj
-M,g=0
(35)
MS(UCW>n + T4(L4) + EA; (U4x + %(114)(2 + VI/4X2)) L - TB(O)
X=Ly4
- EAz(U3x + %(th + W3x2)) .
=
~M;3g =0
(36)

The mean quasi static rope tensions are derived by balance of forces
(see Fig. 1) which are represented by Egs. (37)-(40), where g is the
acceleration of gravity (9.81 m/s?).

Ty (x)) = <M1+m1(L1—x)+m2L2+%>g, (37
T (x,) = (% +m2(L2—x2)>g, (38)
T3(x3) = (% +mz(L3—x3))g, (39)
Ty(x,) = (M3 +my(Ly—x4) +myLy + %)g. (40)

The overall lateral in plane displacements of each rope can be rep-
resented by the following equations:

Vi(xnt) = Vl(xl,t)+SV<1 (v - 1)]’%), @n
Va(ast) = P (30.1) +svw2<1 - 2_22> )
Va(set) = 3 (x0.1) +SW3<1 - %’3) @3)
Va(xant) = Valxant) + Sy (% . (1,,4_1,,5)2—1). 44)
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where V;(x;,t) are the overall response of the elevator ropes in the lat-
eral in plane direction subjected to dynamic loading due to the building
sway where the subscript i = 1,2,3,4 corresponds to the rope ith. The dis-
placements of the ropes relative to the configuration of the ropes when
they are stretched by the structure motion are represented by V;(x;,t).
The second term in Egs. (41)-(44) are the stretch of rope ith due to the
deformation of the structure. Similarly, the overall lateral out of plane
displacements of each rope can be expressed by the application of sim-
ilar transformations. The partial derivative with respect to x and t can
be derived and replaced into Eq. (31) resulting in Eq. (45).
1
2
According to Kaczmarczyk and Picton [6], the longitudinal natural
frequencies of steel wire ropes are much higher than their lateral natural
frequencies, thus the inertia of the ropes in the longitudinal direction
can be neglected, resulting in the following equation:

mU, — EAi(Uix + (Vix2 + VVix2)>X =0. (45)

(U,X+ Vil + Wiy ))X=O,f0ri=1,2,3,4 (46)

3
Thus, the following results
Uy+ = (V + Wi 2) = e;(t),for i = 1,2,3,4 47

where e;(t) is an arbitrary function which depends on the boundary con-
ditions. Substituting Eq. (47) into Eq. (29)-(36) gives:

miVin‘ + Tix le TIVIxx EA €j (t) ixx — 0’ (48)

min/itt + TiXVVIX T; VI/IXX - EA €; (t) ixx — 0’ (49)

—

ér—sv)
L,

M117|(L1J),, —lelyﬂg"'Tl(Ll)V]x—Tl(Ll)

_ (¢ -sv)
+EA e (O _EAlel(f)L—l (50)

- & _ &
~T,(0)V,, + TZ(O)LL2 + EAye,) ()W, — EAzez(t)LL2

+2k Vi (Ly,1) =0

MW, (L M &V 2, + T, (L)W TL(QW_SW)
Wi(Ly,1), I3 + T (L)W, — Ty ( 1)L—l
(& —sw)
+EA1€1(I)W1x—EA191(f)— R 51)
5W
—T, ()W, + Tz(O)L—2 + EAye, (W, — EAz‘fz(I)L]—2
+2k Wi (Ly,1) =0
My (Ucr), +Ti(Ly) + EAje;(t) — To(0) — EAyer(t) — Mg =0, (52)

M, (Ucs), + To(Ly) + EAyey(t) + T3 (Ly) + EAyes(1) — Mag =0, (53)

M;(Ucw ), + Tu(Ly) + EAjey(t) — T5(0) — EAyes(t) — Mg = 0. (54)

The boundary conditions at x; =0, L; for i=3, 4, x; =0 and x5 =L,
are V(x,t) =W (x,t)=0 (are trivial). The boundary conditions at
x; =L; and x, =0 satisfy V;(x;,0) =V 3(x5,t) and W ;(x;,0) = W ;(xz,0)
are represented by the equations of motion of the car mass in the lateral
in plane and out of plane direction. The linear natural modes of the lat-
eral in plane and lateral out of plane motions for the suspension rope at
the car side (rope 1) are given as

b1a(x1) = sin (B],x,). (55)

ay,(x;) =sin (8" x,). (56)
The linear natural modes of the lateral in plane and lateral out of

plane motion for the compensating rope at the car side (rope 2) are

represented by the following equations:

sin g}’ Ly cos B L,

B (xy) =sin Ly cos By x, — sin B) x5, (57)

sin ﬂ;/n L,
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sin g L cos BV L,

@y, (xy) =sin IV L, cos B} x, — sin BV x,., (58)

sin ﬂ;‘n’ L
where §1,", 2.V, f1,", and By," are the lateral in plane and lateral
out of plane eigenvalues for the suspension and compensating ropes at
the car side, respectively, given in terms of the natural frequencies. The
natural frequencies of the lateral in plane and out of plane directions of
both ropes can be obtained from the following equation:

@'V \[Tym, cos (wV/WL 24 /ﬂ) sin (wV/WLl ;—i)

+2k]/2§1n< V/WLz\/_>§1n( V/WLI\/L_])
+wV/Wmsm( VIw \/_>cos< VL ) . (59)

-M, (o V/W) sm( V/WLZ\/L_2>sm( V"L, 'Z:>=O

The corresponding eigenvalues can then be determined from the fol-
lowing equation:

Y = "/W,/T for i = land2 (60)
1

On the other hand, at the counterweight side, the linear natural
modes of the lateral in plane and lateral out of plane motion are given
by the following equation:

a, = bin :sin(ri—”x),for i =3and4 (61)
i

The corresponding natural frequencies in the lateral in plane and out
of plane direction are then determined by the following equation:

ORI 62)

L\ m

2.3. Derivation of the approximate mathematical model

The equations of motion (48)-(54) can be discretized by applying
the Galerkin method. In this procedure, the dynamic response of the
system is approximated, in the lateral in plane and lateral out of plane
directions by the following expansions:

Vi (x Z bin (%) Gin(0). (63)

N
) = 2 @i (xi)cin®), (64)

n=1

where i=1,2,3,4, q;,(t) and c;,(t) represent the generalized (modal)
coordinates. For the suspension and compensating ropes at the
car side the time dependent functions are q;,(t) =¢q,,(t) =g,(t) and
c1,(8) =cop(0) =c,(0) is used. Substituting expansions (63) and (64) into
Eq. (47) results in the following equations:

N N g -s ’
N N _ N = 2 ’
i T TG00+ il 3 ¢,0)sin (ﬁff”l) + —(5' z;zw)
o J=1 !
(65)
_ Ucs-Ucr , _1_ G2 L _(5}’)2
ey(t) = B + 5= Z Z i» q,(f)llp(t)+ -+ Z q;(1)sin (ﬂZJ 2) 212
, NN (5w>2 0
+55 Zl lGWZC (e, (f)+ z Z ¢;(0)sin (ﬂz LZ) 212
Jj=1p=
U x &)’
e3(t) = = CW+12<1_” 50 y
; L3 4 Jj=1 L ¥ 2L§
N . \2 w2
1 J 2 (52 )
) (L_3> SO* p 7
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UC w
Ly

1N
72

Jj=1

1N
t12
j=1

RN §W_§W2
<%> ey + & -5 ,

2
2L

ey(t) =

L N2 v V2
ZAND (& -¢Y)
<L_4> GO+ =0

4

(68)

where Gj, VI and Gjp V2 are defined by Eqs. (A.1) and (A.2) are coefficients
corresponding to the in plane modes, where G;,"! and G;,"? are coeffi-
cients corresponding to the out of plane modes which can be similarly
derived. Substituting expansions (63) and (64) into (48)-(54) applying
the orthogonality conditions with respect to the linear modes a system of
nonlinear ordinary differential equations shown in Egs. (69)-(75). The
Egs. (69) and (70) correspond to the lateral in plane and out of plane
motion at the car side composed of the suspension ropes, compensating
ropes, and elevator car.

4,0 +2¢8) @) 4,(0) + () ) q,(1) + Z k%, + K PUcg

+kV 4 Ucs + Z

n=1

+ Z Z D)l (0)g, () + Z Z D} 2c;()g, (1) + Z Z D) 3c;(t)e, (),

Zea(®)

(69)

n= 1/— n=1j=1 n=1j=1
N N N
‘3 (D7 Ucr+ D; Ucs)an® + X E T RyJ,4,(03,(04,()
=1 1i=1p=
nN N N =t
+2 Z Z R,,,,p ¢;(Ne, (Mg, + FY =0
n=1 j=

N
.. . 2
D+ 2<:,Wwf"c,(r) + (@) e+ X ke, () + k"3 Uy
n=1

+k U + Z k"2, (0)

+ 21 Z D) q;(0e, (1) + 21 Z D)y%e;(ne, (1) + 21 Z D}Y3q;(1q,(0). (70)
n=1j=1 n=1j=1 n=1 j=1
N N N
+ 21 (D7 *Ucr+ Dy Ucs)en@+ X F B Ry, 04,006, 0)
I‘IN N n= I— p=
2 _2 2 RY . c;(Dey(De, () + FY =0
=1 j=1 p=1

The quantities »,” defined in Eq. (A.4) and o, which can be simi-
larly derived are the lateral in plane and out of plane natural frequencies
of the ropes at the car side. The coefficients ¢,V and ¢," represent the
modal damping ratios in the lateral in plane and out of plane direc-
tion for the ropes at the car side. The coefficients k,,"? defined in Eq.
(A.5) and k,,,”? which can be obtained correspondingly, are the lateral
in plane and out of plane linear stiffness coefficients of the ropes at the
car side. In the stiffness coefficients of k,,,"! and k,,,"! are located the
parametric terms which are the kinematic forcing terms that are excit-
ing the ropes at the machine room level in the lateral in plane and out
of plane direction resulting in a parametric excitation to the ropes. The
coefficients k,,,"? defined in Eq. (A.6) and k,,,"? which can be similarly
derived are the lateral parameters that account for the linear coupling
terms between the lateral in plane and out of plane displacements for
the ropes at the car side. The coefficients k,,, "> and k,,,"# defined in Egs.
(A.7) and (A.8) represents the lateral in plane parameters that account
for the linear coupling terms with the longitudinal modal displacements
of the elevator car and compensating sheave for the ropes at the car side.
The coefficients k,,? and k,,,"”# represents the lateral out of plane pa-
rameters that account for the linear coupling terms with the longitudinal
modal displacements of the elevator car and compensating sheave for
the ropes at the car side.

The coefficients D,,"?, D;y"2, Dpp*?, Rpnjp"?, Rpnjp"? defined in Egs.
(A.9)—(A.11), and (A.14) account for the lateral quadratic and cubic non-
linear terms in the lateral in plane direction of the ropes at the car side.
The coefficients D,,,"#, D,,,"> defined in Egs. (A.12), (A.13) and D,,,"4,
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D,,"?> which can be derived similarly account for the lateral quadratic
terms, coupling between the longitudinal modes of the elevator car and
compensating sheave and the lateral in plane and out of plane direc-
tions of the ropes at the car side, due to which the autoparametric (2:1)
resonance may occur. The coefficients D,,,""?, D,"2, D,, "3, R,,,;,"!, and
Rm]pWZ account for the lateral quadratic and cublc nonlinear terms in
the lateral out of plane direction of the ropes at the car side.

According to Nayfeh and Mook [38], whirling motions of the rope
is a nonlinear phenomenon which occur in systems that can be repre-
sented by nonlinear string models. The whirling motion of a rope occurs
when the energy of the rope is transferred from the lateral in plane di-
rection to the lateral out of plane direction. These motions are a direct
consequence of the fact that the frequency of motion in the plane of
the excitation is the same as the frequency of the motion in the plane
perpendicular to the plane of the excitation. Thus, a 1:1 autoparamet-
ric internal resonance occur when the lateral in plane and out of plane
natural frequencies of the ropes at the car side represented by w,” and

W are equal and is due to the cubic nonlinear terms in Egs. (69) and
(70) from the coefficients ijp and R JPW where the coupling be-
tween the lateral in plane and out of plane modes occur.

The coefficients F,V defined in Eq. (A.15) and F," which can be de-
rived similarly are the excitation forces in the lateral in plane and out
of plane direction of the ropes at the car side.

The equations of motion for the counterweight side for i = 3,4 are the
following:

Vi) vi) T

.. 1) . 1

qir(t) + Zgil:wr qir(t) + (00, ) qir(t) + Z k;:y,qin(t)
n=1

+ (D.V'UCS+ DV 2Ucy ) gin(0) . (D
=1
Nn N N N N N
+ XX R, 4000+ T3 T R 06,0+ F =0
n=1 j=1p=1 n=1j=1p=
e',-,m +20 0 e, 0+ () e, ) + 2 Kl can(®)
+ (D.WIUCS + DUy ) e, (0) (72)
=1
Nn N N N N
+ 21 21 X R 45O, + 21 Y 2 RYZ cL(De, )+ F)Y =0
n=1j=1p=1 n=lj=lp=

The quantities ,® defined in Egs. (A.17) and (A.24), and the quan-
tities w, W@ which can be derived similarly are the lateral in plane and
out of plane natural frequencies for the ith rope at the counterweight
side. The coefficients ¢;" and ¢;" represent the modal damping ratios
for the ith rope in the lateral in plane and out of plane direction. The
coefficients kl—mV defined in Egs. (A.18) and (A.25), and the coefficients
ki," which can be obtained similarly are the lateral in plane and out
of plane linear stiffness coefficients for the ropes at the counterweight
side. In the stiffness coefficients of k;,," and k;," are located the para-
metric terms which are the kinematic forcing terms that are exciting the
ropes at the machine room level in the lateral in plane and out of plane
direction resulting in a parametric excitation to the ropes. The coeffi-
cients le]p and le}p defined in Egs. (A.21) and (A.28) account for
the lateral cubic nonlinear terms in the lateral in plane direction of the
ropes at the counterweight side. The coefficients le]pw and Rypp," w2
account for the lateral cubic nonlinear terms in the lateral out of plane
direction of the ropes at the counterweight side. The coefficient D, "?
and D;,,,"? defined in Eqs. (A.19), (A.20), (A.26), and (A.27), and D;,,,""!
and D;,,,""? which can be derived correspondingly account for the lateral
quadratic terms coupling between the longitudinal modes of the com-
pensating sheave and counterweight and the lateral in plane and out of
plane direction of the ropes at the counterweight side, due to which the
autoparametric (2:1) resonance may occur. The autoparametric (1:1)
internal resonance takes place between the lateral in plane and out of
plane directions represented by w,"® and V@ are equal and is due
to the cubic nonlinear terms of Egs. (71) and (72) from the coefficients
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Rim]p and le}p T where the coupling between the lateral in plane and
out of plane modes occur.

The coefficients F;,V defined in Egs. (A.22) and (A.29) and F;," which
can be derived correspondingly are the excitation forces in the lateral
in plane and out of plane direction of the ropes at the counterweight
side. All of the coefficients are coming from solving the integrals from
the Galerkin Method.

The equations of motion for the elevator car, compensating sheave
and counterweight are shown in the following equations:

M, (Uc

+ K U p() + K2 U (1) + 2 k3q,0) + 2 ke, (1)

n=1

R)y
N
Z X Ria)(0g,0) )

c;(De, () + fer =

/pJ

M,y (Ucs),, + k' Ucr(®) + K2Ucs(t) + K3 Ucy, (1)
N N

+ Z kg, + X ke, (1)

n=1
Z Z R“lqj(t)qp(f)‘l' Z Z Ruzc (e, (1) + Z Ru3q3n(l‘)
j=1p=1 =
N
z R )+ fes =

n=1

2

(74)

N
M;(Ucw ), + k' Ucs® + KUy (1) + z RUq2 (1)
=

+ Z R2c2 (1) + Z RBg2 (1) (75)

n—l

+ Z R () + few =0
n=1

The coefficients k!, k%2, and k%2 defined in Egs. (A.30), (A.37),
and (A.45) are the longitudinal linear stiffness parameters. The coef-
ficients k"2, k"I, k43, and k! defined in Egs. (A.31), (A.36), (A.38),
and (A.44) are the longitudinal parameters that account for the linear
coupling terms with the longitudinal displacements of the elevator car,
compensating sheave, and counterweight. The coefficients k,** and k"¢
defined in Egs. (A.32) and (A.33) are the lateral in plane and out of plane
parameters that account for the linear coupling terms with the longitu-
dinal displacements of the elevator car. The coefficients k,*¢ and k,*°
defined in Egs. (A.39) and (A.40) are the lateral in plane and out of
plane parameters that account for the linear coupling terms with the
longitudinal displacements of the compensating sheave.

The coefficients R4, RY2, Rul RuZ Ru3 Ru4 Rul Ru2 Ru3 apd
R** defined in Egs. (A.34), (A.41), (A.42), (A.46), and (A.47) account
for the lateral in plane and out of plane quadratic nonlinear terms in
the longitudinal direction of the elevator car, compensating sheave, and
counterweight.

The coefficients Fg, Fcg, and Fgyy, defined in Egs. (A.35), (A.43), and
(A.48) are the excitation forces in the longitudinal direction of the eleva-
tor car, compensating sheave, and counterweight. All of the coefficients
are coming from solving the integrals from the Galerkin Method.

The equations of motion (73)-(75) describe the longitudinal be-
haviour of the elevator car, compensating sheave, and counterweight,
respectively, and can be transformed into the modal coordinates using
the transformation U = [Y15 where U = [Ugg Ucg UcwlT and S =1[S; S,
S517 is a vector of modal-coordinates corresponding to the three longi-
tudinal modes of the system, respectively. If [Y] is the mass-normalized
mode shape matrix, the following equation in a matrix form describes
the vertical response of the car, compensating sheave and counterweight
in terms of the modal parameters

S +[CIS() + [PIS@) + YT (3, +5,) + [Y]T(ﬁ + ;7) -0, 76)
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where the matrices [C] and [P] are defined by (77) and (78), respec-
tively.

[2¢,00, 0 0
[Cl=| 0 250, 0 (77
0 0 28505
[0 0 0
[Pl=|0 w2 O] 78)
|0 0 &}

The quantities w;, w4, and w5 represent the longitudinal natural fre-
quencies of the system. The longitudinal natural frequencies can be esti-
mated by obtaining the eigenvalues with the characteristic equation de-
fined by (79), where A represent the eigenvalues of the stiffness matrix
K defined in (80) and I represent the identity matrix. The coefficients
{1, &9, €3 represent the three longitudinal modal damping ratios of the
system. The vectors 6, 6, I?, # are shown in Egs. (81)—(84).

det (Kpr — A1) =0, (79)
kul kuz
oo
_ ,‘(ul ,-(uz ]'(u3
Ku=\% % ) (80)
jcul 1}142
O % w
. }
Y k“3q,@)
n=1
G N _ , 81
S DRAN0)
n=1
| 0
Sy _
2 ke, ()
Py’
6, =N _ , 82
2 kz5c"(t) ( )
n=1
L 0 .
. fer
F=|fcs | (83)
few
fMcr
'7: Hes | (84)
New

The coefficients g, ¢, ncw represent the quadratic terms that fea-
ture in the equations of motion of the elevator car, compensating sheave,
counterweight represented by the following equations:

N N
cr = Z ll, (Dg,(®) + Z Z Rﬁc/ (e, (1), (85)
J=1p=1 j=1p=1
N N N
Nes = Z Z R?;qj(t)qp(t) + Z Z Rﬁcl(t)cp(t)
Jj=1p=1 Jj=1p=1
N N
+ LR, 0+ YR, 0, (86)
n=1 n=1
N
New = Z R, (1) + Z Rl (0 + 2 R3¢ )+ Z Ruc2 (. (87)
n=1

Similarly in Eqgs. (69)-(72) the coefficients of the elevator car, com-
pensating sheave and counterweight are transformed and rewritten as
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the following equations

G0 +28Y 0¥ 4, + ()
+5V Y s, +aV1?<3>S3

N
+ 3 ke, + S 3 DXla 00,0+ 3 3 DY 0,0

n=l j=1 n=1j=1

V) g0+ Z K 1g 0 +57 YIS,

(88)

+ —_
Mz
Mz

DY3¢;(t)e, (1) ’

£
Il

<.
Il

=1 p=1

+
M=

(D;;Ayms 1 DVSTO) S)q,,(t) + RV 4,(0)q,(1)q,(0)

i
=

~.
bS]

Mz

¢; (e, (g, () + FY =0

+
™M=z
M=

1
I

rnjp J

3
Il

&M+ 28" o e (1) + (o

i

N
2 _ -
Ve + X ke, ) +87YVS,
n=1
+6WY(2)S +5W)7(3>Sz

+Zk qn(t)+ZZD

n=1j=1

L (e, () + 2 Z DW2e,(1)e, (1)

n=1 j=1

+ Z Z DW34,(1)g, (1) ’

n=1 j=1

N N N
(DIZ FOF+ DIYOS e, )+ T X T R4 08,000
n=1j=1p=1

(89)

+
Mz

rnjp

3
Il

+
M=
Mz

R c;(Dey(De, () + FY =0

Il
<.
Il
=
I

.. V@) . 4G
i)+ 220} 4,0 + (0 ) g0 + 2 NG
N
+ Zl (D}j; YOS5 4+ D}j,fY(3>S>q,.,,(t) . (90)
-
N N N N N N

+ 3 T TR G060+ X 3 T R 06,0)+ F =0
n=1 j=1p=1 n=1j=1p=

. N2 N
&0 + ZCI‘I:V@:/V(,)CIH(I) + (CO:/V(')> e+ X ki)
n=1
N
+3 (D.WIY@S + DTS e, (1) . oD
N N N

+ Z 2 Z R4 e, + X X z R et ey + FY =0

irnjp~i
n=1 j=1p: n=1 j=1p e

where 5," and ," represented by:

= V [kV3 kl/4 O] R

92)

sV = k3 ). ©3)

3. Case study and simulation

A summary of the parameters used in the simulation tests are shown
in Table 1.

The analysis is focused on the car side subsystem. In this simula-
tion the longitudinal natural frequency of the car corresponding to the
position of the car along the travel height of w; is chosen to be twice
the lateral in plane natural frequency of the suspension ropes at the car
side (w; = 2w, ") and the external excitation frequency in the lateral in
plane direction of the building structure should coincide with the lat-
eral in plane natural frequency of the suspension ropes at the car side
Qu=w;".

The research to analyse wind loading acting on a building struc-
ture has attracted the attention of many researchers. For example in
[40,41] the formation of vortices, distortion of the mean flow, and flow
separation has been considered. Large aerodynamic loads act on the
building structure which makes the building vibrate in rectilinear and
torsional modes, as discussed in [41]. Full scale monitoring was car-
ried out in [42] to better understand the methodology used to predict
the acceleration response of high-rise buildings consistent with on-site
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behaviour. A full scale monitoring programme has been discussed in
[43,44]. The results presented corresponded to the first three natural
frequencies, modal damping ratios and mode shapes for three building
structures. A comparison is then developed between the measurement
data, simulation results from finite element models and wind tunnel test-
ing. Thus, following the results presented in [43,44], the frequency of
excitation in the lateral in plane and in the lateral out of plane directions
for the simulation tests is assumed to be harmonic and corresponds to
the fundamental modes of the structure, relevant parameters are shown
in Table 1.

The stiffness coefficients of the springs that are connected to the ele-
vator car in the lateral in plane direction and in the lateral out of plane
direction can be calculated using Egs. (1)-(3), resulting in k; =80kN/m
and k; =236kN/m when using hard tyres and k; =30kN/m and
k, =75kN/m when using soft tyres. Following on from what has been
discussed in Section 2, the total combined stiffness of the system in the
lateral in plane and out of plane direction depends on the stiffness of the
elevator car suspension-tyre system when using hard or soft tyres. In the
considerations to follow it is assumed that the lateral in plane and lat-
eral out of plane natural frequencies of the elevator car, suspension, and
compensating ropes system at the car side are the same (0; "~ ®;"). The
stiffness coefficients of the springs in the lateral in plane and out of plane
direction are assumed to be equal, and are taken as k; =k, =80kN/m
when using hard tyres and k; =k, = 30 kN/m when using soft tyres, re-
spectively. The simulation tests cover the time interval of 200s.

3.1. Frequency analysis

The variation of frequency corresponding to all lateral modes of the
elevator car, suspension, and compensating ropes at the car side accord-
ing to the position of the elevator car in the hoistway measured from the
bottom landing level are shown in Fig. 4, with k; =k, =80kN/m.

In Fig. 4 the solid blue, green, magenta, and cyan lines represent the
variation of frequency of the first four lateral natural frequencies at the
car side lateral subsystem, which is composed of the elevator car mass,
the suspension and compensating ropes. The variation of the lateral in
plane and out of plane natural frequencies at the car side of the elevator
car, suspension and compensating ropes are the same as shown in Fig. 4,
due to k; =k, according to the initial input data presented at the begin-
ning of this chapter. The dashed green line represents the variation of
frequency of the first longitudinal natural frequency in the vertical di-
rection. The dashed magenta and black lines represent the fundamental
natural frequency of the suspension and compensating ropes, respec-
tively, when the interface between the car and the hoistway is consid-
ered as rigid and the car mass lateral motions are not admitted. The
horizontal dashed red and blue lines represent the excitation frequen-
cies of the building structure in the lateral in plane and out of plane
direction with 0.42Hz and 0.36 Hz, respectively.

It is evident from Fig. 4 that the suspension ropes will be excited at
the fundamental natural frequency when the car is positioned at 72.0 m
from the bottom landing level in the lateral out of plane direction due
to the frequency of excitation of the building structure in the lateral out
of plane direction of 0.36 Hz. If the car is positioned at 120.0 m from
the bottom landing level the compensating ropes will be excited at the
fundamental natural frequency.

When the elevator car is at a height of approximately 100.0m the
first natural frequency in the longitudinal direction is twice the funda-
mental natural frequency of the elevator car, suspension, and compen-
sating ropes at the car side. For the condition Qy~ ®;/2~ ©;"W, the
external excitation of the building structure in the lateral in plane direc-
tion was set at the fundamental natural frequency of the elevator car,
suspension and compensating ropes at the car side in the lateral in plane
and out of plane direction when the car is positioned at the height of
100.0 m.

In Fig. 4 the curve veering phenomena is observed which is when two
eigenvalues approach each other closely and suddenly veer away again,



Table 1
Summary of parameters used in the simulation tests.
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System parameters

Number of suspension ropes

Number of compensating ropes

Mass per unit length of suspension ropes

Mass per unit length of compensating ropes

Elastic modulus of suspension ropes

Elastic modulus of compensating ropes

Height

Travel height

Car mass with full load

Mass of the compensating sheave

Mass of the counterweight

Height measured from the bottom landing level to the centre of the compensating sheave
Height from centre of the traction sheave to the centre of the diverter pulley
Frequency of excitation in the lateral in plane direction

Frequency of excitation in the lateral out of plane direction

Displacement at the machine room level in the lateral in plane direction
Displacement at the machine room level in the lateral out of plane direction
Young’s modulus of elasticity of the guide rail

T cross section flange width

T cross section web height

T cross section thickness

2nd moment of inertia of the T cross-sectional area in the lateral in plane direction
2nd moment of inertia of the T cross-sectional area in the lateral out of plane direction
Length of the guide rail section

Stiffness of the elevator car suspension-tyre with hard tyres [30]

Stiffness of the elevator car suspension-tyre with soft tyres [39]

n; =6

n,=6

m; =2.15kg/m

m, =2.15kg/m

EA; =95,276,193 N
EA,=95,276,193 N
hy=248.0 m

Ryqy =236.00 m

M; =8600 kg

M, =21,500 kg

M; =7800 kg

b; =8.30 m

b, =0.50 m

Q, =2.64rad/s (0.42Hz)
Q =2.26rad/s (0.36 Hz)
Ay=0.15m

Ay =0.15m
E;=210x10° N/m?
a; =60 mm

a, =70 mm

a; =6 mm
J,=2.87x107 m*
J,=9.20x10"7 m*
L;=5.00m

K, =580kN/m
K.=50kN/m

Frequency [Hz]

0 1 1

100

150 200

Position of the elevator car h, [m]

Fig. 4. Variation of the first four lateral natural frequencies at car side lateral subsystem (@";/5/3/4) for k;,, =80kN/m, &;""/? — first lateral natural frequency of suspension and
compensating ropes, w; — first longitudinal natural frequency and Q,,, — excitation frequencies of building structure in lateral in plane and out of plane direction. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

each one taking on the trajectory of the other, according to Giannini
and Sestieri [45]. The veering phenomena is defined as smooth change
of normal parametric variation of two modes approaching each other
but, instead of crossing, they veer away and finally diverge [24,46-48].

In Fig. 5 the solid blue and green lines represent the variation of
frequency of the first two lateral natural frequencies of the car side lat-
eral subsystem vs. the car position in the shaft for k; =k, =80kN/m
and the magenta and cyan lines represent the variation of frequency of
the first two lateral natural frequencies at the car side lateral subsystem
for k; =k, =30kN/m. The horizontal dashed red and blue lines repre-
sent the excitation frequencies of the building structure in the lateral in
plane and out of plane direction with 0.42 Hz and 0.36 Hz, respectively.
As shown in Fig. 5 if the stiffness parameter is lowered the variation of
frequency becomes smoother and the sharp peak for the fundamental
natural frequency is reduced from 0.42Hz to about 0.36 Hz. The fre-
quency of excitation of the building structure in the lateral out of plane
direction of 0.36 Hz and the fundamental natural frequency of the car
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subsystem for k; =k, = 30kN/m are equal when the elevator car is at a
height approximately of 100.0 m.

Similarly, the variation of the natural frequencies of the compensat-
ing ropes at the counterweight side and the variation of the first three
longitudinal natural frequencies according to the position of the car
in the hoistway measured from the bottom landing level are shown in
Fig. 6. The solid blue, green, magenta, and cyan lines represent the first
four lateral natural frequencies of the compensating ropes. The dashed
black, magenta, and green lines represent the three longitudinal natu-
ral frequencies of the system according to the position of the elevator
car, estimated by finding the eigenvalues. The horizontal dashed red
and blue lines represent the frequency of excitation from the building
structure at 0.42 Hz and 0.36 Hz in the lateral in plane and out of plane
direction. In the scenario considered in this case study the compensat-
ing rope at the counterweight side will be excited at close to the funda-
mental natural frequency in the lateral out of plane direction due to the
frequency of excitation of the building structure when the car is position
at 116.0m from the bottom landing level.
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Fig. 7. The first three vertical mode shapes Y, , 5 of the elevator system.

3.2. Mode shapes

The mode shapes corresponding to the vertical vibrations of the ele-
vator car, compensating sheave, and counterweight are shown in Fig. 7.
In the first mode (0.84 Hz) the elevator car, compensating sheave, and
counterweight are in phase. The second mode (2.17 Hz) the compensat-
ing sheave and counterweight are in phase than the elevator car. In the
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third mode (2.41 Hz) the elevator car and counterweight are in phase
than the compensating sheave.

The 1st and 2nd lateral mode shapes at the car side subsystem com-
posed of the suspension ropes, compensating ropes, and the elevator
car when the car is at 100.0 m from the bottom landing level are shown
in Fig. 8 and Fig. 9, respectively, comparing a k; =k, =80kN/m and
k; =k =30kN/m.



R.S. Crespo et al.

International Journal of Mechanical Sciences 137 (2018) 24-45

245 F
210 i =
— k1/2—8()kN/m
——i=2k,,,=80kN/m
175 | 2
-—-i=] k[/273()kN/m
140 | -—i=2 k1/2=30kN/m
=
oy
> 105
70
3 F
_g.3 C 1 1
0 0.1 02 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1

Fig. 8. First mode shapes of the system at the car side for k; =k, = 80 kN/m represented as solid line and k; =k, = 30 kN/m represented as dashed line, the suspension and compensating
ropes are represented as blue and red lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Second mode shapes of the system at the car side for k; =k, =80 kN/m represented as solid line and k; =k, = 30 kN/m represented as dashed line, the suspension and compensating
ropes are represented as blue and red lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The solid line represents the mode shapes of the system at the
car side subsystem when k; =k, =80kN/m and the dashed line rep-
resent the mode shapes of the system at the car side subsystem when
kq =k =30kN/m. The blue and red line correspond to the suspension
ropes (i=1) and compensating ropes (i=2), respectively. The joining
point where the blue and red lines meet represent the position of the el-
evator car considered as a lumped mass which is positioned at a height
of 100.0 m from the bottom landing level. The bottom landing level is
represented at 0.0 m. The height of —8.3 m is the height from the bottom
landing level to the centre of the compensating sheave.

The sharp transition between the suspension and compensating ropes
at the car subsystem for the 1st mode shape shown in Fig. 8 with a
spring stiffness of k; =k, =80kN/m and k; =k, = 30kN/m, is due to the
fundamental mode shape of the ropes when the elevator car is positioned
at a height of 100.0 m from the bottom landing level. It is evident from
Fig. 8 that when using a low spring stiffness of k; =k, =30kN/m the
lateral displacements of the elevator car are higher than using a high
spring stiffness of k; =k, =80kN/m.

The 2nd mode shapes at the car side subsystem shown in Fig. 9 are
the same when using a low spring stiffness k; =k, =30kN/m and a high
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spring stiffness k; =k, =80 kN/m. The mode shapes are obtained with
Egs. (55) and (57). Similarly, the mode shapes at the counterweight side
can be determined using Eq. (61).

3.3. Response of the ropes

The behaviour of all ropes are described by the mathematical model
given in terms of Egs. (88)-(91). The equations of motion are solved
numerically by applying Runge-Kutta 4-5 order numerical algorithm
to obtain the modal coordinates of the system. The total displacements
of rope ith for i=1,2,3,4 are obtain by using Eqs. (41)-(44) with the ex-
pansions of the system in the lateral in plane and out of plane directions
defined in Egs. (63) and (64).

The overall time response at the midspan length of the suspension
and compensating ropes (defined by Egs. (41) and (42)) at the car side
when the elevator car is positioned at a height of 100.0 m from the bot-
tom landing level are shown in Figs. 10 and 11.

The solution is for higher stiffness parameters of k; =k, =80kN/m
represented by the blue line and for lower stiffness parameter of
k; =k, =30kN/m represented by the red line. The response of the sus-
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Fig. 10. The mid span length displacements of the suspension rope at the car side with respect to time (a) lateral in plane direction (b) lateral out of plane direction, k; =k, =80kN/m
represented as blue line and k; =k, =30kN/m represented as red line, the elevator car is positioned at a height of 100.0m from the bottom landing level. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. The mid span length displacements of the compensating rope at the car side with respect to time (a) lateral in plane direction (b) lateral out of plane direction, k; =k, =80kN/m
represented as blue line and k; =k, = 30 kN/m represented as red line, the elevator car is positioned at a height of 100.0m from the bottom landing level. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

pension and compensating ropes in the lateral in plane direction at the
car side have high amplitudes at the start and during time the ampli-
tudes decreases.

In Fig. 12(a) and (b) shows the maximum displacements of the com-
pensating ropes at the car side in (a) lateral in plane and (b) lateral out
of plane direction, with a high stiffness parameter of k; =k, =80kN/m
represented by a dashed blue line and k; =k, = 30 kN/m represented by
a dashed red line. The compensating rope length is measured from the
centre of the compensating sheave to the elevator car considered as a
lumped mass where the height is not considered. In Fig. 12(a) and (b)
the shapes of the ropes display the first mode shape due to the excita-
tion frequency of the building structure in the lateral in plane and out
of plane directions.

The maximum displacements in the lateral in plane direction is
1.35m and in the lateral out of plane direction is 1.82m when the el-
evator car has a lower stiffness parameter of k; =k, =30kN/m. If the
elevator shaft has a distance from wall to wall of 2.00m in the lateral
in plane and out of plane direction the ropes will impact the eleva-
tor shaft walls when the elevator car has a lower stiffness parameter
of ky =k, =30kN/m.

The FFT frequency spectra of the lateral in plane and out of
plane responses over the time span of 10.0 s-60.0 s for the sus-
pension and compensating ropes at the car side are shown in
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Fig. 13(a)-(d) and Fig. 14(a)-(d), with a high stiffness parameter of
k; =k, =80kN/m represented by a blue line and a low stiffness param-
eter of k; =k, =30 kN/m represented by a red line.

The predominant frequencies are 0.42 Hz and 0.36 Hz which are the
frequencies in which the building structure is exciting the ropes in the
lateral in plane and out of plane directions. The frequency of 0.42Hz
in the lateral out of plane direction shown in Fig. 13(c) and Fig. 14(c)
and the frequency of 0.36 Hz in the lateral in plane direction shown in
Fig. 13(b) and Fig. 14(b) are the same external excitation frequency of
the system in the lateral in plane and out of plane directions, respec-
tively. Thus, 1:1 autoparametric interaction is taking place between the
lateral in plane and out of plane directions, through the quadratic and
cubic nonlinear terms of Egs. (69) and (70) from the quadratic and cu-
bic coefficients D, "%, D!, Rynjp"2, and Ry,y,"! where the coupling
between the lateral in plane and out of plane modes occur.

A third FFT frequency spectra is shown in Fig. 15(a) and (b) in the
lateral in plane and (c) and (d) out of plane direction of the suspension
ropes at the car side over a time span of 100.0 s-150.0 s, with a high
stiffness parameter of k; =k, =80 kN/m represented by a blue line and
k; =k, =30kN/m represented by a red line. The maximum frequencies
are 0.42 Hz shown in Fig. 15(a) and (b) in the lateral in plane direction
and 0.36 Hz shown in Fig. 15(c) and (d) in the lateral out of plane di-
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Fig. 16. Displacements of the compensating rope at the car side, k; =k, =80kN/m rep-
resented as blue line and k; =k, = 30 kN/m represented as red line, between 100.0s and
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rection are the same as the external excitation applied to the system in
the lateral in plane and out of plane direction.

The frequencies of 0.42 Hz and 0.36 Hz from the lateral in plane and
out of plane directions are due to the parametric terms located in the
lateral in plane and out of plane equations in the stiffness coefficients of
k,,V! and k,,, "!. This parametric excitation is coming from the kinematic
forcing terms that are exciting the ropes at the machine room level.

In Fig. 16(a) and (b) the motion of the compensating ropes at the car
side can be observed between the time span of 100.0 s and 200.0 s when
the displacements in the lateral in plane and out of plane direction are
graphed together corresponding to the midspan length of the rope with
a high stiffness parameter of k; =k, =80kN/m represented by a blue
line shown in (a) and a low stiffness parameter of k; =k, =30kN/m
represented by a red line shown in (b).

In Fig. 16(a) and (b) the full whirling motion of the compensating
ropes at the car side subsystem is not developed due to the frequency of
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excitation of 0.36 Hz in the lateral out of plane direction is not equal to
the frequency of excitation in the lateral in plane direction.

In order to develop the whirling motion of the suspension and com-
pensating ropes at car side subsystem the frequency of excitation in the
lateral in plane and out of plane direction should be approximately equal
to the fundamental natural frequency of the suspension and compensat-
ing ropes at the car side subsystem (Qy, =~ »; /). The response of the
compensating ropes at the car side subsystem shown in Fig. 17(a), (b)
and Fig. 18 are obtained by assuming the external excitation frequency
of the building structure in the lateral in plane and out of plane direc-
tion to be Qy = 2.64 rad/s (0.42 Hz) with a high stiffness parameter of
k; =k, =80kN/m and Qy,y,=2.26 rad/s (0.36 Hz) with a low stiffness
parameter of k; =k, = 30kN/m. Assuming, the displacement at the ma-
chine room level in the lateral in plane direction is Ay, =0.15m and in
the lateral out of plane direction is Ay, =0.02m. The other parameters
considered at the beginning of Section 3 remain unchanged.

The overall time response at the midspan length of the compensating
ropes at the car side when the elevator car is positioned at a height of
100.0m from the bottom landing level is shown in Fig. 17(a) and (b).
In Fig. 17(b) can be seen the displacements in the lateral out of plane
direction increase over time due to the 1:1 autoparametric interaction
is taking place between the lateral in plane and out of plane direction
through the cubic nonlinear terms of Egs. (69) and (70) where the cou-
pling between the lateral in plane and out of plane modes occur. In
Fig. 18 the motion of the compensating ropes at the car side can be
observed between the time span of 100.0 s and 200.0 s when the dis-
placements in the lateral in plane and out of plane direction are graphed
together corresponding to the midspan length of the rope when the car
is positioned at a height of 100.0 m from the bottom landing level with
a high stiffness parameter of k; =k, =80kN/m represented by a blue
line and a low stiffness parameter of k; =k, =30 kN/m represented by
a red line.

3.4. Lateral response of the elevator car

The lateral in plane and out of plane displacements of the eleva-
tor car relative to the building structure are shown in Fig. 19 with a
high stiffness parameter of k; =k, =80KkN/m represented by a blue line
and in Fig. 20 with a low stiffness parameter of k; =k, =30kN/m rep-
resented by a red line in (a) and (b), respectively, compared with the
displacements of the building structure represented by a dashed black
line.

The maximum lateral in plane displacements of the elevator car rela-
tive to the building structure with a high stiffness parameter are 0.15m
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to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. Displacements of the compensating rope at the car side, k; =k, =80kN/m rep-
resented as blue line and k; =k, = 30 kN/m represented as red line, between 100.0s and
200.0s. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

and the maximum displacements of the building structure are 0.05m,
shown in Fig. 19(a). The lateral out of plane displacements of the ele-
vator car relative to the building structure with a high stiffness param-
eter are almost equal to the displacements of the building structure of
0.05m, shown in Fig. 19(b), due to the high stiffness parameter repre-
senting the stiffness of the tyre-suspension system of the elevator car in
the lateral directions. The lateral displacements of the elevator car rel-
ative to the building structure with a low stiffness parameter are much
higher than the maximum displacements of the building structure as
shown in Fig. 20(a) and (b), due to the low stiffness parameter in the
lateral directions of the elevator car.

When comparing the lateral in plane displacements of the elevator
car relative to the building structure with a high stiffness parameter in
Fig. 19(a) with the lateral out of plane displacements of the elevator
car with a low stiffness parameter in Fig. 20(b), it is evident that larger
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displacements of the elevator car are predicted, due to the proximity
to the resonance condition, exceeding the allowable limits. However, it
should be noted the model limitation is that no damping elements are
included in the lateral interface between the guide rails and the elevator
car.

In addition the lateral vibrations at the elevator car are induced
by irregularities and imperfections of the rail guide system resulting
from the accumulation of manufacturing error, which are transmitted
to the suspension and compensating ropes resulting in adverse dynamic
behaviour of the elevator system, as discussed by Kaczmarczyk and
Iwankiewicz [27]. This additional source of excitation induced by ir-
regularities and imperfections of the rail guide system is not taken into
account in the model presented in this paper.

3.5. Longitudinal response of the elevator car, compensating sheave and
counterweight

The longitudinal displacements of the elevator car, compensat-
ing sheave, and counterweight are shown in Figs. 21(a), 22(a),
and 23(a) compared when using a high stiffness parameters of
k; =k, =80kN/m represented as a blue line and a low stiffness param-
eter of k; =k, =30KkN/m represented as a red line.

The FFT frequency spectra over a time span of 100.0 s and 150.0 s
when using a high stiffness parameters of k; =k, = 80 kN/m represented
as a blue line for the elevator car, compensating sheave, and counter-
weight are shown in Figs. 21(b), 22(b), and 23(b). The predominant
frequency is the frequency of 0.84 Hz which is twice the frequency of
excitation in the lateral in plane direction coming from the excitation co-
efficients Fcg, Fcs, Foy defined in Egs. (A.35), (A.43), and (A.48) which
are the excitation forces acting in the longitudinal direction of the el-
evator car, compensating sheave, and counterweight, which is primary
external excitation.

The primary external excitation in the 1st longitudinal mode which
has a predominant frequency of 0.84 Hz, is due to the tuning condition
of Qy~ w;/2~ w;"/W, which in turn provides autoparametric excitation
to the first lateral mode leading to 2:1 autoparametric resonance in the
system. The elevator car, compensating sheave, and counterweight are
in phase as shown in Fig. 7(a) for the vertical mode shapes in the first
mode of 0.84 Hz.

The FFT frequency spectra over a time span of 100.0 s and 150.0 s
when using a low stiffness parameters of k; =k, = 30 kN/m represented
as a red line for the elevator car, compensating sheave, and counter-
weight are shown in Figs. 21(c), 22(c), and 23(c). The predominant fre-
quency is the frequency of 0.72 Hz which is twice the frequency of exci-
tation in the lateral out of plane direction coming from the excitation co-
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Fig. 21. (a) Longitudinal displacements of the elevator car with k; =k, =80kN/m represented as a blue line and k; =k, = 30 kN/m represented as a red line (b, ¢) FFT frequency spectra
of the elevator car between the time span of 100.0s-150.0s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

efficients Fcg, Fcs, Foy defined in Egs. (A.35), (A.43), and (A.48) which
are the excitation forces acting in the longitudinal direction of the el-
evator car, compensating sheave, and counterweight, which is primary
external excitation.
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The mathematical model gives the response of the suspension and
compensating ropes at the car and counterweight side and the response
of the elevator car in the lateral in plane, lateral out of plane and longi-
tudinal directions with the response in the longitudinal direction of the
compensating sheave and counterweight.
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4. Conclusions

The mathematical model of an elevator system derived and pre-
sented in this paper takes into account the lateral stiffness of the lift
(elevator) car building interface. Green’s strain tensor measure for the
steel wire rope is applied to express the nonlinear couplings between
the modes. The assumption is made that the longitudinal inertia of the
ropes can be neglected. This is because in practical applications the lon-
gitudinal natural frequencies are much higher than the lateral natural
frequencies of the rope and the external excitation frequencies are low.
When the elastic interface between the elevator car and the building
structure in the lateral directions is considered the veering phenomena
appears. The simulation tests are carried out and the results are obtained
when the elevator car is positioned at a height where the fundamental
natural frequencies of the suspension ropes and compensating ropes at
the car side become near each other. It is shown that this particular con-
figuration corresponds to the veering point of the natural frequency loci
and is analysed by using high and low stiffness parameters of the lateral
stiffness of the car building interface. It is found that the lower the stiff-
ness the more the frequency loci veer away. The lateral response of the
suspension ropes, compensating ropes, and the elevator car was high
and the ropes would impact the elevator shaft walls and components.

The 1:1 autoparametric internal resonance takes place between the
lateral in plane and out of plane modes, due to the effects of the cu-
bic nonlinear terms at the car side. Furthermore, it is shown that the
1st longitudinal mode is excited due to the primary external resonance
which in turn acts on the first lateral mode which leads to 2:1 internal
resonance. It is demonstrated that the whirling motions of the compen-
sating ropes at the car side take place due to the cubic nonlinear coupling
terms between the lateral in plane and out of plane modes. It is evident
that large whirling motions occur when the frequency of excitation of
the building structure in the lateral in plane and out of plane direction
are approximately equal to the fundamental natural frequency of the
elevator car, suspension and compensating ropes at the car side.

Due to the ride quality requirements of the elevator system, an el-
evator car with low lateral stiffness having high lateral vibrations as
the ones shown in Figs. 19 and 20 would not be suitable for service.
In all cases the resonance responses are too large and some mitigating
measures would need to be applied.
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Appendix A

The coefficients G;,"! and Gj,"? are defined in the following equa-
tions:
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Similarly, G;,"! and G;,"? can be deducted. The coefficients for
the subsystem at the car side composed of the elevator car, suspen-
sion, and compensating ropes in the lateral in plane direction defined
in Eq. (88) are presented in the following equations:.
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The coefficients for the subsystem at the car side composed of the
elevator car, suspension and compensating ropes in the lateral out of
plane direction defined in Eq. (89) can be derived by following the same
procedure. The coefficients of Eq. (90) representing the compensating
rope at the counterweight side (i=3) in the lateral in plane direction
are presented in the following equations:
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The coefficients of Eq. (90) representing the suspension rope at the
counterweight side (i=4) in the lateral in plane direction are presented
in the following equations:
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The coefficients of Eq. (91) representing the compensating rope
(i=3) and the suspension rope (i=4) at the counterweight side in
the lateral out of plane direction can be deducted. The coefficients of
Eq. (73) representing the dynamic response of the elevator car in the
longitudinal direction are presented in the following equations:
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The coefficients of Eq. (74) representing the dynamic responses of
the compensating sheave in the longitudinal direction are presented in
the following equations:
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The coefficients of Eq. (75) representing the dynamic responses of
the counterweight in the longitudinal direction are presented in the fol-
lowing equations:
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